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Abstract
Many studies argue that integrating multiple cues in an adaptive way increases tracking per-

formance. However, what is the definition of adaptiveness and how to realize it remains an

open issue. On the premise that the model with optimal discriminative ability is also optimal

for tracking the target, this work realizes adaptiveness and robustness through the optimiza-

tion of multi-cue integration models. Specifically, based on prior knowledge and current

observation, a set of discrete samples are generated to approximate the foreground and

background distribution. With the goal of optimizing the classification margin, an objective

function is defined, and the appearance model is optimized by introducing optimization

algorithms. The proposed optimized appearance model framework is embedded into a par-

ticle filter for a field test, and it is demonstrated to be robust against various kinds of complex

tracking conditions. This model is general and can be easily extended to other parameter-

ized multi-cue models.

Introduction
The goal of visual tracking is to obtain the state of interest target including the location and
motion data. Many efficient tracking methods developed in the past three decades demonstrate
the importance of modeling the appearance of a target. In summary, it essentially determines
the robustness and stability of tracking systems. Tracking performance depends primarily on
how discriminative the appearance model is in distinguishing an object from its surroundings.

The main challenges in constructing appearance models are the following: (i) The complex-
ity of background: The essential problem of tracking is to find the classification margin
between the target object and its background. In most tracking problems, the scene is very
complex and contains illumination changes, similar objects, partial occlusion, abrupt scene
changes, etc.; these factors make it difficult to find a good margin that allows for a clear classifi-
cation between the two classes. (ii) The complexity and variety of the target’s appearance: Tar-
gets, especially non-rigid targets, always change their shape and show complex inner structural
deformation, which challenges appearance modeling methods. Despite extensive research, this
method still suffers from difficulties in handling complex tracking conditions [1].
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Many appearance models are well-designed for describing targets, including color [2], tex-
ture [2], motion [3], sparse coding method [4], etc. However, the models based on a single fea-
ture failed to provide a discriminative description for some complex tracking conditions.
Therefore, most researchers focus on multi-cue integration models. To the extent that is possi-
ble, the cues employed in multi-cue trackers must be orthogonal to each other, so that they are
able to cooperate in providing robust and stable representations [5]. Orthogonal cues are possi-
ble in patch-based models [6] [7], whereby a single feature is employed in modeling different
parts of the target. Although powerful patch-based models have been proposed, prior knowl-
edge is necessary; more importantly, the target size must be large enough to be represented in
sections. Although a partition is realized, describing their combination structure is still a prob-
lem. An alternative method is to represent the target as an integration of different visual cues.
Much effort has been made to develop such models. In Birchfield’s early studies [8], an ellipti-
cal head tracker was developed that performed a local search employing image gradients and a
color histogram model. His work offered a preliminary combination of the visual model; how-
ever, the model was not robust enough, because less consideration was given to tracking condi-
tions. In addition, cascade models [9] [10] integrated multiple cues in a hierarchical way. This
kind of model works with the advantage of less complexity, but the tracking accuracy is not
greatly improved; moreover, the sequence in the cascade is poses additional problems.

In real tracking conditions, different visual features have different discriminative ability. If they
are assigned equal importance-regardless of the combination way that is employed-the model will
have low robustness. Therefore, the parameters for the multi-cue integration model should be
adaptive to the changes in tracking conditions. To address this problem, Triesch andMalsburg
[11] introduced the concept of “adaptiveness” into the visual model and proposed a dynamic
framework to adaptively integrate different cues. In their democratic integration framework, each
cue contributes to the joint result according to its reliability. Following such a strategy, a number
of studies, e.g. [12] [13] [14] proposed adaptive multi-cue integration models and improved the
tracking accuracy. For example, Pérez [13] realized adaptiveness by updating the model with the
reliability of specific cues in the previous frame. Brasnett [14] made an improvement to Pérez’s
model and added the measurement of the current frame in evaluating the cue’s importance.

The concept of “adaptiveness” in the so-called multi-cue integration adaptive model is to
adapt the importance of each feature to the change in tracking conditions. If the employed cues
are orthogonal, the key problem is to place greater confidence in the features with stronger per-
formance and less confidence in those with weaker performance. The crucial point then
becomes one of evaluating the discriminative ability for a specific feature. To address this prob-
lem, Collins [15] proposed an online selection algorithm of discriminative tracking features-
according to log likelihood ratios of class conditional sample densities from the object and
background-to form a new set of candidate features tailored to the local object/background dis-
crimination task. Wang [16] defined a feature evaluation method and implemented a tracking
method to control the abrupt adaption. In addition, Khanloo [17] introduced a max-margin
tracker to linearly combine the constant and adaptive appearance features. Similar studies
include the reliability based fusing method [18]. However, how is the performance of the adap-
tive scheme evaluated? There must be a preferable way to integrate multiple cues. The concept
of adaptiveness should fulfill the following rule: The model will give the best description of the
target’s appearance that is robust to changeable tracking conditions. Furthermore, in the fea-
ture space, the projection of the pixels in the target and background regions will optimize the
margin between two classes, to realize accurate tracking. Therefore, a key component of this
work is to achieve optimization and adaptiveness in the multi-cue integration model.

When an appropriate multi-cue integration model is defined, it is necessary to optimize the
parameters of the model at each time step according to the change in tracking conditions, to
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give an optimal representation of a target’s current appearance. This issue referred to as a
global optimization problem; the objective function is “optimal”, and the solution to the prob-
lem is the parameters involved in the model. How does one adapt the optimized parameters
and describe the “optimal”?

This paper transforms the modeling problem of adaptive appearance into a global single
objective optimization issue. To give a description of “optimal”, a set of discrete samples are
generated to approximate the distribution of pixels in the target and its surroundings. Drawing
upon margin theory, we analyze the distribution of these samples, and define an objective func-
tion related to the classification margin. Then, to realize adaptiveness, we introduce optimiza-
tion algorithms to optimize the model parameters. Specifically, the proposed adaptive model
framework is embedded into a particle filter to perform a field test. Tests on videos with differ-
ent complex appearances show its robustness.

Compared with previous approaches, our method starts with the analysis of adaptiveness
and introduces the idea of optimization into model building for the first time. Furthermore,
the proposed solution to the multiple cues integration model is suitable for most parameterized
models and can be extended to various kinds of features and tracking methods.

The next section presents a brief look at the proposed appearance model optimization
scheme. The section “Tracking” adapts these ideas to the task of target tracking and develops
an online optimized adaptive model in a particle filter framework. In the last section, experi-
ments are presented to illustrate how the method adapts to the changing appearance of both
the tracked object and the scene background.

Optimal appearance model
Our goal is to model the target’s appearance in an optimal way. Given a candidate feature set
and integration model, we combine prior knowledge and current observation, and define an
evaluation function of a visual model, realizing optimization by optimizing the model parame-
ters. The proposed optimal appearance model is suitable for different feature sets and any
parameterized integration model.

The following steps are taken. First, a set of samples are evolved from the most recently
tracked frame. Second, an objective function to optimize the classification margin is defined
based on the statistical analysis on the observed feature space. Finally, the model is optimized
through the iterative parameter optimization step.

Discrete samples
We hypothesize that the features that best discriminate the object and background are also best
for tracking the target. At time t, an approximate state can be computed according to prior
knowledge. If a sufficient discriminative model is employed to observe them, the pixels lying in
the target and its background will show large similarity distance. However, we cannot obtain
the target’s real state and cannot observe the target and its background directly in real prob-
lems; thus a Monte Carlo simulation method is employed to generate samples and approximate
the distribution of foreground and background pixels. These samples are not generated ran-
domly but are associated with the prior knowledge.

We define a rectangular region covering the object for positive sampling and a larger sur-
rounding rectangular ring for background sampling. As shown in Fig 1, an inner rectangle of
dimension h × w pixels and an outer margin of width γ × max(h,w) pixels are located for gener-
ating samples. In addition γ is a parameter controlling the margin size. A prior knowledge-
dependent method can be used to explicitly define the background region, for example,
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defining margins with unequal sizes for different directions by predicting the motion of the tar-
get. In our realization, more samples are generated in the predicted motion area.

Specifically, n samples are randomly generated from a Gaussian distribution in the first
frame, and assigned with initial equal weights, as S0 ¼ foi

0; x
i
0gn

i¼1.

xi0 � G m0; s0ð Þ ð1Þ

where, G is a Gaussian distribution with average and variance values of μ0 and σ0.
At time t, the evolved n samples are employed for the adaptive model. With the prior knowl-

edge of the target’s state X̂ t�1 and the samples St−1 employed at time t−1, new samples are gen-
erated according to the following formula:

St ¼ St;1 [ St;2 ð2Þ

where, St,1 and St,2 are two sample sets generated individually, and they cooperate to generate n
new samples. Samples in St,1 are evolved from St−1.

xit � qðxitjxit�1;ZtÞ ð3Þ

The sample set St,1 is evolved from St−1,1 with their samples weights according to the target’s
motion model and their observation Zt. In this way, at each frame, enough samples are gener-
ated at the target region, which will facilitate the optimization of the model. Samples in St,2 are
generated as:

xjt � Gðmt; stÞ ð4Þ

where, μt and σt are updated at each frame. Each sample in St,2 is assigned with equal weights.
Thus, the samples in St,1 and St,2 form the sample set St ¼ foi

t; x
i
tgni¼1.

mt ¼ st � m0; st ¼
ffiffiffi
st

p � s0 ð5Þ

where st is the scale change of the target calculated according to X̂ t�1 in the tracking
framework.

The samples are generated from prior and current frames, which provides a guarantee for
robustness. If all the samples are generated from the previous frame, the samples will concen-
trate on the better ones, and the accumulated error will loom large. A number of random sam-
ples are generated to add new randomness to the sample set.

Fig 1. Samples are generated in the foreground (the green box of the left image) and background
regions (the region between the red and green box), and if they are observed on a discriminative
feature, the right figure gives their weights. The foreground samples are mapped to the peak region, while
the background samples are projected to the low weight region.

doi:10.1371/journal.pone.0146763.g001
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Observation
For a specific tracking problem, suppose that the appearance modelM is integrated by multiple
features O ¼ foigm

i¼1, in which the number of featuresmmay be fixed (specified features) or
adaptive (adapted by an online selection scheme) for different integration models. At each time
t, the adaptive integration model is defined as

Mt ¼ FðVt;OtÞ; ð6Þ

where, Ot is the employed feature set, and Vt ¼ fvitgki¼1 is the parameter set. For the models
that can be parameterized, the above modelMt is suitable. Employing the integration model to
observe the samples St, likelihood values Dt ¼ fdi

tgni¼1 are calculated using a proper similarity
measure such as

Dt ¼ DisðMt;MÞ: ð7Þ
where,M is the template of the target. In our experiments, the Bhattacharyya distance is
employed to measure the similarity. The sample’s weight is a function value for di

t as

oi
t ¼ �ðdi

tÞ / e�dit2=s
2
. The likelihood value maps object/background distribution into larger

values for samples distinctive to the object and smaller values for samples associated with the
background; samples shared by both object and background tend toward medium values.

In our experiments, the target templateM is updated with the tracking going forward to
realize adaptiveness.

M ¼ M; Dt > T

ð1� lÞM þ lMt; otherwise
ð8Þ

(

whereMt is the tracked region at ith frame. If the tracking is reliable, the template will be
updated; otherwise, it is kept invariable. In our experiments, the parameters T and λ are set to
0.5 and 0.1, respectively.

Objective Function
In sum, at each time step, a multi-cue integration modelMt is employed to observe n evolved
samples, and we got the samples and their weights St ¼ foi

t; x
i
tgni¼1. Now, we want to optimize

the integration modelMt to provide a good solution so that it is possible to discriminate the
object from its background. Given the knowledge of samples and the prior tracking results, our
goal is to build an optimal model with parameters Vt. This can be viewed as an optimization
problem. The challenge is how to describe “optimize”, that is, how to define the objective func-
tion for an optimization algorithm.

As stated previously, our hypothesis is that the features that best discriminate the object
from its background are also best for tracking the target. A number of samples have been gen-
erated to approximate the object and background pixel distribution. As shown in Fig 1, if a suf-
ficient discriminative model is employed, the weights of these observed samples will show an
approximate unimodal distribution like a Gaussian distribution. If a good model is employed,
the projection of these samples in the feature space should show a large margin between the
two classes. Margin theory has been a hot topic in the machine learning field in the past two
decades, until Gao [19] proposed the large margin theory. In his theory, the traditional goal of
optimizing the minimummargin algorithm (to maximize the hmin margin which is the mini-
mum distance between two classes) is extended to optimizing not only the minimummargin,
but also the margin mean and the margin distribution. Drawing upon his theory, we define the
optimization problem by the statistical analysis of these projections in the feature space. Our
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goal is not to optimize the classification margin but the best positive and negative sample sets
selected by the specific integration model, as shown in Fig 2.

Based on the above analysis, we rank the samples by their weights, and extract two sample
sets So and Sb. So includes the top no samples with higher weights, no = λo × n. They are deemed
object pixels with high probabilities. Sb includes nb samples with lower weights, nb = λb × n.
They are deemed background pixels with high probabilities. λo and λb are the experience per-
centages. Then, a variance like value is computed:

valt ¼
1

nb

Snb
i¼1jxit � mo

t j ð9Þ

where mo
t is the average value of samples in So. This value describes the average distance from

the samples in the background class to the target center, and it can be viewed as the distance
between two classes. In addition, we also compute two variance values as the following:

varot ¼
1

no

Sno
i¼1jxit � mo

t j ð10Þ

varbt ¼
1

nb

Snb
i¼1jxit � mb

t j ð11Þ

These two values give a description of the distance within a class.
If a good model is built, the similarity difference between two classes should be as larger as

possible, so another value difft is calculated:

difft ¼ j 1
no

Sno
i¼1d

i
t �

1

nb

Snb
i¼1d

i
tj ð12Þ

where, di
t is the similarity of a specific sample.

Fig 2. The circled green and blue points are the positive and negative sample sub-sets selected from
all the samples (all the points) by a specific appearance model.

doi:10.1371/journal.pone.0146763.g002
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Based on the above four values, we define an objective function:

f ðVtÞ ¼ ðvarot varbt Þ=ðvaltdifftÞ ð13Þ

In this definition, our goal is to optimize the samples, defining the margin between object
and background. The sample set is selected according to their weights evaluated by the specific
integration model. For a specific selected sample set, our goal is to minimize the within-class
variance and maximize the between-class distance. Unlike previous classification methods, as
shown in Fig 3, the definitions of within- and between- class distances are associated with the
sample distribution. The proposed model also shows the importance of margin distribution in
defining the classification margin.

At each time step, the target’s appearance model is built by solving the following global opti-
mization problem, defined as finding the parameter vector Vt that minimizes an objective func-
tion f(Vt):

Minf ðVtÞ : Vt ¼ ðv1; v2; . . . ; vi; . . . ; vnÞ 2 R
n ð14Þ

which is constrained by the following inequalities and/or equalities:
li� vi� ui, i = 1,. . .,n
subject to:
gj(Vt)�0, for j = 1,. . .,p
hj(Vt) = 0, for j = p+1,. . .,q.
li and ui are the lower and upper bound of specific parameters, and p and q−p are the num-

ber of the constraint functions gj and hj, respectively. f(Vt) is defined on a search space, which
is an n-dimensional rectangle in R

n. This problem is classified into two classes, constrained
and unconstrained optimization problems. Typically, the optimization of the appearance
model is a constrained optimization problem, and the constraint is defined for specific models.
For the model without a constraint, p = 0 and q = 0. Global optimization is a key problem in
applied mathematics, and there are many algorithms that have good performance.

Fig 3. The blue and red points represents the samples from target and background regions, and two
different sets are selected by the traditional (upper) and proposed (lower) models. In the previous
classification methods, the classification margin is defined by maximizing the minimum interclass distance (in
this figure, the distance between the red and blue points). In the definition of optimal model, the sample
distribution (varot , var

b
t and valt) is considered. In comparison, the target and background sample sets

selected by the proposed optimal model are of better discrimination, as shown in this figure.

doi:10.1371/journal.pone.0146763.g003
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Optimal adaptive multi-cue integration framework
The proposed optimized integration model is suitable for different feature sets and integration
models. In this section, we outline the optimal adaptive framework for any possible extension
as follows.

Given a video stream and an initial state X0 of the interest target, at each time step the
model is updated in the following framework.

Initialization:
Generate n samples S0 ¼ foi

0; x
i
0gn

i¼1 with S0 * G(μ0,σ0).
At time t:

step1.Obtain new samples St ¼ foi
t; x

i
tgni¼1 according to formula (2), and produce a solution

Vt ¼ ðv1; v2; . . . ; vi; . . . ; vnÞ 2 R
n.

step2. Perform the following iteration until the termination condition is fulfilled:

1. observe all the samples St by appearance modelMt defined by Vt and feature set Ot, and
update their weights;

2. calculate the value of objective function f(Vt);

3. employ the global optimization algorithm to optimize f(Vt) with the parameters
constraint.

When the above steps are executed on a given video frame, an optimized solution Vt is
obtained, which is the best parameters for the defined model at each frame.

Tracking
The above optimized feature model framework is embedded in a particle filter (PF) as shown
in Fig 4 for the field test. The object and background pixels are partly sampled from the previ-
ous frame and partly updated randomly, given the prior knowledge of the previous state of the
tracked object and weighted samples. In the PF framework, particles are similar to the samples
stated above; for purposes of efficiency, we reuse the particles generated by PF to substitute the
samples evolved from the previous frame.

In the particle filter, represent Xt as the target’s state Xt, and Zt as observation at time t. On
the assumption that the employedm cues are orthogonal, the observation model can be written

Fig 4. The optimized integrationmodel is embedded in the particle filter framework.

doi:10.1371/journal.pone.0146763.g004
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as Zt ¼ ðZ1
t ;Z

2
t ; . . . ;Z

m
t Þ, and observation likelihood P(Zt|Xt) is the multi-cue joint similarity.

PðZtjXtÞ ¼
Ym
i¼1

PðZi
tjXtÞ ð15Þ

The similarity for each cue is usually represented as a function for distance:

PðZi
tjXtÞ ¼ ktðZi

t;TiÞ / e�d2i ðZit ;TiÞ=s2 ð16Þ

in which Ti is the template for cue i and d2
i ðZi

t;TiÞ is the distance between observation Zi
t and

template Ti. Substitute formulas (16) to (15), and P(Zt|Xt) becomes

PðZtjXtÞ ¼ e
�Sm

i¼1
1=md2

i
ðZit ;TiÞ

s2 ð17Þ
Each cue is assigned equal importance. In real tracking conditions, cues have different discrim-
inate ability. More importantly, the model parameters (weights) should be adapted to the con-
dition changes. Therefore, an adaptive multi-cue integration model is represented as the
following:

PðZtjXtÞ ¼ e
�Sm

i¼1
pi
t
d2
i
ðZi
t
;TiÞ

s2 ð18Þ

To construct an optimized description using the employed model, a global optimization
problem as stated in Eq (13) should be resolved, where the parameters of the model are
Vt ¼ fpi

tgmi¼1, and 0 � pi
t � 1, with the constraint that Sm

i¼1p
i
t ¼ 1.

The optimization method is selected according to the defined objective function f(Vt). If the
parameter space is of small size, a traversal in the solution space is of permitted complexity. In
addition, if the solution space is of large scale, a certain randomized algorithm like artificial bee
colony(ABC) [20] is a good option.

Experiments
We tested our optimization model on several challenging video sequences. Representative vid-
eos have been downloaded from the open video data-sets on the home-page [21] of the paper
[22] (which are also available from our web-site with URL: http://ai.nenu.edu.cn/wangyr/
OAMVT/OAMVT.htm). In our experiments, the tracking challenges includes complex back-
ground(the video “bicycle”, where the man on the bicycle is the target of interest), occlusion
(the video “faceocc”, where a woman’s face is frequently occluded partially and totally), target
structural variance(the video “skating2”, where a skater is dancing with another skater, and she
continuously changes her postures), and abrupt motion(the video “Animal”, where a deer is
running in a river, and frequent abrupt motions are shown in the frame), and the target angle
changes(the video “girl”, where a girl changes her appearance by shaking her head or turning-
around). Overall, the tested videos can be classified into two kinds of challenging conditions:
complex scenes and the target’s self changes.

The goal of this work is to demonstrate that using optimization results in a more robust and
stable tracker. For this reason, all the parameters for specific features are fixed for all the experi-
ments, and only the integration parameters are optimized. In principle, a wide range of features
can be used for tracking, including color, texture, shape, and motion. In this work, we tested
the proposed method by representing the target appearance using two types of feature sets. The
two models are designed with consideration for different problem scales. One model employed
three histogram features (abbreviated as TH) [16], an HSV color histogram, edge histogram,
and LBP histogram, that had the property of invariance to changes in scale and rotation.
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Because the solution space is limited, we used the traversal method to realize the model optimi-
zation. The other histograms of color filter bank responses applied to R, G, and B pixel values
[15](abbreviated as CFB), and overall, 49 features are employed in the model. With consider-
ation for the problem scale, the artificial bee colony method [20] is employed for optimization.
In its implementation, iteration and CPU time are limited in terms of efficiency, and the solu-
tion space is decreased by reducing the parameter precision requirement.

To demonstrate the improvement in “adaptiveness”, we compared the optimal model with
the adaptive model [16] and fixed model. In the adaptive model [16], the integration parame-
ters (in our experiments, the cue weights) are updated with the tracking reliability. At each
frame, each cue weight (weight in Eq (18)) is updated by particle state estimation confidence
as:

pi
t ¼

k X̂ i
t � X̂ t kPm

i¼1 k X̂ i
t � X̂ t k

ð19Þ

where, X̂ i
t and X̂ t are the tracking results employing the single cue and integration model,

respectively.
To quantitatively evaluate the performance of the proposed optimal model, we compared it

with the fixed model and adaptive model without optimization. Two widely accepted evalua-
tion metrics are employed from the tracking literature [23]: the average center location errors
(ACLE) and the average bounding box overlap ratio (AOR) [24].

CenterErrori ¼ k Ci
eval � Ci

gt k2;ACLE ¼ 1

M
SM

i¼1CenterErrori ð20Þ

where CenterErrori is the center error of the i
th frame, and Ci

eval and C
i
gt are the tracked and

ground-truth object center, respectively.

OverlapRatei ¼
mapieval \mapigt
mapieval [mapigt

;AOR ¼ 1

M
SM

i¼1OverlapRatei ð21Þ

where OverlapRatei is the overlap ratio of the i
th frame, andmapieval andmapigt are the tracked

and ground-truth bounding box regions. The comparison results are shown in Table 1, and the
performance improvement can be seen.

Adapting to changeable appearance
The first video is depicted in Fig 5, where a woman’s face undergoes changes to its appearance
caused by occlusion from different directions. In some frames of the video, the target face is

Table 1. The tracking performance comparison of the two integration methods on data-sets with varying, sometimes significant changes in object
scales. Each entry in the table reports the ACLE and AOR performance.

CFB TH

fixed adaptive Optimal fixed adaptive optimal

ACLE AOR ACLE AOR ACLE AOR ACLE AOR ACLE AOR ACLE AOR

Faceocc 16.79 0.66 15.81 0.63 14.33 0.74 16.9 0.55 15.8 0.62 14.3 0.68

Skating2 10.35 0.49 7.60 0.49 6.40 0.54 5.97 0.47 5.42 0.57 5.19 0.60

Animal 8.13 0.28 8.10 0.33 7.90 0.36 10.43 0.25 9.87 0.28 8.12 0.34

girl 18.59 0.42 18.50 0.43 17.95 0.44 18.77 0.35 18.58 0.38 18.54 0.4

doi:10.1371/journal.pone.0146763.t001
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almost totally occluded. The tracking accuracy of the particle filter framework mainly relies on
the performance of the appearance model. Fig 5 gives the results employing the three-cue inte-
gration model (TH) and color filter bank (CFB) on some key frames. Accordingly, parameters
changing the curves of TH and CFB models are shown in Figs 6 and 7, respectively. In compar-
ison with the tracker of fixed parameters, the TH and CFB adaptive models offer robust track-
ing and better accuracy. The superior performance of the adaptive models for certain
sequences suggests that representing the object with an adaptive model is the right choice for
occlusion scenarios. During the entire tracking, both TH adaptive models turn up the ratio of
color and texture, and turn down the parameter of the edge, as shown in Fig 6. We witnessed

Fig 5. Tracking results of some key frames (]111, ]186, ]301, ]510, ]722, ]885) on video with occlusion,
employing TH fixed (blue box), adaptive (green box), optimal models (red box), and 49 CFBmodels
including the fixed one (dashed blue lines) and its optimal version (dashed red lines).

doi:10.1371/journal.pone.0146763.g005

Fig 6. Weight changing curves of TH adaptive models on some selected key frames. (a) Curves for
adaptive model, (b) Curves for optimal model, where the change step length is set to be 0.1.

doi:10.1371/journal.pone.0146763.g006
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that the adaptive model always performs with less accuracy when the occlusion is large and
characterized by abrupt changes. For example, at the frame around ]200, where almost half of
the face is occluded by a book of constrasting color, the two TH adaptive models estimate that
the parameter for color should be turned up, but the adaptive model makes a slight change,
while the optimal model gives a high ratio to color cue. As a result, the optimal model shows
better tracking accuracy. As for the CFB models, the weight curves of the first ten cues (Fig 7)
show that discriminant ability changes in different conditions, and the optimized weighted
integration shows excellent ability in handling occlusion. On average, less than one millisecond
(ms) is required for the TH model on parameter optimization. As for the problem of large
scale, ABC is employed for optimization, and an additional 31 ms is required on average. In
addition, the code could be simplified for more efficiency.

As shown in Fig 8, the overlap ratio at each frame is calculated for the whole video. For both
multi-cue models, the bounding box overlap ratio of the optimal model shows dominant per-
formance, especially when there are significant changes to appearance, e.g, around ]110, ]710.
The goal of our experiment is to test the efficiency of the parameter optimization method with
regard to model adaptability. Although the overall rate is only around 0.7, if a more accurate
tracking algorithm is employed, like Adaboost-based classification, the tracking accuracy can
be improved greatly.

Fig 7. Weights curves for the first ten cues in the CFBmodel (49 features are employed in
observation) show the discriminate ability changes. In this figure, the x axis is the Frame No.(150, 250),
and the y label is each cue’s weight value.

doi:10.1371/journal.pone.0146763.g007

Fig 8. The overlap ratio from the tracking results with the TH optimal model (a) and CFB optimal
model (b) for the ground truth data, where, the optimal model shows excellent improvement.

doi:10.1371/journal.pone.0146763.g008
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Adapting to scene background
Fig 9 shows the tracking results for a video with a changeable background. As shown in the fig-
ures, a man rides on a street with complex scenes that include vehicles, drivers, and streets, and
the background undergoes many changes. Complexity at this level poses challenges to appear-
ance modeling methods because it is hard to build a robust model that is able to distinguish the
target from its background. For this video, we tested the fixed, adaptive and optimal models,
and they are all able to realize stable tracking. Their successes rely on the employment of inte-
gration features with sufficient discriminative ability. However, when their tracking details are
compared, the optimal model-based tracking shows superior accuracy. The overall ACLE are
14.6520, 14.1925, and 13.4184 pixels, respectively. Fig 10 provides the model parameters

Fig 9. Tracking results of some key frames (]68, ]90, ]127, ]165, ]263, ]300) on video with a changeable
complex background, employing fixed model (blue box), adaptive model (green box) and optimal
model (red box) for the THmethod.

doi:10.1371/journal.pone.0146763.g009

Fig 10. Parameters adapting to the scene background of the TH optimal model. The upper plot is for
frames ]0–]350, and the lower one is a zoomed in version of frames ]90–]150 for clarity.

doi:10.1371/journal.pone.0146763.g010
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employing TH models. As shown in the figure, at certain key points in the video, the discrimi-
native ability of a specific cue undergoes extensive changes. In such a situation, the fixed model
provides cues with unchangeable weight; as a result, tracking accuracy is influenced. For exam-
ple, around frame ]100* ]150, the target abruptly changes its pose, and the appearance also
undergoes many changes. The optimal model continues to adapt parameters, to differentiate
the target from the background, thus obtaining greater accuracy.

With regard to scene changes, it is hard for a model to discriminate the target from the
background, because the margin between the two classes is constantly undergoing change.
Fixed models fail at building a robust margin. In comparison, adaptive models realize robust
tracking with less accuracy than the optimal model.

Discussion
This paper proposed an optimal appearance model, by introducing optimization algorithms in
a multi-cue integrating procedure. In the algorithm test period, a particle filter framework was
employed due to the requirement of efficiency and non-liner movement in real applications. In
addition, comparison with a fixed parameter model and adaptive model was performed to
demonstrate the efficiency in robust modeling. The tracking accuracy in the tested system is
limited by the accuracy of the particle filter. Currently, the boost-based tracking and detection
method is one of the main approaches in visual tracking due to its accuracy. If the proposed
optimal model is introduced into the popular boost-based detection method, the accuracy will
be much improved; this is the focus of our future work. In addition, a feature database can be
built, and our multi-cue integration model can choose discriminative features according to the
optimization rule to realize a more robust model.
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