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Abstract

Proteins are diverse with their sequences, structures and functions, it is important to study

the relations between the sequences, structures and functions. In this paper, we conduct a

study that surveying the relations between the protein sequences and their structures. In

this study, we use the natural vector (NV) and the averaged property factor (APF) features

to represent protein sequences into feature vectors, and use the multi-class MSE and

the convex hull methods to separate proteins of different structural classes into different

regions. We found that proteins from different structural classes are separable by hyper-

planes and convex hulls in the natural vector feature space, where the feature vectors of

different structural classes are separated into disjoint regions or convex hulls in the high

dimensional feature spaces. The natural vector outperforms the averaged property factor

method in identifying the structures, and the convex hull method outperforms the multi-class

MSE in separating the feature points. These outcomes convince the strong connections

between the protein sequences and their structures, and may imply that the amino acids

composition and their sequence arrangements represented by the natural vectors have

greater influences to the structures than the averaged physical property factors of the amino

acids.

Introduction

Protein is an important organics in life. It is varied with its sequence, structure, and function

[1–7]. It is believed that protein functions are influenced by their structures, and the structures

of proteins are influenced by their sequences [1–7]. Protein structural classification/prediction

is a hot topic in bioinformatics research that particularly addresses the relations between pro-

tein sequences and their structures [8–16].

Typical protein structural classification/prediction methods are e.g. the artificial neural net-

work methods, nearest neighbor methods, support vector machines [17]. Ding C and Dubchak

I have proposed two new methods: the unique one-against-others and the all-against-all meth-

ods in protein fold classification [8]. Edler L and Grassmann J have introduced a statistical
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classification method including the feed forward neural networks (FFN) for the discrimination

and the prediction of protein fold classes [9]. Huang C, Lin C, and Pal N have introduced

three novel ideas for multiclass protein fold classification [10]. Jo T etc. have developed a deep

learning network method (DN-Fold) to predict if a given query-template protein pair belongs

to the same structural fold [11]. Khan M, Shahzad W and Baig A have used association rule

mining technique-the ACO-AC to the problem of classifying proteins into its correct fold of

the SCOP dataset [12]. Markowetz F, Edler L and Vingron M have compared the performance

of support vector machines (SVMs) with neural networks methods and standard statistical

classification methods such as discriminant analysis and nearest neighbor classification, where

they found the SVMs provide a promising alternative to standard statistical classification and

prediction methods in functional genomics [13]. Tan A, Gilbert D, and Deville Y have pro-

posed a novel ensemble machine learning method that improves the coverage of the classifiers

under the multi-class imbalanced sample sets by integrating knowledge induced from different

base classifiers [14]. Wei L etc. have proposed a novel taxonomic method for protein fold pre-

diction, called PFPA, which is featured by combining a novel feature set through an ensemble

classifier [15]. Wei L and Zou Q have conducted a comprehensive review study surveying the

recent computational methods, especially machine learning-based methods, in protein fold

recognition [16]. Nearly all methods use protein sequence information in protein fold classifi-

cation/prediction.

In this paper, we focus on the main structural classes of CATH and SCOP. The CATH

database has three main structural classes, namely the mainly α structures, mainly β struc-

tures, and mixed α and β structures [17–18]. The SCOP database admits four main struc-

tural classes, namely the all α structures, all β structures, α+β structures, α/β structures [17].

In this study, we use representative protein sequence feature methods, namely the natural

vector [4] and the averaged property factor [18] to present protein sequences into real-

valued feature vectors. The natural vector interprets the amino acid composition and

sequence arrangements of protein sequences, while the averaged property factor interprets

the physical properties of amino acids for protein sequences. We use the multi-class mini-

mum squared error (in abbreviation as the multi-class MSE) classification method [19] and

convex hull classifier [20] to separate the different structural classes in feature spaces. We

found that the natural vectors of different structural classes are separable by MSE hyper-

planes and convex hulls, which indicates that the natural vectors of different structural

classes occupy different regions in the high-dimensional feature space. The natural vector

method is found to outperform the averaged property factor method in identifying the

structures. This study addresses the importance of amino acid composition and sequence

arrangements in identifying the structures, and the strong connections between the protein

sequences and their structures.

This paper is organized as follows. In the Materials and methods section, we state the math-

ematical formula of the natural vector and the averaged property factor for feature extraction,

and introduce the multi-class MSE and convex hull methods for feature points separation. We

define the classification rates for the MSE and the convex hull methods, in order to quantify

the separation of feature points. In the Results section, we describe the simulation studies on

three CATH and four SCOP datasets, where we compare our feature analysis with the PseAAC

[21–23] and PSSM [24–25] feature methods, and compare the classification analysis with the

SVM [26] and the random forest [27–28] classification methods. In the Discussion section, the

outcomes and efficiency of the structural separation, as well as the advantages and drawbacks

of the feature methods and the classification methods are discussed. Finally, the conclusions of

this paper are drawn in the Conclusion Section. The data of this paper are fully available and

can be found in the Supporting Information Section.

Separation of protein structural types in amino acid sequence spaces
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Materials and methods

In this section, we describe the natural vector (NV) and the averaged property factor (APF)

methods for protein sequence feature extraction, the multi-class MSE and the convex hull

methods for feature point classification, where we define the notion of classification rate that

quantifies the quality of feature points separation. All these methods for feature extraction and

classification are frequently used in protein classification studies [4–6, 18–20].

Protein sequence feature extraction methods

The natural vector (NV) and the averaged property factor (APF) are two representative protein

sequence extraction methods that present protein sequences from different angles.

The natural vector method. The natural vector method is a popular sequence feature

extraction method that computes the composition and sequence arrangements of the 20 types

of amino acids {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V} in a protein sequence

[4]. This method maps each protein sequence into a high-dimensional real-vector that

uniquely represents the sequence. A protein sequence is usually composed of 20 types of

amino acids {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V}. Different protein

sequences are varied with the frequency and arrangements of these 20 amino acids. The natu-

ral vector particularly takes the advantage of these natural parameters to interpret protein

sequences.

The natural vector of a protein sequence is composed of three major parts. Firstly, the natu-

ral vector contains the quantities of the 20 amino acids in the protein sequence, which are

denoted by the 20 integers nA, nR, nN, . . ., nV. Secondly, the natural vector contains the arith-

metic mean values of the total distance for each of the 20 amino acids [4]:

mk ¼
Tk

nk
; k ¼ A; R; N; . . . ; V: ð1Þ

it describes the mean distance of the k types of amino acids from the origin, s[k][i] is the dis-

tance from the first amino acid (regarded as origin) to the i-th amino acid k in the sequence,

Tk ¼
Pnk

i¼1
s½k�½i� denotes the total distance of each of the k amino acids to the origin [4]. The

third part is composed of the normalized central moments defined by [4]:

Dk
j ¼

Xnk

i¼1

ðs½k�½i� � mkÞ
j

nj� 1

k nj� 1
; j ¼ 1; 2; . . . ; nk: ð2Þ

where k represents the 20 types of amino acids in {A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S,

T, W, Y, V}, nk, s[k][i] and mk ¼
Tk
nk

are defined above.

The final natural vector is a high-dimensional real vector written as [4]:

hnA; mA;D
A
1
;DA

2
; . . . ;DA

nA
; nR; mR;D

R
1
;DR

2
; . . . ;DR

nR
; . . . ; nV ; mV ;D

V
1
;DV

2
; . . . ;DV

nV
i: ð3Þ

If a specific amino acid k does not exists, then nK, μK, and Dk
j are zeros.

Mathematically, the correspondence between a protein sequence and its natural vector is

one-to-one [4]. As have been proved theoretically in [4], all the 1st order central moments

DA
1
;DR

1
; . . . ;DV

1
are zeros, so we do not need to compute them in the natural vector.

The dimension of the natural vector is quite high, which may not be efficient in computa-

tion. However, the higher central moments converge to zero very quickly [4], so the high

central moments hardly make any contribution. Therefore, we can only use the first several

central moments. In practice, N = 2 already allows us to obtain stable classified results, inclu-

sion of higher order central moments does not change the results [4]. Therefore, we use the
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60-dimensional natural vector with N = 2 as presented as follows [4]:

hnA; nR; . . . ; nV ; mA; mR; . . . ; mV ;D
A
2
;DR

2
; . . . ;DV

2
i: ð4Þ

The 60-dimensional natural vector uniquely characterizes each protein sequence, we com-

pute the 60 dimensional natural vectors for all protein sequences in the datasets.

The averaged property factor (APF) method. S. Rakovsky innovates a protein sequence

feature extraction method named the average property factor (APF) method [18]. It uses the

10 physical properties of amino acids to represent protein sequences. The 10 properties of

amino acids are 1. Alpha-helix/bend preference; 2. Side-chain size; 3. Extended structure pref-

erence; 4. Hydrophobicity; 5. Double-bend preference; 6. Amino acid composition; 7. Flat

extended preference; 8. Occurrence in region; 9. pk; 10. Surrounding hydrophobicity. In this

method, an amino acid X is represented by a 10-vector [18]

X ¼ ð f ð1ÞX ; f ð2ÞX ; . . . ; f ð10Þ

X Þ; ð5Þ

where X = A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V. In this expression, f ðmÞX is the

value of the m-th property factor of the amino acid X, m = 1, 2, . . ., 10, X = A, R, N, D, C, E,

Q, G, H, I, L, K, M, F, P, S, T, W, Y, V. The values of the 10 property factors for each of the 20

amino acids are defined and computed by Kidera and the coworkers [29–30], which are sum-

marized in S1 Table in the Supporting Information Section.

For every sequence S in the database, the sequence-averaged value of the m-th property fac-

tor is defined as [18]:

h f ðmÞiS ¼
1

NS

XNS

n¼1
f ðmÞn ð6Þ

where NS is the number of residues in the sequence.

The averaged property factor (APF) vector can also be computed for a predefined set Q.

For example, we have a set of NQ protein sequences in the set Q, each sequence corresponds to

a 10 dimensional averaged property factor vector, therefore we get NQ such vectors in the set

Q. The averaged property factor vectors can be averaged over the NQ sequences and result in

one 10-dimensional APF vector:

VQ ¼ ðh f
ð1ÞiQ; h f

ð2ÞiQ; . . . ; h f ð10ÞiQÞ ð7Þ

as the APF representation for the sequence set Q [18]. In this expression, each component

h f ðmÞiQ ¼
1

NQ

X

S�Q
h f ðmÞiS; m ¼ 1; 2; . . . ; 10; ð8Þ

is the average of the m-th component (property factor) over the NQ sequences in the set Q.

In our study, we compute the 10 dimensional averaged property factor vector

VS ¼ ðh f
ð1ÞiS; h f

ð2ÞiS; . . . ; h f ð10ÞiSÞ ð9Þ

for every protein sequence S in the datasets.

Structural identification methods

We first use the natural vector and the averaged property factor to compute the feature vectors

for each protein sequence, then we use the multi-class MSE [19] and convex hull [20] classifi-

ers to identify the hyper-planes and convex hull boundaries that separate the different

Separation of protein structural types in amino acid sequence spaces
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structural classes. To quantify the separation quality, we define the notion of classification rate

for the classifiers.

Multi-class MSE. The natural vector and the averaged property factor vectors are 60 and

10 dimensional real vectors in the high-dimensional feature spaces. The simple idea is to use

the minimum squared error (MSE) classifier to compute high-dimensional hyper-planes that

separate the feature points of different classes into disjoint regions.

The original MSE classifier is a bi-classification method that classifies the real-space into

two disjoint regions [19]. Given the sample points of two classes, the minimum squired error

(MSE) classification problem is to find the decision boundary i.e. a hyperplane that separates

the points from the two classes into different regions, where the squared distances of the sam-

ple points to the decision boundary is minimized. Take the n-dimensional real-space as an

example, the decision boundary can be expressed by the linear equation

aT

1

x1

..

.

xn

0

B
B
B
B
@

1

C
C
C
C
A
¼ 0; ð10Þ

where a = (a0, a1, � � �, an)T is a weight vector. The problem in the MSE classification is to find

the weight vector a that minimizes the squared errors. This can be solved by the gradient and

the results can be expressed by the pseudo-inverse [19]

a ¼ ðXTXÞ� 1XTb ¼ Xyb: ð11Þ

where X is an m × (n + 1) dimensional matrix, whose rows are the augmented vectors com-

posed of the n-dimensional sample points and the one-dimensional sign of the classes.

In practice, there are often many classes to be classified, therefore a multi-class MSE classi-

fier is usually desired in the classifications.

Suppose there are c classes to be classified and the vector points are in d-dimensions, the

multi-class MSE classification problem can be described as the problem with c linear discrimi-

nant functions [19]:

giðxÞ ¼ aTi x; i ¼ 1; 2; . . . ; c: ð12Þ

where x is a d-dimensional column vector. For a (d-dimensional) vector point x, the multi-

class MSE classifier classifies the point x into the class ωi if gi(x)> gj(x), for all j 6¼ i [19].

In computation, the multi-class MSE method aims to compute the d × c matrix of the

weighted vectors A ¼ ½ a1 a2 � � � ac � for the c hyper-planes that separate the vector

points into c disjoint regions in the d-dimensional real-space [19].

Let X be an n × d matrix of the training sample that can be written as [19]

X ¼

X1

X2

..

.

Xc

2

6
6
6
6
6
4

3

7
7
7
7
7
5

Each Xi is the sample matrix of the i-th class, whose rows are composed of the sample vec-

tors i.e. the natural vectors of the i-th class.

Separation of protein structural types in amino acid sequence spaces
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Let B be n × c matrix written as [19]

B ¼

B1

B2

..

.

Bc

2

6
6
6
6
6
4

3

7
7
7
7
7
5

where the i-th column of each Bi are ones, and the other columns are zeros.

Under this notation, we get the solution of the multi-class MSE classification problem, i.e.

the matrix of weighted vectors A [19]:

A ¼ XyB ð13Þ

which is the solution that minimizes the sum of the diagonal elements in the squared error

matrix (XA − B)T (XA − B). Here, X+ = (XTX)−1XT denotes the pseudo inverse of X.

Once the matrix A of the weighted vectors is obtained, we judge every d-dimensional vector

point x into a class ωi using the criterion: gi(x) > gj(x), for all j 6¼ i [19].

For the feature vectors of the structural class i, we use the ratio

Ri ¼
Mi

Ni
; ð14Þ

to quantify the separation quality, which is named as the classification rate for the structural

class. In this notation, Ni is the number of proteins (i.e. the number of feature points) in the

structural class i, Mi is the number of feature points (among the Ni points) that are correctly

classified to the structural class i by the multi-class MSE classifier, i refers to the index of the

structural class, where i = {mainly − α, mainly − β, mixed α and β} for CATH, and i = {all − α,

all − β, α + β, α/β} for SCOP [17]. Here, we use the protein sequence features to separate the

structures, where we aim to check whether the different structural classes are separable by the

sequence features.

Convex hull classification. Convex hull is a computational geometric concept that often

used for evolutionary classification of genomes [20]. It uses convex polygon boundaries to clas-

sify vector points into convex hulls in real-spaces. For a given point set X in the (high-dimen-

sional) real-space V, the convex hull S is the intersection of all convex sets that enclose the

given point set X. The convex hull S of X can be constructed by using the convex combination

of all the points {X1, X2, . . ., Xn} in the set X [20].

In computation, we use the matlab toolbox function to compute the convex hull boundaries

for the high-dimensional feature points, and calculate the number of points in each convex

hull.

For protein feature vectors of different structural classes, we first compute the convex hull

boundaries for every structural class using all feature points in this class. Then, we count the

number of points that ‘exclusively’ within the convex hull of each class. We use these convex

hulls to inspect whether the different structural classes are separable in terms of the feature

points. To quantify the separation of the feature points, we count the number of feature points

that exclusively within the convex hull of the structural class i and use the following ratio

Ci ¼
Ai

Ni
; ð15Þ

to compute the classification rate for the structural class i, where Ni still denotes the number of

proteins (i.e. the number of feature points) in the i-th structural class, and Ai is the number of

Separation of protein structural types in amino acid sequence spaces
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feature points (among the Ni points) that exclusively enclosed in the convex hull of the i-th

structural class. Here i = {mainly − α, mainly − β, mixed α and β} for CATH, and i = {all − α,

all − β, α + β, α/β} for SCOP. In this context, the ‘exclusiveness’ refers to the feature points that

solely inside or on the boundary of the i-th convex hull and do not appear in the other convex

hulls, i.e. we seek the convex hull separation for the feature points of the different structural

classes.

In practice, the computation of the convex hulls has high computational complexity, there-

fore the high-dimensional feature vectors are partitioned into small dimensions e.g. 10 dimen-

sions for the convex hull classification. The classification results are listed with separate

dimensions in the Results section. We use these results to examine the separation of feature

points for the different structural classes.

Results

CATH and SCOP are two protein structural classification databases, which classify proteins

into different structural classes according to their secondary structures. The CATH database

has three main structural classes, namely the mainly α structures, the mainly β structures, and

the mixed α and β structures [17]. The SCOP database classifies proteins into four main clas-

ses, namely the all-α structures, the all-β structures, the α + β structures, the α/β structures

[17]. Other structural classes are minorities. Here, we focus on the major classes of CATH and

SCOP, and inspect how the structural classes are separated in terms of the different sequence

features.

We use three CATH and four SCOP datasets to demonstrate the structural separation anal-

ysis. All the feature extraction analysis is compared with the PseAAC [21–23] and PSSM [24–

25] analysis, and the classification analysis are compared with the SVM [26] and the random

forest [27–28] analysis.

CATH data analysis

For the CATH data, we use the three dataset examples to demonstrate the structural separa-

tion. The three examples are namely the 30 CATH groups (CATH I), the 40 CATH groups

(CATH II), and the all CATH data with sequence similarity below 30% (CATH III). The 30

CATH groups (CATH I) are composed of 458 protein sequences from the three main struc-

tural classes of CATH, each class has 10 CATH groups. The 40 CATH groups (CATH II) are

composed of 536 protein sequences from the three main classes of CATH, the dataset contains

14, 11, and 15 CATH groups for the mainly α, mainly β, and the mixed α & β classes respec-

tively. The two datasets are randomly chosen in the database and have no intersection with

each other. The third dataset is the set of all representative protein sequences in the PDB data-

base with CATH classification and sequence similarity below 30%. The 30 and 40 CATH

groups in the first and the second datasets are the natural CATH groups randomly selected

from the CATH database. To get fair number of samples for each structural class, the CATH

groups are selected randomly but to ensure that the different groups attain similar quantity

level of proteins in each example. The third dataset is the entire data in the PDB database

with CATH classification and sequence similarity below 30%. Details of the three datasets are

shown in Table 1.

CATH I: 30 CATH groups. We compute the natural vectors (NV) and the averaged prop-

erty factors (APF) for the 458 proteins of the 30 CATH groups. The protein ID and feature vec-

tors are provided in the Supporting Information S1 and S2 Datasets. The results are compared

with the PseAAC and PSSM feature analysis, and the SVM and random forest classification

analysis. To inspect the effectiveness of the different features, we also test the structural

Separation of protein structural types in amino acid sequence spaces
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separation on augmented feature spaces where the feature points are augmented vectors com-

bined from the feature vectors of different methods. We use the multi-class MSE and the con-

vex hulls to compute hyper-planes and convex hull boundaries that can separate the sequence

features. The MSE and convex hull results are shown in Tables 2 and 3 respectively.

In Table 2, the average MSE classification rates for the three structural classes achieve

88.45%, 76.70% and 75.68% respectively. The results suggest that the three structural classes of

CATH are separable by the MSE hyper-planes in the feature spaces, i.e. the feature points of

different structural classes are separated by hyper-planes into different regions. This implies

that the amino acid composition and sequence order represented by the natural vectors, and

the physical properties of amino acids characterized by the averaged property factors have

great importance in identifying the structures. In this table, the nature vector attains the high-

est classification rates than the other feature methods, and the augmented feature vectors for

the combination of different features present better classification results than the individual

features. Here, the combination of different features refer to the augmented feature vector con-

taining the components of different methods, e.g. the ‘NV, APF’ in Table 2 refers to the 70

dimensional augmented feature vectors, whose first 60 dimensions are the 60 dimensional nat-

ural vectors, and the last 10 dimensions are the 10 dimensional averaged property factor vec-

tors. The other combined features are similarly defined.

The classification rates for the convex hull method are shown in Table 3. In the convex hull

classification analysis, due to the high computational complexity of the convex hulls, the high

dimensional feature vectors are divided into 10 dimensions in the classification. We can see

Table 1. Information for the CATH datasets.

Datasets CATH I CATH II CATH III

Total proteins 458 536 8321

Mainly α Groups 10 14 1673

Sequences 157 195

Mainly β Groups 10 11 1772

Sequences 141 145

Mixed α & β Groups 10 15 4876

Sequences 160 196

This table shows the group and sequence statistics for the three CATH datasets.

https://doi.org/10.1371/journal.pone.0226768.t001

Table 2. The classification results for the 30 CATH groups by the multi-class MSE method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV 92.99 90.07 78.13

APF 83.44 53.90 60.62

PseAAC 91.72 67.38 71.25

NV, APF 93.63 90.07 83.75

NV, PseAAC 95.54 91.49 88.12

APF, PseAAC 93.63 78.02 78.02

NV, APF, PseAAC 96.18 89.36 90.00

PSSM 60.49 53.33 55.51

Average Rates 88.45 76.70 75.68

This table shows the MSE classification rates for the 30 CATH groups with different feature methods.

https://doi.org/10.1371/journal.pone.0226768.t002
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that the convex hull results have similar trends to the MSE results in the ranking of the classifi-

cation rates, and the three structural classes of CATH are identifiable by all feature methods.

Again, the natural vector method achieves overall higher classification rates than the other

methods. In addition, the α structures have higher classification rates than the β structures.

To compare with other known classification methods, we compare our analysis with the

SVM and the random forest classification analysis. The results of the SVM and the random

forest are shown in Tables 4 and 5. In Table 4, the feature points of the three structural classes

are well separated by the SVM method. The average classification rates (over different feature

methods) for the three structural classes are 93.91%, 75.88%, and 77.13%. In the SVM classifi-

cation, the natural vector method achieves the overall higher classification rates than the other

methods.

Similar results are found by the random forest classification analysis. In Table 5, the random

forest presents good classifications for the three structural classes. The average classification

Table 3. The classification results for the 30 CATH groups by the convex hull method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV N1 100 87.94 89.38

N2 100 87.94 89.38

Mu1 98.09 85.82 88.75

Mu2 100 87.50 97.50

D1 80.89 73.76 79.37

D2 89.17 82.98 80.63

APF 79.62 86.52 89.38

PseAAC1 92.36 85.82 89.38

PseAAC2 100 85.11 89.38

PSSM 62.75 69.79 59.71

Average Rates 90.29 83.32 85.29

This table shows the convex hull classification rates for the 30 CATH groups, where the natural vectors and PseAAC

vectors are partitioned into 10 dimensions. N1 refers to the first 10 dimensions of the natural vector, which are the

numbers for amino acids A,R,N,D,C,Q,E,G,H,I; N2 refers to the second 10 dimensions of the natural vector, which

are the numbers for amino acids L,K,M,F,P,S,T,W,Y,V. The other labels are similarly defined.

https://doi.org/10.1371/journal.pone.0226768.t003

Table 4. The classification results for the 30 CATH groups by SVM method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV 100 78.72 81.87

APF 100 60.28 71.88

PseAAC 100 84.40 69.37

NV, APF 100 79.31 77.04

NV, PseAAC 100 75.83 80.00

APF, PseAAC 100 61.54 64.00

NV, APF, PseAAC 99.36 94.33 85.00

PSSM 51.95 72.59 87.84

Average Rates 93.91 75.88 77.13

This table shows the classification rates for the 30 CATH groups by the SVM method.

https://doi.org/10.1371/journal.pone.0226768.t004
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rates achieve 91.59%, 86.47%, and 91.13% for the three structural classes, the natural vector

and the PseAAC methods, as well as the combined feature methods, achieve high classification

rates.

From this analysis, we can see that the natural vector method outperforms the averaged

property factor method in the structural separation. The former represents the amino acid

compositions (the N components of the natural vector) and the positions and sequence

arrangements of these amino acids (the μ and D components of the natural vector), while the

latter represents the average value of the physical properties of amino acids. We may suggest

that the amino acid compositions, and their sequence arrangements may have greater influ-

ence to the structures. Additionally, all classification methods present good classifications for

the feature points, where the convex hull method presents better performance than the multi-

class MSE in this classification analysis.

CATH II: 40 CATH groups. The second dataset contains 536 proteins from 40 CATH

groups, which are totally different from the CATH I. The protein ID and their feature vectors

are given in the Supporting Information S3 and S4 Datasets. The MSE and convex hull results

are shown in Tables 6 and 7.

Table 5. The classification results for the 30 CATH groups by random forest method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV 95.54 86.52 96.25

APF 94.90 56.74 85.00

PseAAC 100 92.91 95.63

NV, APF 95.54 87.94 96.25

NV, PseAAC 100 92.20 96.25

APF, PseAAC 100 88.65 99.38

NV, APF, PseAAC 100 89.36 98.12

PSSM 46.75 97.46 62.16

Average Rates 91.59 86.47 91.13

This table shows the classification rates for the 30 CATH groups by the random forest method.

https://doi.org/10.1371/journal.pone.0226768.t005

Table 6. The classification results for the 40 CATH groups by the multi-class MSE method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV 86.15 68.28 67.35

APF 82.05 43.45 60.20

PseAAC 85.13 46.21 70.41

NV, APF 88.72 66.21 70.92

NV, PseAAC 89.23 71.72 79.59

APF, PseAAC 82.05 52.41 70.92

NV, APF, PseAAC 88.72 69.66 80.61

PSSM 55.00 45.49 50.11

Average Rates 82.13 57.93 68.76

This table shows the multi-class MSE classification rates for the 40 CATH groups with different feature

combinations.

https://doi.org/10.1371/journal.pone.0226768.t006
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In Table 6, the three structural classes are separable by the natural vector features and the

augmented vectors for the combination of different features. The average classification rates

for the three structural classes are 82.13%, 57.93%, 68.76%. The mainly α structures attain the

highest classification rates than the other structural classes. The natural vector method attains

higher classification rates than the averaged property factor method, and the combined fea-

tures tend to present improved classification rates than the features of each individual method.

The convex hull classification results are better than the multi-class MSE results. The aver-

age convex hull classification rates for the three structural classes are 90.15%, 86.91%, 85.96%.

The three classes are separable by the convex hulls in terms of the feature vectors (Table 7).

The natural vector method attains overall higher classification rates than the averaged property

factor method in the structural identification.

The SVM classification rates are shown in Table 8. In this table, the three structural classes

are well separated by using the sequence features. The SVM attains the 94.89%, 71.50%, and

Table 7. The classification results for the 40 CATH groups by the convex hull method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV N1 97.95 91.03 93.37

N2 98.46 93.10 92.35

Mu1 88.21 86.90 88.78

Mu2 91.79 87.59 88.78

D1 94.36 88.28 89.29

D2 98.46 88.28 92.35

APF 89.74 82.07 81.63

PseAAC1 84.10 86.21 84.18

PseAAC2 88.72 86.21 76.02

PSSM 69.69 79.44 72.81

Average Rates 90.15 86.91 85.96

This table shows the convex hull classification rates for the 40 CATH groups, where the natural vectors and the

PseAAC vectors are partitioned into 10 dimensions. N1 refers to the first 10 dimensions of the natural vector, which

are the numbers for the amino acids A,R,N,D,C,Q,E,G,H,I; N2 refers to the second 10 dimensions of the natural

vector, which are the numbers for the amino acids L,K,M,F,P,S,T,W,Y,V. The other labels are similarly defined.

https://doi.org/10.1371/journal.pone.0226768.t007

Table 8. The classification results for the 40 CATH groups by the SVM method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV 100 79.31 71.43

APF 100 58.62 59.69

PseAAC 100 57.24 75.51

NV, APF 100 79.31 77.04

NV, PseAAC 100 62.14 95.00

APF, PseAAC 100 53.79 88.57

NV, APF, PseAAC 67.37 82.86 73.33

PSSM 91.77 98.65 99.10

Average Rates 94.89 71.49 79.96

This table shows the classification rates for the 40 CATH groups by the SVM method.

https://doi.org/10.1371/journal.pone.0226768.t008
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79.96% average classification rates for the three structural classes. Again, the natural vector

method presents higher classification rates than the averaged property factor method.

The classification rates by using the random forest method is shown in Table 9. In Table 9,

the average classification rates for the three structural classes are 97.84%, 79.96%, and 95.06%,

and all the feature methods present good classification results. In this example, the natural vec-

tor method presents similar classification rates to the averaged property factor method for the

mainly α and the mixed structures achieves, but apparently higher classification rate for the

mainly β structures.

From the analysis of this example, we can see that the natural vector method outperforms

the averaged property factor method in this structural identification. All classification method

present good structural separation in the feature spaces, where the convex hull method has bet-

ter performance than the multi-class MSE method.

CATH III: CATH data with sequence similarity below 30%. In this example, we analyze

all CATH data in the PDB database with sequence similarity below 30%. We downloaded the

PDB data of proteins obtained by X-Ray experiments and sequence similarity below 30%. The

data information is shown in Table 1. The protein ID and their feature vectors can be found in

the Supporting Information S5 and S6 Datasets. We carry out the natural vector and the aver-

aged property factor feature analysis and the multi-class MSE and convex hull classifications,

the results are compared with the PseAAC and the PSSM feature analysis and the SVM and

random forest classification analysis. The classification rates are shown in Tables 10–13.

In Table 10, the multi-class MSE method presents the average classification results of

70.96%, 69.98%, 49.40% for the three structural classes. The natural vector feature presents

overall higher classification rates than the averaged property factor method. In the convex hull

classification analysis (Table 11), the average classification rates for the three structural classes

are 79.94%, 75.63%, 65.61%, which are overall better than the results obtained by the multi-

class MSE method (Table 10). The natural vector feature well separates the three structural

classes, while the averaged property factor method failed in differentiating the different classes.

The SVM and the random forest classification results are shown in Tables 12 and 13. In the

SVM analysis, due to the large number of data and the high dimensions, the SVM

toolbox function in matlab returns no convergence when using the entire dataset, therefore we

use uniform window of W = 1500 data points and random generator to randomly select 1500

sample points for each structural class from the entire dataset, and do the SVM classifications

on the randomly selected sample points. We repeat this process 10 times, where the 10 times

Table 9. The classification results for the 40 CATH groups by the random forest method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV 95.90 76.55 91.84

APF 95.38 54.48 91.84

PseAAC 98.46 86.21 100

NV, APF 96.41 80.69 93.88

NV, PseAAC 98.46 86.90 100

APF, PseAAC 99.49 83.45 100

NV, APF, PseAAC 99.49 86.21 99.49

PSSM 99.13 85.20 83.41

Average Rates 97.84 79.96 95.06

This table shows the classification rates for the 40 CATH groups by the random forest method.

https://doi.org/10.1371/journal.pone.0226768.t009
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Table 10. The classification results for the CATH data with low similarity by the multi-class MSE method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV 75.49 70.88 55.87

APF 72.80 71.78 40.07

PseAAC 75.37 74.77 44.93

NV, APF 74.42 72.52 52.38

NV, PseAAC 75.67 76.58 53.69

APF, PseAAC 75.07 73.81 46.70

NV, APF, PseAAC 67.90 68.96 65.67

PSSM 50.93 50.51 35.91

Average Rates 70.96 69.98 49.40

This table shows the MSE classification rates for the CATH data with sequence similarity below 30%.

https://doi.org/10.1371/journal.pone.0226768.t010

Table 11. The classification results for the CATH data with low similarity by the convex hull method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV N1 90.20 87.98 79.41

N2 92.83 82.22 84.21

Mu1 81.41 83.58 79.80

Mu2 85.00 72.40 80.21

D1 86.61 86.17 84.21

D2 90.02 82.22 84.60

APF 48.95 37.25 21.33

PseAAC1 81.59 78.78 50.80

PseAAC2 90.02 79.01 58.20

PSSM 52.78 66.65 33.33

Average Rates 79.94 75.63 65.61

This table shows the convex hull classification rates for the CATH data with low similarity, where the natural vectors

and PseAAC vectors are partitioned into 10 dimensions. N1 refers to the first 10 dimensions of the natural vector,

which are the numbers for amino acids A,R,N,D,C,Q,E,G,H,I; N2 refers to the second 10 dimensions of the natural

vector, which are the numbers for amino acids L,K,M,F,P,S,T,W,Y,V. The other labels are similarly defined.

https://doi.org/10.1371/journal.pone.0226768.t011

Table 12. The classification results for the CATH data with low similarity by the SVM method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV 100 14.73 99.69

APF 100 39.62 73.28

PseAAC 100 26.30 99.57

NV, APF 100 47.69 98.30

NV, PseAAC 100 22.74 99.98

APF, PseAAC 100 16.25 99.10

NV, APF, PseAAC 57.26 22.74 100

PSSM 53.62 63.49 63.00

Average Rates 88.86 31.70 91.62

This table shows the classification rates for the CATH data with low similarity by the SVM method.

https://doi.org/10.1371/journal.pone.0226768.t012
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repeats are performed independently, we compute the average classification rates for the SVM

analysis. The SVM presents the average classification rates of 88.86%, 31.70%, and 91.62%. The

random forest method is used on the entire dataset, it presents the average classification rates

of 88.55%, 88.31%, 88.39% for the three structural classes. All structural classes are well classi-

fied by the random forest method.

SCOP data analysis

In this section, we use four SCOP datasets to demonstrate the classification analysis. The

SCOP data are randomly chosen from the four main structural classes of SCOP (all α, all β,

α + β, α/β). The first dataset is a set of 24 SCOP groups (labeled by SCOP I) composed of 817

proteins with 6 groups from each structural class. The second dataset is a set of 40 SCOP

groups (labeled by SCOP II) composed of 406 proteins with 10 groups from each structural

class. The third dataset is a set of 48 SCOP groups (labeled by SCOP III) composed of 2509

proteins with 12 groups from each structural class. The three datasets are randomly chosen in

the database and have no intersection with each other. The fourth dataset is the set of all repre-

sentative protein sequences in the PDB database with SCOP classification and sequence simi-

larity below 30%. The SCOP groups in the first three examples are the natural SCOP groups

randomly selected from the SCOP database. To get fair number of samples for each structural

class, the SCOP groups are selected randomly but to ensure that the different groups attain

similar quantity level of proteins in each example. The fourth dataset is the entire data in the

PDB database with SCOP classification and sequence similarity below 30%. Details of the

SCOP data are given in Table 14.

SCOP I: 24 SCOP groups. This dataset contains 24 SCOP groups, we use the multi-class

MSE and the convex hull methods to classify the feature points. The protein ID and their fea-

ture vectors of the 24 SCOP groups are given in the Supporting Information S7 and S8 Data-

sets. The results are compared with the PseAAC and the PSSM features analysis, and the SVM

and random forest classification methods. The classification rates are shown in Tables 15–18.

In Table 15, the four structural classes of SCOP (All α, All β, α + β, α/β) are separable by the

MSE hyper-planes in the natural vector and the PseAAC feature spaces. The average classifica-

tion rates for the four structural classes by the multi-class MSE method are 77.98%, 84.77%,

69.58% and 70.55%. We can see that the natural vector presents overall higher classification

rates than the other methods, and nearly all combined features achieve higher classification

Table 13. The classification results for the CATH data with low similarity by the random forest method.

Feature methods Classification rates by structural classes (%)

Mainly α Mainly β Mixed α & β

NV 83.56 91.20 80.66

APF 60.97 79.35 74.90

PseAAC 94.74 96.28 96.16

NV, APF 85.59 93.74 83.22

NV, PseAAC 95.28 96.95 96.29

APF, PseAAC 93.31 97.12 97.66

NV, APF, PseAAC 95.52 98.36 91.55

PSSM 99.40 53.44 86.67

Average Rates 88.55 88.31 88.39

This table shows the classification rates for the CATH data with low similarity by the random forest method.

https://doi.org/10.1371/journal.pone.0226768.t013
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Table 14. Information for the SCOP datasets.

Datasets SCOP I SCOP II SCOP III SCOP IV

Total proteins 817 406 2509 4836

All α Groups 6 10 12 960

Sequences 202 104 611

All β Groups 6 10 12 1030

Sequences 205 94 568

α+β Groups 6 10 12 1356

Sequences 213 94 651

α/β Groups 6 10 12 1490

Sequences 197 114 679

This table presents the group and sequence numbers for each of the four SCOP datasets.

https://doi.org/10.1371/journal.pone.0226768.t014

Table 15. The classification results for the 24 SCOP groups by the multi-class MSE method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 72.77 85.85 75.12 72.59

APF 76.24 79.02 47.42 31.47

PseAAC 69.80 89.76 57.75 68.02

NV, APF 92.08 89.27 82.16 76.65

NV, PseAAC 93.07 91.22 81.69 87.82

APF, PseAAC 72.28 89.76 60.09 69.54

NV, APF, PseAAC 93.56 91.71 82.16 87.82

PSSM 54.04 61.54 70.22 70.51

Average Rates 77.98 84.77 69.58 70.55

This table shows the multi-class MSE classification rates for the 24 SCOP groups with different feature combinations.

https://doi.org/10.1371/journal.pone.0226768.t015

Table 16. The classification results for the 24 SCOP groups by the convex hull method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV N1 95.54 91.71 95.31 97.46

N2 100 87.80 99.53 95.94

Mu1 93.56 95.61 93.90 88.83

Mu2 99.01 80.49 91.55 96.95

D1 86.63 78.05 80.75 71.07

D2 78.22 71.22 79.81 77.66

APF 97.52 31.22 84.51 88.83

PseAAC1 91.58 96.59 75.59 91.88

PseAAC2 100 79.51 72.77 90.86

PSSM 80.40 52.43 94.03 94.59

Average Rates 92.25 76.46 86.78 89.41

This table shows the convex hull classification rates for the 24 SCOP groups, where the natural vectors and the

PseAAC vectors are partitioned into 10 dimensions. N1 refers to the first 10 dimensions of the natural vector, which

are the numbers for amino acids A,R,N,D,C,Q,E,G,H,I; N2 refers to the second 10 dimensions of the natural vector,

which are the numbers for amino acids L,K,M,F,P,S,T,W,Y,V. The other labels are similarly defined.

https://doi.org/10.1371/journal.pone.0226768.t016
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rates than their individual features. The results for the combined features of all three methods

attain the highest classification rates for the structural separation.

Among all structural classes, the mixed structures i.e. the α + β and α /β structures are less

identifiable than the pure structures (i.e. the all α structures and the all β structures).

Table 16 presents the convex hull classification for the different features. In Table 16, the

convex hull results are better than the MSE results, the four structural classes are identifiable

by the natural vector. The average classification rates for the four structural classes are 92.25%,

76.46%, 86.78%, 89.41%. Among the three feature methods, the natural vector method attains

higher classification rates than the averaged property factor method. This again demonstrates

the importance of the amino acid composition and their sequence arrangements in identifying

the structures.

Tables 17 and 18 show the classification rates by using the SVM and random forest meth-

ods. The SVM achieves the average classification rates of 97.33%, 91.53%, 68.01%, 86.10% for

the four structural classes. The random forest method achieves the average classification rates

of 94.37%, 85.95%, 89.44%, 91.31%. The natural vector method achieves higher classification

rates than the averaged property factor method.

SCOP II: 40 SCOP groups. The second SCOP example is the set of 40 SCOP groups. The

protein ID and feature vectors of the 40 SCOP groups are given in the Supporting Information

Table 18. The classification results for the 24 SCOP groups by the random forest method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 90.10 82.44 77.00 86.80

APF 74.75 77.56 63.38 59.90

PseAAC 100 99.51 100 100

NV, APF 92.08 82.93 78.40 88.32

NV, PseAAC 100 100 100 98.48

APF, PseAAC 100 99.51 100 100

NV, APF, PseAAC 98.02 95.61 96.71 96.95

PSSM 100 50.00 100 100

Average Rates 94.37 85.95 89.44 91.31

This table shows the classification rates for the 24 SCOP groups by the random forest method.

https://doi.org/10.1371/journal.pone.0226768.t018

Table 17. The classification results for the 24 SCOP groups by the SVM method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 100 89.76 64.79 86.80

APF 100 68.29 49.77 73.60

PseAAC 100 91.71 73.71 76.65

NV, APF 100 95.61 69.48 90.86

NV, PseAAC 100 96.59 76.53 89.85

APF, PseAAC 100 93.66 35.21 80.71

NV, APF, PseAAC 97.52 96.59 79.34 90.36

PSSM 81.12 100 95.28 100

Average Rates 97.33 91.53 68.01 86.10

This table shows the classification rates for the 24 SCOP groups by the SVM method.

https://doi.org/10.1371/journal.pone.0226768.t017
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S9 and S10 Datasets. The classification results of this example are shown in Tables 19–22. In

Table 19, the four structural classes are separable in terms of the natural vector and PseAAC

features. The average classification rates for the four structural classes are 71.82%, 62.86%,

60.01%, 84.54%. We can see that the natural vector method presents overall higher classifica-

tion results than the other methods, and nearly all combined features have improved classifica-

tion results than their individual methods. Note that the averaged property factor method

attains the lowest classification rates in all structural classifications, particularly for α + β
structures.

The classification results of the convex hull method are shown in Table 20. The convex hull

classification rates attain overall higher classification rates than the multi-class MSE method,

where the natural vector feature achieves the higher classification rates than the other methods.

The PseAAC also presents good classification results, while the averaged property factor fea-

ture again presents the lowest classification rates. The average convex hull classification rates

Table 19. The classification results for the 40 SCOP groups by the multi-class MSE method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 66.35 71.28 75.53 91.23

APF 50.96 51.06 8.51 82.46

PseAAC 62.50 50.00 48.94 81.58

NV, APF 84.62 73.40 76.60 92.98

NV, PseAAC 89.42 74.47 79.79 89.47

APF, PseAAC 69.23 51.06 47.87 82.46

NV, APF, PseAAC 90.38 77.66 81.91 92.98

PSSM 61.09 53.96 60.89 63.18

Average Rates 71.82 62.86 60.01 84.54

This table shows the multi-class MSE classification rates for the 40 SCOP groups with different feature combinations.

https://doi.org/10.1371/journal.pone.0226768.t019

Table 20. The classification results for the 40 SCOP groups by the convex hull method.

Feature methods Classification rates by structural classes (%)

All α All β α+β α/β

NV N1 100 90.43 80.85 100

N2 100 81.91 81.91 100

Mu1 99.04 81.91 78.72 91.23

Mu2 94.23 77.66 68.09 85.09

D1 92.31 77.66 60.64 71.05

D2 95.19 81.91 63.83 66.67

APF 82.69 89.36 80.85 88.60

PseAAC1 90.38 90.43 80.85 99.12

PseAAC2 97.12 81.91 80.85 85.09

PSSM 92.81 99.48 94.45 96.21

Average Rates 94.38 85.27 77.10 88.31

This table shows the convex hull classification rates for the 40 SCOP groups, where the natural vectors and the

PseAAC vectors are partitioned into 10 dimensions. N1 refers to the first 10 dimensions of the natural vector, which

are the numbers for amino acids A,R,N,D,C,Q,E,G,H,I; N2 refers to the second 10 dimensions of the natural vector,

which are the numbers for amino acids L,K,M,F,P,S,T,W,Y,V. The other labels are similarly defined.

https://doi.org/10.1371/journal.pone.0226768.t020
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for the four structural classes are 95.43%, 82.05%, 86.87%, 97.81%. These convex hull results

suggest that the four structural classes are separable by convex hulls in terms of the sequence

features, and the convex hull method is more efficient in the structural identification than the

multi-class MSE method.

In Tables 21 and 22, the SVM and the random forest methods also present good classifica-

tion of the four structural classes in feature spaces. In Table 21, the SVM achieves the average

classification rates of 98.68%, 79.79%, 78.72%, 86.40% for the four structural classes. In

Table 22, the random forest method attains 95.43%, 82.05%, 86.87%, and 97.81% for the four

structural classes. In this analysis the different structural classes are well separated in terms of

the different feature methods, where the natural vector method outperforms the other feature

methods in the structural classification.

SCOP III: 48 SCOP groups. The SCOP III dataset is composed of 48 SCOP groups. The

protein ID and feature vectors of the 48 SCOP groups are given in the Supporting Information

S11 and S12 Datasets. The MSE and convex hull classification results for the 40 SCOP groups

are shown in Tables 23–26. In Table 23, the average MSE classification rates are 66.765,

56.00%, 59.68%, 65.22%. The four structural classes are identifiable by the natural vectors and

the PseAAC. The averaged property factor method attains the lowest classification rates for

Table 22. The classification results for the 40 SCOP groups by the random forest method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 96.15 79.79 81.91 96.49

APF 92.31 74.47 68.09 96.49

PseAAC 95.19 77.66 89.36 98.25

NV, APF 98.08 80.85 81.91 96.49

NV, PseAAC 98.08 80.85 91.49 98.25

APF, PseAAC 97.12 79.79 92.55 99.12

NV, APF, PseAAC 99.04 82.98 91.49 97.37

PSSM 87.50 100 98.18 100

Average Rates 95.43 82.05 86.87 97.81

This table shows the classification rates for the 24 SCOP groups by the random forest method.

https://doi.org/10.1371/journal.pone.0226768.t022

Table 21. The classification results for the 40 SCOP groups by the SVM method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 100 64.89 54.26 76.32

APF 100 73.40 46.81 73.68

PseAAC 100 75.53 73.40 82.46

NV, APF 100 74.47 84.04 92.98

NV, PseAAC 100 82.98 94.68 90.35

APF, PseAAC 100 81.91 81.91 84.21

NV, APF, PseAAC 89.42 85.11 94.68 91.23

PSSM 100 100 100 100

Average Rates 98.68 79.79 78.72 86.40

This table shows the classification rates for the 40 SCOP groups by the SVM method.

https://doi.org/10.1371/journal.pone.0226768.t021
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most of the structural classes which cannot separate the four structural classes. However, when

different types of features are combined, the classification rates are overall improved in com-

parison to their individual features.

In Table 24, the convex hull classification results suggest that the four structural classes are

separable by the N features of the natural vectors and the PseAAC features. The average convex

hull classification rates for the four structural classes are 70.03%, 75.01%, 71.91%, and 59.20%.

Note that the convex hull classification rates are overall higher than the MSE results, which

implies that the structural classes are better separated by the convex hulls than by the MSE

hyper-planes. Moreover, the N features of the natural vector i.e. the amino acid composition

the protein sequences present the higher classification results than other features, but the μ
and D features of the natural vectors present the lower classification rates than all the other fea-

tures. These results demonstrate that the importance of amino acid composition in the struc-

tural identification.

Table 23. The classification results for the 48 SCOP groups by the multi-class MSE method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 61.54 50.18 45.31 68.92

APF 48.77 57.22 45.31 63.18

PseAAC 66.61 61.44 48.08 57.88

NV, APF 73.16 60.04 70.05 69.81

NV, PseAAC 78.56 65.14 71.27 73.49

APF, PseAAC 67.10 63.20 54.84 59.06

NV, APF, PseAAC 77.91 67.08 72.20 75.26

PSSM 60.39 55.69 70.36 54.19

Average Rates 66.76 56.00 59.68 65.22

This table shows the multi-class MSE classification rates for the 48 SCOP groups with different feature combinations.

https://doi.org/10.1371/journal.pone.0226768.t023

Table 24. The classification results for the 48 SCOP groups by the convex hull method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV N1 80.03 87.32 84.79 86.45

N2 85.11 89.08 84.64 82.33

Mu1 63.01 65.85 68.20 38.14

Mu2 68.41 61.97 63.90 58.32

D1 54.99 54.40 64.98 30.04

D2 57.94 54.58 61.60 37.11

APF 71.36 77.29 62.21 49.48

PseAAC1 70.54 77.99 70.20 57.58

PseAAC2 68.58 81.87 66.05 55.38

PSSM 80.31 99.74 92.53 97.20

Average Rates 70.03 75.01 71.91 59.20

This table shows the convex hull classification rates for the 48 SCOP groups, where the natural vectors and the

PseAAC vectors are partitioned into 10 dimensions. N1 refers to the first 10 dimensions of the natural vector, which

are the numbers for amino acids A,R,N,D,C,Q,E,G,H,I; N2 refers to the second 10 dimensions of the natural vector,

which are the numbers for amino acids L,K,M,F,P,S,T,W,Y,V. The other labels are analogously defined.

https://doi.org/10.1371/journal.pone.0226768.t024
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Tables 25 and 26 show the classification rates of the four structural classes by using the

SVM and random forest methods. The SVM (Table 25) achieves the average classification

rates of 100%, 81.37%, 77.10%, 87.19% for the four structural classes. In the SVM analysis, the

natural vector presents slightly higher classification rates than the averaged property factor fea-

tures. Similar situation happens for the random forest classification analysis. In Table 26, the

random forest method achieves the average classification rates of 90.10%, 86.00%, 90.68%,

94.76% for the four structural classes.

SCOP IV: SCOP data with sequence similarity below 30%. In this section, we analyze all

SCOP data in the PDB database with sequence similarity below 30%. We downloaded the PDB

data of proteins obtained by X-Ray experiments and sequence similarity below 30%. The pro-

tein ID and feature vectors of the SCOP data with low sequence similarity are given in the Sup-

porting Information S13 and S14 Datasets. The data information is shown in Table 14. We

carry out the natural vector and the averaged property factor feature analysis and the multi-

class MSE and the convex hull structural separation studies on this dataset, and compare the

analysis with the PSSM feature analysis and the SVM and random forest classification meth-

ods. The results are shown in Tables 27–30.

In Table 27, the multi-class MSE method achieves the average classification rates of 61.48%,

53.61%, 47.28%, and 45.60% for the four structural classes. From this table, we can see that the

Table 26. The classification results for the 48 SCOP groups by the random forest method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 84.45 77.46 86.02 91.90

APF 80.20 77.11 85.25 91.16

PseAAC 90.34 84.33 93.09 96.61

NV, APF 89.03 82.39 89.09 95.29

NV, PseAAC 92.14 86.44 94.16 97.79

APF, PseAAC 93.78 89.08 95.70 99.41

NV, APF, PseAAC 91.98 91.20 92.93 97.79

PSSM 98.86 100 89.16 88.12

Average Rates 90.10 86.00 90.68 94.76

This table shows the classification rates for the 48 SCOP groups by the random forest method.

https://doi.org/10.1371/journal.pone.0226768.t026

Table 25. The classification results for the 48 SCOP groups by the SVM method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 100 64.89 54.26 76.32

APF 100 73.40 46.81 73.68

PseAAC 100 75.53 73.40 82.46

NV, APF 100 74.47 84.04 92.98

NV, PseAAC 100 82.98 94.68 90.35

APF, PseAAC 100 81.91 81.91 84.21

NV, APF, PseAAC 100 97.78 81.67 97.50

PSSM 100 96.25 100 100

Average Rates 100 81.37 77.10 87.19

This table shows the classification rates for the 48 SCOP groups by the SVM method.

https://doi.org/10.1371/journal.pone.0226768.t025
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four structural classes are separable in the natural vector feature space, and the natural vector

feature presents overall higher classification rates than the averaged property factor method.

The augmented features i.e. the combination of different features present higher classification

rates than the individual feature method. The PSSM feature presents the lowest classification

rates in this analysis.

In Table 28, the convex hull classification method presents good classification for the four

structural classes. The average classification rates by the convex hull method are 68.16%,

60.36%, 56.69%, 46.92%. The classification rates of the natural vector features are higher

than the classification rates of the averaged property factor features. The SVM classification

(Table 29) shows lower classification rates than the multi-class and the convex hull classifica-

tion methods, the average classification rates for the four structural classes are 86.13%, 38.09%,

Table 27. The classification results for the SCOP data with sequence similarity below 30% by the multi-class MSE

method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 61.15 52.82 51.84 52.08

APF 63.85 58.74 42.85 31.21

PseAAC 64.27 58.74 52.58 40.00

NV, APF 66.77 56.80 52.36 54.70

NV, PseAAC 68.85 58.35 50.96 55.70

APF, PseAAC 59.90 50.00 51.03 48.46

NV, APF, PseAAC 63.54 52.33 50.37 51.41

PSSM 43.54 41.07 26.25 31.21

Average Rates 61.48 53.61 47.28 45.60

This table shows the MSE classification rates for the SCOP data with sequence similarity below 30%.

https://doi.org/10.1371/journal.pone.0226768.t027

Table 28. The classification results for the SCOP data with sequence similarity below 30% by the convex hull

method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV N1 76.56 69.61 58.19 56.51

N2 78.75 69.13 63.42 64.50

Mu1 60.83 60.78 59.66 55.64

Mu2 66.98 52.62 61.21 64.03

D1 69.48 66.21 63.86 66.58

D2 71.67 63.40 66.81 71.14

APF 62.29 53.79 42.26 18.59

PseAAC1 60.21 51.55 43.73 19.13

PseAAC2 67.29 56.50 50.22 20.60

PSSM 67.50 60.00 57.52 32.48

Average Rates 68.16 60.36 56.69 46.92

This table shows the convex hull classification rates for the SCOP data with sequence similarity below 30%, where the

natural vectors and PseAAC vectors are partitioned into 10 dimensions. N1 refers to the first 10 dimensions of the

natural vector, which are the numbers for amino acids A,R,N,D,C,Q,E,G,H,I; N2 refers to the second 10 dimensions

of the natural vector, which are the numbers for amino acids L,K,M,F,P,S,T,W,Y,V. The other labels are similarly

defined.

https://doi.org/10.1371/journal.pone.0226768.t028
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34.01%, 95.13%. The SVM does not perform well in this analysis. The random forest well sepa-

rates the four structural classes (Table 30), the average classification rates for the four structural

classes are 56.29%, 61.01%, 96.49%, and 68.45%. The natural vector method presents higher

classification rates than the averaged property factor method.

Discussion

In this paper, we use protein sequence features to study the structural separation of proteins.

We use two typical protein sequence features, namely the natural vector method and the aver-

aged property factor method, to extract protein sequence features. The natural vector focuses

on the composition and sequence arrangements of amino acids, while the averaged property

factor focuses on the physical properties of amino acids. We compare the two feature methods

with the PseAAC and the PSSM features. These feature methods map protein sequences into

high-dimensional real vectors, where we use the multi-class MSE and the convex hull methods

to classify these feature vectors into separate regions. We aim to inspect whether the different

secondary structural classes are separable in terms of the sequence features, and also to check

which kind of sequence features better influence the structures. The classification analysis

is compared with traditional methods such as the SVM and the random forest methods.

Table 30. The classification results for the SCOP data with low similarity by the random forest method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 53.65 55.15 99.93 78.72

APF 54.27 59.61 98.53 47.45

PseAAC 50.83 56.60 99.93 52.01

NV, APF 60.21 60.68 100 79.26

NV, PseAAC 50.52 57.48 99.93 59.66

APF, PseAAC 53.65 57.86 100 51.07

NV, APF, PseAAC 62.81 64.37 100 79.66

PSSM 64.38 76.31 73.60 99.80

Average Rates 56.29 61.01 96.49 68.45

This table shows the classification rates for the SCOP data with sequence similarity below 30% by the random forest

method.

https://doi.org/10.1371/journal.pone.0226768.t030

Table 29. The classification results for the SCOP data with sequence similarity below 30% by the SVM method.

Feature methods Classification rates by structural classes (%)

All α All β α + β α/β

NV 100 26.89 57.67 96.85

APF 100 40.87 15.86 79.46

PseAAC 100 18.35 24.56 96.17

NV, APF 100 24.56 21.98 93.09

NV, PseAAC 100 28.84 25.44 97.72

APF, PseAAC 100 21.65 20.21 98.32

NV, APF, PseAAC 41.56 59.61 61.06 99.46

PSSM 47.50 83.98 45.28 99.93

Average Rates 86.13 38.09 34.01 95.13

This table shows the classification rates for the SCOP data with sequence similarity below 30% by the SVM method.

https://doi.org/10.1371/journal.pone.0226768.t029
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We use three CATH datasets and four SCOP datasets to demonstrate the analysis. We

found that the different structural classes of CATH and SCOP are separable by hyper-planes

and convex hulls in the sequence feature spaces, the natural vector method outperforms the

other feature methods in nearly all structural classifications. As compared among the different

classification methods, the multi-class MSE, the convex hull method, and the random forest

method have good performances in the structural classification. The SVM presents good clas-

sifications in most cases, but it may have no convergence in the computation for some large

datasets due to the high dimensions of the feature vectors, and the classification rates of the

SVM are sometimes lower than the results of the other methods. The convex hull method pres-

ents the best classifications to the structural classes than the other methods.

In the feature analysis, we compared the natural vector and the averaged property factor

methods with the PseAAC and the PSSM feature methods. The natural vector is claimed to

have one-to-one correspondence with the protein sequence [4], it is composed of three major

parts that representing the compositions, positions and the sequence arrangements of the

common 20 types of amino acids. The averaged property factor method [18] focuses on the

10 physical properties of amino acids. The PseAAC method [21–23] presents the amino acid

compositions of protein sequences which is often use by machine learning classification meth-

ods [31–33]. The PSSM is a position specific scoring method that scores the local alignment

profile of protein sequences [24–25]. We use these four feature methods to present the protein

sequences, the natural vector method and the PseAAC method often present better perfor-

mances in the structural classification than the averaged property factor method. Particularly,

in the low similarity data analysis, the natural vector method presents apparent superiority

than the averaged property factor method in the convex hull classification. These may imply

that the amino acid composition and their sequence arrangements presented by the natural

vectors may have better inference to the protein structures than the averaged physical proper-

ties of the amino acids. Note that the PSSM is different from the natural vector in extracting

the sequence features. The natural vector counts both the composition and the sequence

arrangements of amino acids in protein sequences, it computes the average distance and

moments of each type of amino acids to the origin (i.e. the first amino acid of the sequence).

The amino acid composition, the average distance and the moments together is a hallmark

of each individual sequence, and does not relying on the alignment of other sequences. The

PSSM scores the alignment of the sequence and these scores depend on the alignment of the

sequence to other sequences. In most cases, the PSSM presents higher classification rates than

the averaged property factor method, as the natural vector method does.

In most of the cases, the combination of different features presents better classification

results than the individual features. Usually, the complete combination of all three methods

presents the highest classification results than any other combinations. The classification rates

are apparently improved when including the natural vectors and the PseAAC features, which

imply that the amino acid composition and their sequence arrangements may have great influ-

ence to the structures.

In the classification study, we use multi-class MSE and convex hull methods to study the

separation of feature spaces, which are compared with the analysis of the SVM and the random

forest method. Results demonstrate that the different structural classes of CATH and SCOP

are separable by using the multi-class MSE and the convex hull methods in terms of the natural

vector features. The natural vector outperforms the averaged property factor method in nearly

all classifications.

The convex hull classification results are comparatively higher than the multi-class MSE

results in nearly all simulation studies. This implies that the convex hulls present better separa-

tion for the feature points than the MSE hyper-planes. The ‘exclusively in hull’ of the convex
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hull method has good advantages over the regional ‘cuts’ by the MSE hyper-planes in the

structural separation of feature spaces. Both the classification methods are popular classifiers,

but they present the classification in different manners. The MSE classifier is often used in

machine learning classifications, which cuts real spaces into disjoint regions [19]. The convex

hull method is used for taxonomy or evolutionary classification for genes or proteins [20],

where the feature points of different genetic families or taxa are enclosed in different convex

hulls. Although, the convex hull method presents better classification rates in the structural

separation, both classifiers support the same results that the different structural classes are sep-

arable in the natural vector spaces, which admits better separation of the structural classes than

the other feature methods.

The classification rate defined with the MSE and convex hull methods is used to quantify

the separation quality for the different structural classes. It measures the ‘exclusiveness’ of

feature points in the region of each structural class. Note that different sequences may corre-

spond to similar structures, while similar sequences may also correspond to different struc-

tures. Therefore, the structural separation in the feature spaces does not mean the exact

classification of the structures, but is a general division of the feature spaces. From this study,

we see that the feature points of different structural classes occupy different regions in the fea-

ture spaces, which can be separated by the hyper-planes and convex hulls. The overall results

address the important connections between the protein sequences (the amino acid composi-

tion and sequence arrangements) and their structures.

Conclusion

In this study, we use the multi-class MSE and the convex hull methods to separate the protein

structural classes in the protein sequence feature spaces. We found that the different structural

classes of CATH and SCOP are separable by hyper-planes and convex hulls in terms of the

natural vector features. The natural vector method outperforms the averaged property factor

method in the structural separation, and the convex hull method outperforms the multi-class

MSE method in the structural separation of feature spaces. The results may imply that the

amino acid composition and their sequence arrangements presented by the natural vectors

may have better indications to the structures than the averaged physical properties of amino

acids.
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