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ABSTRACT Objective: Sonomyography, or ultrasound-based sensing ofmuscle deformation, is an emerging
modality for upper limb prosthesis control. Although prior studies have shown that individuals with
upper limb loss can achieve successful motion classification with sonomyography, it is important to
better understand the time-course over which proficiency develops. In this study, we characterized user
performance during their initial and subsequent exposures to sonomyography. Method: Ultrasound images
corresponding to a series of hand gestures were collected from individuals with transradial limb loss under
three scenarios: during their initial exposure to sonomyography (Experiment 1), during a subsequent exposure
to sonomyography where they were provided biofeedback as part of a training protocol (Experiment 2),
and during testing sessions held on different days (Experiment 3). User performance was characterized
by offline classification accuracy, as well as metrics describing the consistency and separability of the
sonomyography signal patterns in feature space. Results: Classification accuracy was high during initial
exposure to sonomyography (96.2 ± 5.9%) and did not systematically change with the provision of
biofeedback or on different days. Despite this stable classification performance, some of the feature space
metrics changed. Conclusions: User performance was strong upon their initial exposure to sonomyography
and did not improve with subsequent exposure. Clinical Impact: Prosthetists may be able to quickly assess if
a patient will be successful with sonomyography without submitting them to an extensive training protocol,
leading to earlier socket fabrication and delivery.

INDEX TERMS Upper limb, pre-prosthetic training, prosthesis control, sonomyography, feature space.

I. INTRODUCTION
Despite the enormous investment of resources in the devel-
opment of new multi-articulated upper limb prosthetics,
a large proportion of individuals with upper limb loss
discontinue use of their prosthesis [1]–[3]. Users often
experience dissatisfaction with the function and control of
their prosthesis [4], [5], so it is crucial that they receive
training to mitigate the challenges associated with using
the device [6], [7]. Although training has been correlated

with increased prosthesis use [8] and satisfaction [9], patient
access to rehabilitation and prosthetic services in the United
States is frequently limited [10]. There is also a scarcity of
clinicians who specialize in treating upper limb loss [11] and
possess the specialized knowledge required to train patients
on effective prosthesis use. The difficulty of learning to use a
prosthesis may be apparent given certain limitations in the
predominant method for sensing and decoding user intent,
surface electromyography (EMG). EMG is limited by poor
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amplitude resolution and low signal-to-noise ratio, especially
with dry electrodes used in prosthesis sockets [12], [13].
There is also low specificity between muscles due to cross-
talk and co-activation, especially for deep-seated muscle
groups in the forearm that are responsible for finger move-
ment [14]–[17]. Consequently, multi-articulated hands tend
to rely on direct control strategies for opening and closing
the terminal device in which EMG signals are recorded
from an agonist-antagonist muscle pair. Other methods
for controlling multi-articulated prosthetic hands rely on
pattern recognition to decode user intent from EMG signal
patterns. Although pattern recognition algorithms enable
successful real-time grasp classification [18]–[20] and allow
for control of a prosthetic hand during real-world functional
tasks [21]–[24], users and therapists both report that extended
periods of training are typically necessary to achieve stable
performance [25], [26].

Given the challenges related to training and reliably
decoding user intent with surface EMG, some researchers
are pursuing an alternative approach called sonomyography
(SMG), which uses ultrasound to sense muscle deformations
in the residual limb. Although surface EMG provides
temporal information about muscle deformation based on
electrical features, ultrasound permits both temporal and
spatial characterization of the deformation based on the
acquired images. This spatiotemporal information is acces-
sible even for muscles in deep-seated compartments, thus
avoiding the problem of low specificity. Numerous prior
studies have demonstrated clear potential for the use of
SMG in controlling a prosthesis or other human-machine
interface [27]–[34]. Our own work has shown that SMG is
capable of accurately classifying motor intent for individuals
without upper limb loss [35], [36] and individuals with upper
limb loss [37], [38] in both offline and real-time settings.
In particular, we have demonstrated an offline classification
accuracy of 96% for five grasps in individuals with upper
limb loss [38]. While these early studies have demonstrated
robust classification performance is possible with SMG,
the primary clinical benefits have not yet been established.
To successfully translate SMG to clinical practice, it is
important to better understand the clinical need that SMG can
fill. In particular, it remains unknown how quickly prosthesis
users can learn to use SMG and repeatably isolate control
signals. Our study is focused on investigating this question.

Regardless of the specific prosthesis control strategy, the
process by which naïve patients learn to use their device
encompasses multiple stages [39], including pre-prosthetic
and prosthetic training. The pre-prosthetic training stage
involves learning how to generate the requisite control
signals for operating a prosthesis, but is usually accom-
plished without the use of a physical prosthesis. Users are
provided various sources of biofeedback, often within a
virtual environment, to help them understand what happens
physiologically when they perform a movement and how to
modulate that activity for prosthetic control. For example,
they might view a real-time representation of the EMG

signal to demonstrate how muscle contractions are linked to
electrical activity. This functionality is available in several
commercial products, such as Ottobock MyoBoy, Ottobock
Myo Plus, and Coapt Complete ControlRoom. The prosthetic
training stage includes performing functional tasks with a
physical prosthesis to become proficient using it in real-world
settings. In this paper, we will restrict our discussion to the
pre-prosthetic training stage.

During pre-prosthetic training for EMG pattern recogni-
tion, the user must learn to produce a specialized set of EMG
patterns that are sufficiently consistent and separable from
each other to permit accurate gesture classification. This can
be difficult since people generally do not have experience
modulating EMG signal amplitudes [40]. Individuals with
limb loss may be further disadvantaged by motor cortex
reorganization following amputation [41], as well as muscle
atrophy due to disuse of the residual limb and/or increased
reliance on the intact limb [42]. Given these difficulties, it is
unsurprising that first attempts to use pattern recognition
are often error-prone. For example, one study reported an
average initial classification accuracy for individuals with
transradial limb loss to be 77.5% for nine motion classes [43].
Training over the course of multiple sessions or days appears
to mitigate some of these errors for individuals with and
without limb loss, regardless of whether feedback on their
performance is provided [43]–[46]. These improvements are
credited to changes in the EMG signal patterns such that they
becomemore consistent and/or separable, although the corre-
lation between performance and EMG pattern characteristics
is complex and not yet fully understood [46]–[49].

Beyond the primary purpose of helping patients learn how
to use a prosthesis, pre-prosthetic training serves an impor-
tant clinical function by helping prosthetists to understand
whether their patients are cognitively and physiologically
capable of using a particular control modality. Fabricating
and fitting an upper limb prosthesis is time-consuming and
expensive, especially if multi-articulated prosthetic hands are
included, so prosthetists must ensure patients are suited to the
control modality prior to beginning the process [50]. In the
case of EMGpattern recognition, patients must be able to pro-
duce consistent and separable EMG signal patterns. However,
it can be difficult to demonstrate this ability quickly given
the prolonged time period needed to develop proficiency,
creating a burden on both the prosthetist and patient. Reduced
pre-prosthetic training times and quicker assessment of a
prospective user’s ability to generate consistent and separable
control signals may help improve a patient’s ease of access to
care.

In this study, we investigatedwhether users can quickly and
repeatably isolate SMG control signals during pre-prosthetic
training. We characterized user performance during their
initial and subsequent exposures to SMG in order to better
understand the time-course over which proficiency develops.
Performance was characterized by offline classification
accuracy, as well as metrics describing the consistency
and separability of SMG signal patterns in feature space.
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TABLE 1. Participant characteristics.

We asked three questions: 1) What is the performance during
initial exposure to SMG? 2) Is biofeedback useful in helping
users change their performance? 3) Is performance repeatable
across multiple exposures to SMG?

II. METHODS
A. SUBJECTS
We recruited eight participants, including seven individ-
uals with transradial limb amputation and one individual
with congenital limb absence (Table 1). These individuals
reported using myoelectric prostheses in their daily lives,
but were naïve to the use of SMG prior to beginning the
study. All individuals provided written informed consent
prior to participating in this study, which was approved
by the Institutional Review Boards at George Mason
University (#492701, approved Oct. 24, 2013) and Med-
Star National Rehabilitation Network (#2016-173, approved
Sept. 21, 2016).

B. PROTOCOL
We conducted three different experiments to evaluate our
research questions, with some individuals participating in
only a subset of the experiments depending on their avail-
ability.

1) EXPERIMENT 1
All eight participants were included in Experiment 1. Data
collection was performed using a clinical ultrasound system
(Terason uSmart 3200T, Terason, Burlington, MA). A low-
profile, high-frequency, linear 16HL7 ultrasound transducer
was positioned on the volar aspect of participants’ residual
limb using a stretchable fabric cuff such that muscle defor-
mations associated with all individual phantom finger move-
ments were visually identifiable on the ultrasound images.
Ultrasound image sequences were acquired and transferred
to a PC in real-time using a USB-based video grabber

(DVI2USB 3.0, Epiphan Systems, Inc.). The captured screen
was then downscaled to 100× 140 pixels to include only the
relevant ultrasound image. The acquired image frames were
processed in MATLAB (MathWorks, Natick, MA) using
custom algorithms.

To create a dataset for training the classifier, participants
performed repeated iterations of one motion from a set of
motions that they felt were intuitive to perform. Am2 and
Am3 performed power grasp, wrist pronation, thumb flexion,
and index finger flexion. Am6 performed wrist pronation
and supination, wrist flexion and extension, power grasp,
ulnar deviation, and thumb flexion. The other participants
performed power grasp, wrist pronation, key grasp, tripod,
and index point.

Starting from a resting position, participants followed an
auditory cue and moved towards the end state of the desired
motion over the course of one second, held the end state
position for one second, moved back to rest over the course of
one second, and remained at rest for one second. After they
repeated this process five times in succession, we extracted
the ultrasound image frames corresponding to the motion
end state and rest. This process was repeated until all five
motions were included in the dataset. Once the dataset was
completed, we performed leave-one-out cross-validationwith
a modified 1-nearest-neighbor classifier that used Pearson’s
correlation coefficient as a similarity measure [36]. Our
modified classifier averages the similarity measurements by
class and selects the most similar class instead of selecting
the most similar individual image.

2) EXPERIMENT 2
A subset of five participants was included in Experiment 2.
Data collection procedures were identical to Experiment 1,
except that participants instead created a series of datasets
across two different phases of data collection. Both phases
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FIGURE 1. Visual display used to provide feedback to participants during
Experiment 2. The Pearson correlation between the current ultrasound
image and the first image recorded in the sequence is indicated by the
blue circle. High correlation values indicate that current image is
dissimilar from rest, while low values indicate similarity to rest.
Correlation values for previous images remained on the display (red line)
to help participants achieve consistency in the muscle deformation
pattern.

occurred during a single day. Additionally, all participants
performed the same five motions in Experiment 2 (power
grasp, wrist pronation, key grasp, tripod, index point).

During the first phase (baseline), participants were asked
to create three datasets to establish their baseline performance
for that day. We did not provide any feedback to participants
about their performance during this phase.

During the second phase (feedback), participants were
asked to create three datasets while receiving verbal and
visual biofeedback about their performance. Specifically,
participants were allowed to view the ultrasound images in
real-time so that they could understand their residual limb
anatomy and how their muscles deformed when attempting
each grasp. They were also asked to describe their sensations
of phantom handmovement associated with each grasp and to
demonstrate the movement using their intact hand. Based on
their explanation, we offered suggestions on how they could
make their movements more separable.

Participants were also given a visual cue to help them
monitor the consistency in their muscle deformation patterns
(Fig. 1). For each movement sequence, we calculated the
Pearson correlation between the first ultrasound image frame
(corresponding to a rest state) and the incoming image. The
correlation value was inverted and graphically displayed in
real-time such that high values indicated dissimilarity from
rest (i.e., motion end state) and low values indicated similarity
to rest. A ‘‘plateau’’ of high correlation values during the one-
second hold period for each motion end state would indicate
that the muscle deformation pattern was similar between
successive images. Thus, while this visual display does
not reveal which individual muscles are being contracted,
it can help participants achieve consistency in the overall
deformation pattern.

Finally, participants were told the results of the cross-
validation after creating each dataset and were shown the
associated confusion matrix to help them understand the
source of any errors. They were also given suggestions on
how they could alter their movements to try and improve the
classification accuracy. For example, power grasp and key
grasps were occasionally confused because these movements
are fairly similar. In this case, participants might be instructed
to increase thumb adduction during key grasp to further
differentiate the motion from power grasp.

Although best practices for teaching SMG have not yet
been established, we believe that the general principles
used for teaching EMG pattern recognition should be
applicable. Thus, most of the strategies we used for delivering
biofeedback have been recommended in existing literature.
This includes asking the user to move the phantom limb or
intact hand to mirror the intended grasp [39], [51], showing
the user raw signals to demonstrate that different grasps
are associated with different muscle activation patterns [39],
[51], offering suggestions on how to make movements more
separable [51], and showing the user a confusion matrix to
demonstrate which grasps were confused [51]. While the
Pearson correlation display was a unique approach to this
study, other studies have used visual displays to help users
develop consistency in their muscle activation (e.g., [48]).
It is also important to note that we did not follow a rigorously
structured protocol for delivering identical feedback to
every participant, but this format is similar to what is
done in clinical settings for patients learning EMG pattern
recognition. The prosthetist or therapist may use the same
general techniques for all patients, such providing a visual
display to show how different movements produce distinct
muscle activity patterns or asking patients to consider the
movement of their phantom hands. However, training is
conducted under the clinician’s supervision so that specific
instructions can be customized for each patient based on
their residual limb anatomy and rehabilitation goals [39],
[47], [51]. Similarly, we provided the same general sources
of feedback to our participants but customized the specific
instructions when necessary.

3) EXPERIMENT 3
A subset of three participants was included Experiment 3.
Data collection procedures were identical to Experiments 1,
except that participants created a series of datasets across
two data collection sessions occurring on separate days. All
participants performed the full set of five motions in Exper-
iment 2 (power grasp, wrist pronation, key grasp, tripod,
index point). We intended to collect as many datasets as
possible from each participant depending on their availability
and stamina. Consequently, we obtained differing numbers of
datasets across participants and sessions (Table 1).

C. DATA ANALYSIS
The primary outcome metric was cross-validation accuracy
(1), defined as the percent of data correctly classified during
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the leave-one out validation process for a given dataset i:

CAi = 100 ∗
Pcorrect i
Ptotali

, (1)

where Pcorrect i is the correct number of predictions by the
closest-class classifier and Ptotali is the total number of
predictions (i.e., the total number of datapoints).

Cross-validation accuracy is a combined measurement of
the user’s ability to perform a motion and the classifier’s
ability to label individual motion performances. Since user
performance and classifier performance are inherently linked
in this metric, it is possible that a user’s performance
could change over time without affecting the cross-validation
accuracy. For example, a user may perform the tripod grasp
with very little variation for a given dataset, resulting in
a high cross-validation accuracy. On the next dataset, they
may perform the grasp with two different variations having
slightly different levels of middle finger flexion. As long as
the closest identified class for each of the variations is still
tripod, the cross-validation accuracy would be unaffected.
Therefore, we wanted to more appropriately understand the
changes in user performance independent of the classifier
performance.

To accomplish this goal, we performed a dimensionality
reduction on all individual datasets collected from the
participants during each experiment. The datasets contained
all ultrasound images that were recorded for each grasp.
Every 100 × 140 pixel image in the dataset was represented
as points in 14,000-dimensional space such that each pixel in
the image corresponded to an axis in the high dimensional
space. This high dimensional space was then reduced to five
dimensions through principal components analysis. Next,
we defined point clusters in five-dimensional space such
that each cluster was comprised of all the points in an
associated motion class. We then utilized several metrics to
describe the characteristics of these clusters in SMG feature
space, including Within-class Distance (WD), Inter-class
Distance Nearest Neighbor (IDNN), Inter-class Distance
All Neighbors (IDAN), Most Separable Dimension (MSD),
and Mean Semi-Principal Axis (MSA) [46]. These metrics
characterize the clusters’ consistency or separability. If a
participant’s performance of a given motion becomes more
similar to other performances of the same motion, the
points in that motion cluster move closer together and the
consistency increases. If a participant’s performance of a
given motion becomes more distinct from the performances
of another motion, the clusters move further apart and the
separability increases. A more detailed explanation of each
metric is provided below.

1) WITHIN-CLASS DISTANCE
WD is a measure of consistency between all five repetitions
of the same motion

WDj =
∑5

r=1

∑5

k=1

distrjkj ∗ dist
kj
rj

distrjkj + dist
kj
rj

. (2)

Here, distrjkj is half the Mahalanobis distance in feature space

between repetitions r and k of motion j, and distkjrj is half the
Mahalanobis distance in feature space between repetitions k
and r of motion j

distrjkj =
1
2

√((
µTrj − µTkj

)T
∗ S−1Trj ∗

(
µTrj − µTkj

))
(3)

distkjrj =
1
2

√((
µTkj − µTrj

)T
∗ S−1Tkj ∗

(
µTkj − µTrj

))
(4)

where µTrj and µTkj represent the feature vectors from
repetitions r and k , respectively. STrj and STrj are the
covariances from repetitions r and k , respectively. The total
WD for each participant is defined as the mean WD over all
n motions:

WDtotal =
1
n

∑n

j=1
WDj. (5)

2) INTER-CLASS DISTANCE NEAREST NEIGHBOR
IDNN is a measure of separability between different motions

IDNN i = min
i=1,...,j−1,j+1,...,n

dist ij ∗ dist
j
i

dist ij + dist
j
i

(6)

such that only the distance to a motion’s nearest neighbor
is included. Here, dist ij is half the Mahalanobis distance in

feature space between motions i and j, and dist ji is half the
Mahalanobis distance in feature space between motions j and
i

dist ij =
1
2

√((
µTi − µTj

)T
∗ S−1Ti ∗

(
µTi − µTj

))
(7)

dist ji =
1
2

√((
µTj − µTi

)T
∗ S−1Tj ∗

(
µTj − µTj

))
(8)

where µTi and µTj represent the feature vectors from motions
i and j, respectively. STj and STj are the covariances from
motions i and j, respectively. The total IDNN for each
participant is defined as the mean IDNN over all n motions:

IDNN total =
1
n

∑n

j=1
IDNN j. (9)

3) INTER-CLASS DISTANCE ALL NEIGHBORS
IDAN is a measure of separability between different motions
and is similar to IDNN, except that distances to all neighbors
are included

IDAN i =
∑n

j=1

dist ij ∗ dist
j
i

dist ij + dist
j
i

. (10)

The total IDAN for each participant is defined as the mean
IDAN over all n motions:

IDNN total =
1
n

∑n

j=1
IDAN j. (11)
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4) MOST SEPARABLE DIMENSION
MSD is similar to IDNN, except that only one of the five
dimensions is used to determine the nearest neighbor. In this
case, the dimension with the largest separability is chosen

MSDi = min
i=1,...,j−1,j+1,...,n

 max
d=1,...,5

dist ij ∗ dist
j
i

dist ij + dist
j
i

 (12)

The total MSD for each participant is defined as the mean
MSD over all n motions:

MSDtotal =
1
n

∑n

j=1
MSDj. (13)

5) MEAN SEMI-PRINCIPAL AXIS
MSA is a measure of variability for a given motion and is
calculated as a geometric mean

MSAk =
(∏5

k=1
ak

) 1
5

(14)

where ak is the semi-principal axes of the hyperellipsoids.
The total MSA for each participant is defined as the mean
MSA over all n motions:

MSAtotal =
1
n

∑n

j=1
MSAj. (15)

D. STATISTICAL ANALYSIS
For Experiment 2, we compared each outcome metric (cross-
validation accuracy, WD, IDNN, IDAN, MSD, MSA) from
the baseline phase to themeans from the feedback phase using
the following linear mixed model

Yij = β0 + bi + β1Xij + εij, (16)

where Yij is the outcome metric for the ith subject at the
jth measurement, Xij is a dichotomous variable with value
0 for the baseline phase and 1 for the feedback phase, εij is
the residual error, and bi is a random intercept accounting
for within-subject correlations among repeated measures.
Both bi and εij are assumed to be normally distributed and
independent. The baseline phase is treated as the reference
level. To account for the small sample size and potential
violation of the model assumptions, we used the permutation
test [52] to assess significance (α = 0.05). One-sided p-
values were based on 1000 permuted samples.

To assess whether there was a change over time for the
outcomes, we fit the same model as (16) but replaced the
dichotomous variable Xij with the normalized time from the
first measurement in the baseline phase. It is worth noting that
it is not appropriate to include both normalized time and the
dichotomous feedback variable in the linear mixed models
since they are highly correlated with a Pearson correlation
coefficient 0.923 (p < 1.0e-12).

To evaluate the effect of the feature space metrics on cross-
validation accuracy, we fit the following linear mixed model

Yij = β0 + bi + β1Xij1 + β2WDij + β3IDNN ij + β4IDAN ij

+β5MSDij + β6MSAij + εij, (17)

FIGURE 2. Between-subject average (grey bar) and per-subject (colored
bars) cross-validation accuracy. Error bar represents standard deviation.

where Xij is either a dichotomous variable with value 0 for
the baseline phase and 1 for the feedback phase or the
normalized time, and WDij, IDNN ij, IDAN ij,MSDij,MSAij
are the feature space metrics. The baseline phase is treated
as the reference level. Two-sided p-values were based on
1000 permuted samples.

For Experiment 3, we compared each outcome metric
between sessions 1 and 2. We fit the following linear mixed
model

Yij = β0 + bi + β1Xij1 + β2Xij2 + εij, (18)

where Xij1 is the normalized time from the first measurement
in the baseline phase, and Xij2 takes value 0 for session 1 and
1 for session 2. Compared to (16), this model includes two
covariates. Since the phase variable and the normalized time
are highly correlated and there were very few observations
for some phases in some subjects, we choose to compare
the mean outcomes between session 1 and session 2 while
controlling for the confounding effects of the normalized
time. To account for the small sample size and potential
violation of the model assumptions, we used the permutation
test [52] to assess significance (α = 0.05). Two-sided p-
values were based on 1000 permuted samples.

To evaluate the effect of the feature space metrics on cross-
validation accuracy, we fit the following linear mixed model

Yij = β0 + bi + β1Xij1 + β2Xij2 + β3WDij + β4IDNN ij

+β5IDAN ij + β6MSDij + β7MSAij + εij, (19)

where Xij1 is the normalized time from the first measurement
in the baseline phase, and Xij2 takes value 0 for session 1 and
1 for session 2. Two-sided p-values were based on 1000
permuted samples.

III. RESULTS
A. EXPERIMENT 1
The average cross-validation accuracy across subjects was
96.2 ± 5.9%, with a range of 83.2% to 100% (Fig. 2). The
SMG feature space metrics were moderately correlated with
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FIGURE 3. Average between-subject (grey bars) and within-subject (colored bars) cross-validation accuracy for each phase. Error bars represent
standard deviation.

cross-validation accuracy (0.47 ≤ |r| ≤ 0.76; Supplementary
Fig. S1), although none of the correlations were significant
except for WD (p = 0.03). Grasp-specific metrics did
not follow a consistent trend, but wrist pronation and/or
supination often had the lowest MSA and highest IDNN,
IDAN, and MSD among all grasps collected from individual
participants (Supplementary Figs. S2-S6).

B. EXPERIMENT 2
Cross-validation accuracy exceeded 77% for all 30 datasets
collected across participants. Furthermore, 19 of these
datasets had a cross-validation accuracy of at least
95%. The average cross-validation accuracy was 93%
or higher for both phases (baseline: 93.1 ± 4.6%; feedback:
96.3 ± 2.1%; Fig. 3). The average elapsed collection time
was 69 ± 47 minutes (Supplementary Fig. S7), although this
value is elevated by the unusually long testing time for Am7
(151 minutes). The elapsed time was much more consistent
across the remaining subjects (49 ± 14 minutes). There was
no significant effect of phase (p = 0.08) or elapsed time
(p = 0.141) on cross-validation accuracy (Supplementary
Tables S1 and S2).

Although overall cross-validation accuracy for all five
grasps was generally high, the accuracy values for individual
grasps reveal that there was occasional misclassification.
However, visual inspection of the misclassification rates
across all six datasets for each participant shows no obvious
patterns over time (Supplementary Fig. S8).

There was a significant increase in IDNN (p = 0.012) and
IDAN (p = 0.012) from the baseline phase to the feedback
phase. Similarly, there was a significant increase in IDNN
(p = 0.032) and IDAN (p = 0.018) over time. There were
no significant changes in the other feature space metrics
between phases or over time (Supplementary Tables S1 and
S2). The overall range for each metric varied slightly between
participants (Supplementary Fig. S9). Of the five feature

space metrics, only MSD had a marginally significant effect
on cross-validation accuracy (Supplementary Table S3).

C. EXPERIMENT 3
The cross-validation accuracy did not change significantly
between sessions (session 1: 96.9 ± 2.7%, session 2:
96.7 ± 1.4%; p = 0.586; Fig. 4). There was a significant
increase in IDNN (p = 0.013), IDAN (p = 0.038), and MSA
(p < 0.001) between sessions, but no change in the other
feature space metrics (Supplementary Table S4). The overall
range for each metric varied slightly between participants
(Supplementary Figs. S10-S12). None of the five feature
space metrics had a significant effect on cross-validation
accuracy (Supplementary Table S5).

IV. DISCUSSION
The primary purpose of this study was to characterize user
performance during their first and subsequent exposures
to SMG. We demonstrated that participants’ classification
performance during their first experience with SMGwas very
strong (96.2 ± 5.9%). Am2 had the poorest performance of
all the participants (83.2%), which may be a consequence of
having congenital limb absence. It is possible that Am2 had
a limited phantom hand sensations or proprioceptive sense in
his residual limb, making it challenging to perform the hand
gestures. Nonetheless, his performance was still stronger than
some first-time users of EMG pattern recognition, who have
achieved classification accuracies as low as 77.5% for nine
motion classes [43]. Am2’s performance may have improved
with additional practice, but we could not test this hypothesis
because he was unable to participate in Experiment 2.

We found that most participants were able to generate
the requisite control signals on their first try, even without
biofeedback. There may be different explanations, but one
possibility is that SMG provides both spatial and temporal
information within the ultrasound image sequence about
the user’s muscle deformation. This means the problem
of low specificity between muscles due to cross-talk and
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FIGURE 4. Average between-subjects (grey bars) and within-subject (colored bars) cross-validation accuracy for each session. Error bars represent
standard deviation.

co-activation is avoided. In turn, users are able to generate
muscle contractions that are congruent with the intended
grasp, without needing to modify the contraction to make it
more distinct from other grasps. These results indicate that
one important clinical benefit of SMG is to enable prosthetists
to quickly assess a prospective user’s ability to generate
consistent and separable control signals. This assessmentmay
allow the prosthetist to determine an appropriate treatment
plan without requiring the user to go through a lengthy pre-
prosthetic training phase.

Although our participants’ classification performance was
strong even upon their first exposure to SMG, we asked
whether their performance could improve further. In fact,
their classification performance did not systematically
change with the provision of biofeedback or between
different data collection sessions. Nonetheless, it should be
acknowledged that we cannot fully distinguish between the
effects of repetitive practice and provision of biofeedback
on classification performance during Experiment 2. Inclusion
of a control group that underwent repeated exposures to
SMG without biofeedback could have clarified whether
these factors are dissociable, but it was infeasible to recruit
an additional set of participants with limb loss. Another
possibility would be to include an interaction term in the
linear mixed models, but we chose not to do this because
of the small sample size. However, visual inspection of the
results leads us to believe that an interaction term would not
have been significant even if it was included.

Most participants experienced small fluctuations in perfor-
mance between datasets due to isolated misclassifications.
These misclassifications may result from problems such as
movement of the transducer with respect to the residual limb
or minor variations in the muscle deformation patterns, which
likely can be addressed with appropriate intervention (i.e.,
a more secure transducer mounting system or a classification
algorithm less sensitive to variation than 1-nearest neighbor).
While we do not believe the transient offline misclassifica-
tions observed in this study negate the potential viability of

SMG as a control modality, additional study will be required
to determine how significantly real-time misclassifications
impact user performance in functional settings.

The lack of an online evaluation in this study is a limitation,
as it is widely acknowledged that offline classification
performance is not necessarily a definitive predictor of real-
time control ability [53]. A variety of virtual testing envi-
ronments, such as the Target Achievement Control test [54],
have been developed to characterize user control strategies
beyond simple classification accuracy and we are planning
to include similar approaches in future studies. Testing with
a physical prosthesis will also be necessary to explore the
effect of factors like changes in arm position, sensor shifting,
sweating, muscle fatigue, or changes in signal characteristics
over time [55], which can degrade classification accuracy and
require users to retrain the classifier after some period of use.
We plan to characterize these issues in future work, as this
is a crucial step in demonstrating the real-world viability of
SMG.

We also noted inconsistencies in how the SMG fea-
ture space metrics changed with provision of biofeedback
or between different data collection sessions. For both
Experiments 2 and 3, distance between clusters increased
according to IDNN and IDAN, suggesting that separability
between grasps improved with biofeedback or between
days. MSA also increased between days for Experiment 3,
which indicates greater variability in how the grasps were
performed.

Interestingly, the overall classification accuracy was stable
despite these alterations in how participants performed the
grasps. While it might be expected that classification accu-
racy would increase with greater intercluster distance and
decrease with greater cluster variability, these relationships
were not evident in our results. Given that the feature
space metrics only explained 49.8-59.5% of the variability
in classification accuracy (Supplemental Tables S3 and S5),
this could mean that classification accuracy is related to
other feature space patterns that were not quantified here.
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Alternatively, this finding may indicate that there are many
ways to perform a grasp without sacrificing classification
accuracy. The motor system is redundant and the same move-
ment can be achieved through multiple muscle activation
patterns. It is possible that our analysis method of using
dimensionality reduction accounted for this redundancy dur-
ing movement classification, but the differences in activation
patterns persist in the other feature space metrics. Regardless,
there is a precedent for this complex relationship between
classification performance and feature space within the EMG
literature, which has similarly reported discrepancies in how
classification performance relates to EMG signal pattern
characteristics [43]–[49]. However, most of these studies
quantified real-time classification performance, rather than
offline performance like in our study. Further comparison
with the EMG literature should be withheld until real-time
SMG performance can be studied.

Our finding that participants were immediately able to
generate separable movements and could consistently repeat
those movements represents a significant benefit of SMG.
In comparison, people do not naturally have much experience
with modulating EMG patterns [40], nor is it clear which
EMG signal pattern characteristics are most relevant to
classification performance [46]. It is therefore difficult
to know how to effectively train users on EMG pattern
recognition. As a result, pre-prosthetic training protocols can
be lengthy, involving practice over multiple sessions or days
with [43], [46] or without [44], [45] the provision of external
feedback in order to improve classification performance.
Developing training protocols and delineating relationships
between signal pattern characteristics and classification
performance appears to be less critical with SMG, as users
seem capable of achieving successful classification without
intervention.

Shortening the pre-prosthetic training phase with SMG
could enable patients to devote more resources towards
functional training with a physical prosthesis, which may
still require involvement from a therapist. Furthermore, rapid
pre-prosthetic training can simplify the process by which
prosthetists evaluate whether patients are cognitively and
physiologically able to use SMG. This evaluation could
perhaps be completed in a single clinical visit, allowing
prosthetists to proceed more quickly with socket fabrication
if the patient has demonstrated an ability to use SMG or to
recommend an alternative control modality if they are unable
to use SMG.

A reduction in the amount of pre-prosthetic training may
also help diminish barriers to prosthesis access in the United
States, where few clinicians specialize in caring for people
with upper limb loss or have experience with justifying
a course of treatment to insurers [11]. For these reasons,
it is perhaps unsurprising that one survey reported 35%
of individuals with unilateral upper limb loss received no
training of any kind and only 22% received more than
10 hours of training from a prosthetist or therapist [56].
Therapy is an essential component of the rehabilitation

process and the receipt of training to use a first prosthesis
has been associated with increased satisfaction [9]. Thus,
we hypothesize that SMGmay create a potential for increased
satisfaction without the need for extensive involvement from
a therapist. Experiencing an early sense of accomplishment
from successfully learning the control strategy may also
motivate users to continue practicing with the prosthesis and
could reduce the likelihood that they abandon prosthesis use.
We hope to investigate this hypothesis in future studies.

One limitation of this study is that sample size was small
and the variability between participants may have reduced
our ability to detect statistically significant results. While
having a larger sample size would be useful, it should also
be acknowledged that the characteristics of individuals with
upper limb loss can be very heterogeneous and generalizing
beyond the study sample should be done cautiously. As an
example, Am7 had poorer classification performance in
Experiment 2 compared to the other participants and required
over twice as much time to create each dataset (Supplemen-
tary Fig. S7). Am7 had undergone amputation about one
year prior to this study and was an extremely inexperienced
myoelectric prosthesis user, having owned his prosthesis
for only one week. He had significant muscle atrophy in
his residual limb as a result of this disuse, which may
have contributed to his difficulties with generating muscle
contractions and relaxing his muscles to a ‘‘resting’’ position
between repeated grasps. While these challenges wouldn’t
necessarily preclude him from becoming a proficient SMG
user, it is important to consider factors like this when
assessing a patient’s potential for success with SMG. Thus,
evaluations should be made on a case-by-case basis.

Additionally, we did not quantify the degree to which par-
ticipants changed their performance after specific feedback
was given. Since the initial classification accuracy was high,
there was limited room for improvement. In future studies
involving functional testing with a terminal device, we will
quantify the specific ways in which feedback can improve
performance.

Another limitation is that we utilized a commercially-
available ultrasound imaging systemwith an array transducer.
For translation of SMG technology to practical prosthesis
sockets, we anticipate utilizing single-element transducers
with low power electronics. Our previous work has indicated
that the classification accuracy with sparse sensing is not
compromised [57]. However, this result has yet to be
validated in individuals with limb loss. We are currently
developing fully-integrated prototype SMG systems and
additional studies are planned in the future.

Finally, it should be noted that the reported classification
accuracies were obtained using a 1-nearest neighbor clas-
sifier. We purposely utilized one of the simplest classifiers
in an effort to decouple user performance from classifier
performance. More sophisticated classifiers commonly used
for EMG pattern recognition, such as linear discriminant
analysis, are expected to provide improved classification
accuracy.
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V. CONCLUSION
This study quantified classification performance and the
associated SMG feature space for individuals with upper limb
loss during their initial and subsequent exposures to SMG.
We showed that participants could immediately achieve high
motion classification accuracies and that their performance
did not change with the provision of biofeedback or across
multiple exposures to SMG. Some of the SMG feature
space characteristics changed despite the stable classification
accuracy, suggesting that these metrics do not fully predict
classification performance. If SMG is deployed clinically in
the future, the process of assessing patient suitability for SMG
during pre-prosthetic training could be completed quickly,
which ultimately may improve patient access to timely and
appropriate care.
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