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Abstract: Hesperidin is a major flavonoid isolated from citrus fruits that exhibits several biological
activities. This study aims to evaluate the effect of hesperidin on cardiovascular remodeling induced
by N-nitro L-arginine methyl ester (L-NAME) in rats. Male Sprague-Dawley rats were treated with
L-NAME (40 mg/kg), L-NAME plus hesperidin (15 mg/kg), hesperidin (30 mg/kg), or captopril
(2.5 mg/kg) for five weeks (n = 8/group). Hesperidin or captopril significantly prevented the
development of hypertension in L-NAME rats. L-NAME-induced cardiac remodeling, i.e., increases in
wall thickness, cross-sectional area (CSA), and fibrosis in the left ventricular and vascular remodeling,
i.e., increases in wall thickness, CSA, vascular smooth muscle cells, and collagen deposition in the
aorta were attenuated by hesperidin or captopril. These were associated with reduced oxidative
stress markers, tumor necrosis factor-alpha (TNF-α), transforming growth factor-beta 1 (TGF-β1),
and enhancing plasma nitric oxide metabolite (NOx) in L-NAME treated groups. Furthermore,
up-regulation of tumor necrosis factor receptor type 1 (TNF-R1) and TGF- β1 protein expression and
the overexpression of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9)
was suppressed in L-NAME rats treated with hesperidin or captopril. These data suggested that
hesperidin had cardioprotective effects in L-NAME hypertensive rats. The possible mechanism may
involve antioxidant and anti-inflammatory effects.
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1. Introduction

Nitric oxide (NO) is a crucial vasodilator derived from vascular endothelium to regulate vascular
tone [1]. A reduction of NO production results in increased vascular resistance and high blood
pressure. Nω-nitro L-arginine methyl ester (L-NAME), an L-arginine analogue, is widely used as
an inhibitor of nitric oxide synthase (NOS) activity to represent an animal model of hypertension.
It has been reported that L-NAME-induced hypertension in rats is characterized by insufficient
NO production, increased systemic oxidative stress, inflammation, and endothelial dysfunction [2].
Furthermore, L-NAME-induced hypertension and cardiovascular remodeling have also been reported
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in rats. For example, the administration of L-NAME (40 mg/kg) for four or five weeks causes high
blood pressure and cardiovascular remodeling, including left ventricular hypertrophy, myocardial
fibrosis, and thickening of the vascular wall [3–5]. It is generally known that the main sequel of
cardiovascular remodeling is heart failure, which is the major cause of death worldwide [6].

The initial stage of cardiac remodeling is myocardial hypertrophy because of the adaptive response
to a high-pressure load to preserve cardiac function and obtain normal cardiac work. In addition,
the cardiac remodeling process in L-NAME-treated rats is involved in the production of myocardial
fibrosis [7]. There are substantial data to show the molecular mechanism of extensive areas of cardiac
fibrosis which is associated with the activation of various downstream inflammatory [8] and oxidative
stress initiatives [9,10]. For example, a high level of tumor necrosis factor (TNF-α), a pro-inflammatory
cytokine, developed in response to oxidative stress in L-NAME-induced hypertension has been
reported [4,11]. These inflammatory responses subsequently activate the profibrotic mediator of the
transforming growth factor β1 (TGF-β1) [11]. It is well-established that TGF-β1 plays a key role in
fibrogenesis by activating apoptosis, collagen, and matrix protein synthesis [12–14]. For vascular
structural changes in hypertension, it is known to be an adaptive response to an increase in wall
tension [15]. This response is also related to the extracellular matrix degradation of elastic fibers since
the up-regulation of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9)
expression in vessel tissue has been confirmed in animal models of hypertension. Several lines of
evidence have indicated that the activation of MMP-2/9 protein expression found in the vascular
remodeling process is mediated by the inflammatory cytokine, TNF-α [16–18]. Thus, it is noteworthy
that natural products with high antioxidant and anti-inflammatory activities might be useful for
alleviating cardiovascular alterations induced by nitric oxide deficiency.

Captopril is an angiotensin-converting enzyme (ACE) inhibitor and is commonly used as an
anti-hypertensive drug [19]. Its mechanism of action has been well-documented to reduce angiotensin
II production, which subsequently suppresses the renin-angiotensin-aldosterone system (RAAS) [19].
Other possible anti-hypertensive mechanisms include increased bradykinin and prostaglandins
levels [20], the inhibition of superoxide production [21], and the free radical scavenging effect [22].
Many studies have already reported on the cardiovascular effects of captopril in nitric oxide-deficient
hypertensive rats, i.e., lowering high blood pressure, improving vascular function [21], and preventing
cardiovascular remodeling [23]. In L-NAME hypertensive rats, there is evidence showing the
up-regulation of angiotensin II receptor type 1 (AT1R) which mediates nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase expression and superoxide formation [10]. This study
used captopril as a positive control agent because the L-NAME hypertension model is also involved in
the activation of the RAAS, where captopril inhibits the RAAS.

Hesperidin is a flavanone glycoside, a subclass of flavonoids, abundantly found in citrus fruits
such as lemon or orange peels or juices [24]. Numerous beneficial effects of hesperidin have been
published. For example, the antioxidant effect of hesperidin has been reported to be able to sequester
1,1-diphenyl-2-picrylhydrazyl (DPPH) and protect cell injury-induced by paraquat and hydrogen
peroxide [25], reduce plasma levels of lipid peroxidation markers, and increase antioxidant enzyme
activities in heart tissue in experimentally ischemic myocardial rats [26]. Hesperidin has also exhibited
an anti-inflammatory effect by reducing circulating inflammatory markers, i.e., TNF-α, interleukin
6 (IL-6), and a high-sensitivity C-reactive protein (hs-CRP), in patients with type 2 diabetes [27] and
suppressed inflammatory responses in lipopolysaccharide-induced RAW 264.7 cells [28]. Subsequently,
a clinical study revealed that a combination of hesperidin, diosmin, and troxerutin was effective
in relieving the symptoms of acute hemorrhoidal disease [29]. Recently, the current authors have
demonstrated an anti-hypertensive effect of hesperidin in renovascular hypertensive rats that involved
the suppression of the renin-angiotensin system [30]. This study was intended to further explore
whether hesperidin could prevent L-NAME-induced hypertension and cardiovascular remodeling
in rats.
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2. Materials and Methods

2.1. Drugs and Chemicals

Hesperidin (purity ≥ 98%) was purchased from Chem Faces Company (Wuhan, Hubei, China).
N(G)-Nitro-L-arginine methyl ester hydrochloride (L-NAME) and captopril were purchased from
Sigma-Aldrich Corp (St. Louis, MO, USA). All the other chemicals used in this study were obtained
from standard companies and were of analytical grade quality.

2.2. Animals and Experimental Protocols

Male Sprague-Dawley rats (body weight 220–250 g) were supplied by Nomura Siam
International Co., Ltd., Bangkok, Thailand. The animals were housed in a Heating, Ventilation and
Air-Conditioning (HVAC) System (25 ± 2 ◦C) facility and maintained on a 12 h light and 12 h dark cycle
with free access to a standard rat diet and water at the Northeast Laboratory Animal Center, Khon Kaen
University. All the experimental protocols in this study were in accordance with the standards for
the care and use of experimental animals and approval for all the experiments was obtained from the
Animal Ethics Committee of Khon Kaen University, Khon Kaen, Thailand (AEKKU-NELAC 37/2559).

After a seven-day acclimatization period, the rats were randomly assigned to 5 groups (8/group).
The control group animals received tap water and were orally administrated propylene glycol (PG,
1.5 mL/Kg) as a vehicle. L-NAME treated rats received L-NAME (40 mg/kg/day) in their drinking
water and were further divided into the following 4 groups; L-NAME plus PG, L-NAME plus
hesperidin at a dose of 15 mg/kg (L-NAME + H15 group), L-NAME plus hesperidin 30 mg/kg
(L-NMAE + H30 group), L-NAME group plus captopril at a dose of 2.5 mg/kg (L-NAME + Cap
group). Additionally, normal rats (n = 5) were orally treated with hesperidin (30 mg/kg) for 5 weeks
to test the hypotensive effect of hesperidin. Hesperidin and captopril were dissolved in vehicle and
intragastrically administered once daily for five weeks. The doses of hesperidin and captopril used in
this study were influenced by previous studies in this laboratory [10,30].

2.3. Blood Pressure Measurements

To monitor blood pressure changes throughout the experimental period, systolic blood pressure
(SP) was obtained in awake rats once a week for 5 weeks using tail-cuff plethysmography (IITC/Life
Science Instrument model 229 and model 179 amplifier; Woodland Hills, CA, USA). At the end of
the final experimental day, the rats were anesthetized with pentobarbital sodium (60 mg/kg, ip.).
Then, the femoral artery was cannulated and connected to a pressure transducer for monitoring the
baseline values of SP, diastolic blood pressure (DP), mean arterial pressure (MAP), and heart rate (HR)
using the Acknowledge Data Acquisition software (Biopac Systems Inc., Santa Barbara, CA, USA).

2.4. Collection of Blood and Organs

After the blood pressure measurement, the rats were sacrificed by exsanguination and blood
samples were collected from abdominal aortas into Ethylenediaminetetraacetic acid (EDTA) or heparin
tubes for assays of oxidative stress and inflammatory markers. The carotid arteries were rapidly
excised for analysis of superoxide (O2

•−) production. The thoracic aortas and heart tissues were
collected for western blotting and morphometric analysis.

2.5. Assays of Vascular O2
•− Production, Plasma Malondialdehyde (MDA), Plasma Nitric Oxide Metabolite

(Nitrate/Nitrite, NOx), Plasma TNF-α and Plasma TGF- β1 Levels

The carotid arteries were cleaned of connective tissues, cut into 0.5 cm lengths, and incubated with
1 mL oxygenated Krebs-KCl solution at pH 7.4, 37 ◦C for 30 min. The production of O2

•− in the carotid
arteries was determined by lucigenin-enhanced chemiluminescence, as previously described [31],
with some modifications [32]. Plasma NOx was assayed using an enzymatic conversion method [33],
with some modifications [32]. The concentrations of plasma TNF-α and TGF-β1 were measured
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using enzyme-immunoassay assay (ELISA) kits (eBioscienc, Inc., San Diego, CA, USA and ab119557,
Abcam Plc, Cambridge, UK).

2.6. Morphometric Analysis of Thoracic Aorta and Heart Tissue

Heart weight (HW) and left ventricular weight (LVW) were measured, and calculated as an
LVW/BW ratio. Thereafter, the left ventricles and thoracic aortas were fixed with 4% paraformaldehyde
and then embedded in paraffin and cut into serial 5-µm-thick sections. Each section was stained with
hematoxylin and eosin (H&E) and/or Picrosirius Red. Sections were captured with a Digital sight
DS-2MV light microscope (Nikon, Tokyo, Japan) or a stereoscope (Nikon SMZ745T with NIS-elements
D 3.2, Tokyo, Japan). Morphometric evaluations of the sections were performed with Image J software
(National Institutes of Health, Bethesda, MD, USA).

2.7. Western Blot Analysis of Tumor Necrosis Factor Receptor 1 (TNF-R1), TGF- β1, MMP-2 and MMP-9
Protein Expressions in Cardiac and Aortic Tissues

Protein samples were prepared through the homogenization of cardiac and aortic tissues in a lysis
buffer (Cell Signaling Technology Inc., Danvers, MA, USA). The proteins were then electrophoresed on
a sodium dodecylsulfate polyacrylamide gel electrophoresis system and transferred to a polyvinylidene
fluoride membrane (Millipore Corporation, Bedford, MA, USA). The membranes were blocked with
5% skimmed milk in Tris-buffered saline (TBS) with 0.1% Tween 20 for 2 h at room temperature before
overnight incubation at 4 ◦C with primary antibodies against TNF-R1, TGF-β1, MMP-2, MMP-9,
or β-actin (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA). Thereafter, the membranes were
washed three times with TBS and then incubated for 2 h at room temperature with a horseradish
peroxidase conjugated secondary antibody. The protein bands were detected using Luminata™
Forte horseradish peroxidase (HRP) detection reagent (Merck KGaA, Darmstadt, Germany) and
the densitometric analysis was performed using ImageQuantTM 400 (GE Healthcare Life Sciences,
Piscataway, NJ, USA). The intensity of each band was normalized to that of β-actin, and data were
expressed as a percentage of the values determined in the control group from the same gel.

2.8. Statistical Analysis

Data are expressed as mean ± S.E.M. The differences among the treatment groups were analyzed
through a one-way analysis of variance (ANOVA) followed by Bonferini’s post-hoc test. A p-value of
less than 0.05 was considered as statistically significant.

3. Results

3.1. Effects of Hesperidin and Captopril on Blood Pressure in Conscious Rats

There were no significant differences in the systolic blood pressure of all the rats at the beginning
of the study. The administration of L-NAME caused a gradual increase in the SP of all the rats
compared to the control rats (SP at 5th week, 200.21 ± 6.52 vs. 122.14 ± 1.75 mmHg, p < 0.01, Figure 1).
The co-administration of L-NAME and hesperidin at doses of 15 or 30 mg/kg (2.5 mg/kg) partially
prevented L-NAME-induced high blood pressure in a dose-dependent manner compared to that of
untreated rats (SP at 5th week, 177.50 ± 3.91 and 162.74 ± 2.82 mmHg, p < 0.05). Captopril also
partially alleviated L-NAME-induced hypertension (152.19 ± 5.01 mmHg) compared to untreated rats
(p < 0.05). In addition, captopril produced a greater preventive effect on SP than hesperidin (15 and
30 mg/kg).
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Figure 1. Time-course changes in systolic blood pressures of all experimental groups. Data are expressed
as mean ± S.E.M (n = 7–8/group), * p < 0.05 vs. control, # p < 0.05 vs. L-NAME, $ p < 0.05 vs. L-NAME +
hesperidin (15 mg/kg), Φ p < 0.05 vs. L-NAME + hesperidin (30 mg/kg) group.

3.2. Effects of Hesperidin and Captopril on SP, DP, MAP, and HR in Anesthetized Rats

The blood pressure data obtained using the indirect blood pressure measurement method were
consistent with the values from the direct method since L-NAME treated rats exhibited high blood
pressure, including high SP, DP, MAP, and high HR compared to those of control rats (p < 0.05,
Table 1). Hesperidin at doses of 15 and 30 mg/kg significantly decreased SP, DP, and MAP in a
dose-dependent manner compared to the untreated group (p < 0.05). Similarly, captopril reduced the
development of hypertension induced by L-NAME compared to untreated rats (p < 0.05). Hesperidin
at a dose 30 mg/kg, however, also affected the elevation of HR compared to untreated rats (p < 0.05,
Table 1). Furthermore, hesperidin had no effect on blood pressure in normotensive rats (SP = 122.29 ±
4.05 mmHg, n =4).

Table 1. Effects of hesperidin and captopril on blood pressure and heart rate in anesthetized rats.

Parameters Control L-NAME L-NAME + H15 L-NAME + H30 L-NAME + Cap

SP (mmHg) 120.92 ± 2.27 205.88 ± 3.19 * 179.38 ± 16.51 *,# 154.07 ± 4.88 *,#,$ 140.14 ± 7.06 #,$

DP (mmHg) 72.68 ± 3.31 141.65 ± 5.73 * 114.13 ± 16.57 *,# 86.89 ± 5.74 *,#,$ 91.48 ± 7.36 #,$

MAP (mmHg) 88.76 ± 2.47 161.41 ± 4.01 * 135.88 ± 16.00 *,# 109.28 ± 5.39 *,#,$ 107.70 ± 6.27 #,$

HR (beat/min) 367.86 ± 11.90 419.30 ± 11.96 * 391.93 ± 14.35 351.44 ± 13.47 #,$ 384.28 ± 17.31

SP: systolic blood pressure; DP: diastolic blood pressure; MAP: mean arterial pressure; HR: heart rate. Values are
mean ± S.E.M (n = 7–8/group), * p < 0.05 vs. control, # p < 0.05 vs. L-NAME, $ p < 0.05 vs. L-NAME + H15.

3.3. Effects of Hesperidin and Captopril on Left Ventricular (LV) Morphometry and Fibrosis

Rat body weights did not differ among all experimental groups. After 5 weeks of L-NAME
administration, the HW, LVW, and LVW/BW ratios were significantly increased compared to those of
control rats. The co-administration of L-NAME and hesperidin or captopril significantly decreased
those values when compared to the untreated group (Table 2). Morphometric analysis of hearts
showed that the chronic administration of L-NAME significantly increased LV wall thickness and
LV muscle fiber cross-sectional area (CSA) compared to the normal control group (p < 0.05, Table 2).
Hypertensive rats that received hesperidin or captopril had significantly reduced wall thicknesses and
CSA of the LV compared to untreated rats (p < 0.05) (Table 2, Figure 2A). LV fibrosis was significantly
increased in the L-NAME-treated rats compared to the normal control rats (p < 0.05). Hesperidin or
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captopril treatment significantly prevented L-NAME-induced LV fibrosis compared to the untreated
rats (p < 0.05) (Figure 2B).

Table 2. Effect of hesperidin and captopril on the cardiac mass indices and cardiovascular structural
modifications in left ventricle and thoracic aorta.
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Figure 2. The histology and morphology of LV from control, L-NAME, L-NAME + hesperidin
(30 mg/kg) and L-NAME + captopril (2.5 mg/kg) groups. Representative images of LV sections,
(A) stained with hematoxylin and eosin under stereomicroscopes, and (B) stained with picrosirius red
under a polarized light microscope using a 20× objective lens.

3.4. Effect of Hesperidin and Captopril on Vascular Morphology

Vascular wall hypertrophy was observed in thoracic aortas collected from L-NAME hypertensive
rats (Figure 3A) with significant increases in vascular wall thickness, CSA, and smooth muscle cells
numbers compared to those of the control rats (p < 0.05; Table 2, Figure 3A). Moreover, the relative
amounts of collagen depositions (Figure 3B) in the aortic walls of L-NAME hypertensive rats were also
clearly observed (p < 0.05; Table 2, Figure 3B). Hesperidin or captopril treatment partially prevented
the vascular structural abnormalities in aortas induced by L-NAME (p < 0.05).
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using a 20× objective lens.

3.5. Effects of Hesperidin and Captopril Supplementation on Oxidative Stress Markers, Plasma Nitric Oxide
Metabolites (NOx) Levels in L-NAME Treated Rats

L-NAME treated rats showed a significant increase in the production of vascular O2
•− (263.26 ±

11.20 vs. 71.42 ± 15.97 count/mg dry wt/min, p < 0.001) and plasma MDA levels compared to the
control groups (10.24 ± 0.4 vs. 3.11 ± 0.27 µM, p < 0.05). When treated with hesperidin or captopril,
the elevations of vascular O2

•− and plasma MDA were mitigated compared to those of untreated
rats (7.91 ± 0.92, 4.83 ± 0.74 and 3.88 ± 0.25 count/mg dry wt/min and 138.86 ± 28.75, 97.28 ± 16.67
and 92.14 ± 12.90 µM, p < 0.05) (Figure 4A,B). In addition, low levels of plasma NOx were found
in L-NAME hypertensive rats compared to control rats (3.49 ± 1.0 vs. 10.17 ± 0.95 µM, p < 0.05).
These low levels of plasma NOx were improved by hesperidin or captopril supplementation (4.38 ±
1.15, 7.48 ± 1.03 and 8.48 ± 1.21 µM, p < 0.05) (Figure 4C).
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Figure 4. Effects of hesperidin and captopril supplementation on vascular O2
•− production, (A) plasma

MDA (B) and plasma NOx (C) levels in control, L-NAME, L-NAME + hesperidin (15 mg/kg), L-NAME
+ hesperidin (30 mg/kg) and L-NAME + captopril (5 mg/kg) groups. Data are expressed as mean ±
S.E.M (n = 7–8/group), * p < 0.05 vs. control, # p < 0.05 vs. L-NAME group, $ p < 0.05 vs. L-NAME
+ H15.

3.6. Effects of Hesperidin and Captopril on Protein Expression of TNF-R1 and TGF-β1 in Heart Tissues and
Concentrations of TNF-α and TGF-β1 in Plasma

Over-expressions of TNF-R1 and TGF-β1 proteins were found in heart tissues collected from
the hypertensive group compared to the control group (p < 0.001). Interestingly, supplementation
with hesperidin and captopril partially reversed these protein up-regulations (p < 0.01; Figure 5A,B).
These results were consistent with the results in that high levels of plasma TNF-α and TGF-β1 were
observed in L-NAME hypertensive rats compared to those of control rats (168.49 ± 13.05 vs. 24.21 ±
8.51 pg/mL and 23.54 ± 3.91 vs. 4.90 ± 0.50 ng/mL, p < 0.01). The administration of hesperidin or
captopril attenuated these high levels of plasma TNF-α (58.23 ± 14.71 or 20.97 ± 6.97 pg/mL) and
TGF-β1 (5.23 ± 0.32 or 4.79 ± 0.55 ng/mL, p < 0.05) in hypertensive rats (Figure 5C,D).
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3.7. Effects of Hesperidin and Captopril on Protein Expression of MMP-2 and MMP-9 in Aortic Tissue

A significant increase in MMP-2 and MMP-9 protein expression was observed in thoracic aortic
tissues collected from the hypertensive group compared to the control group (Figure 6A,B, p < 0.05).
Hesperidin or captopril treatment significantly suppressed the level of MMP-2 and MMP-9 protein
expression compared to untreated rats, (p < 0.05).
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4. Discussion

This study demonstrates that rats that received L-NAME developed hypertension and
cardiovascular remodeling. Hesperidin mitigated high blood pressure and cardiac remodeling by
reducing the left ventricular hypertrophy and fibrosis associated with down-regulations of TGF-β1 and
TNF-R1 protein expression and a reduction of plasma TGF-β1 levels in L-NAME-induced hypertension
in rats. Vascular remodeling, including vascular hypertrophy and increased collagen deposition,
induced by L-NAME in rats was inhibited by hesperidin supplementation. This was consistent with
the decreased protein expression of MMP-2 and MMP-9 in aortic tissue. Furthermore, hesperidin
preventing cardiovascular remodeling induced by L-NAME in the present study was linked to the
reduction of an inflammatory cytokine, oxidative stress markers, and enhanced NO availability.

It was found that chronic treatment of L-NAME led to the development of NO-deficient
hypertension as well as cardiovascular remodeling. These remodelings included increases in LVW/HW
ratio, LV wall thickness, LV CSA, LV fibrosis, aortic wall thickness, aortic cross-sectional areas,
aortic smooth muscle cell numbers, and collagen deposition. It is well-accepted that the chronic
inhibition of NO synthase using L-NAME results in NO depletion, increased vascular tone, and high
blood pressure [34]. Several studies have demonstrated that cardiovascular remodeling occurs after
chronic treatment with L-NAME (40 mg/kg) for five weeks [4,10,35]. The mechanisms involved
in cardiac remodeling in an animal model of nitric oxide-deficient hypertension are still unclear;
however, two possible mechanisms related to hemodynamics and non-hemodynamic aspects have
been described [36]. Hemodynamic overload in hypertension provoked left ventricular hypertrophy
because of the adaptive response to conserve cardiac output [37]. A reduction in NO is one of several
non-hemodynamic factors that participate in cardiac remodeling because when NO is suppressed,
hypertensive cardiac remodeling through the cyclic guanosine monophosphate/protein kinase G
(cGMP/PKG) pathway is initiated to inhibit fibrotic synthesis [38]. It is well-documented that
vascular remodeling in hypertension occurs in response to long-term modifications of hemodynamic
conditions [39,40]. Furthermore, numerous studies have reported that vascular remodeling is
characterized by increases in wall thickness, CSA, and smooth muscle cell numbers in L-NAME
hypertensive rats [3,4,41]. In this study, hesperidin partially inhibited the development of hypertension
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as well as cardiovascular remodeling induced by chronic L-NAME treatment. These effects may
have involved an increase in NO bioavailability, reductions of oxidative stress, and inflammation as
further possibilities.

Oxidative stress is one of the important mechanisms of L-NAME-induced hypertension since
L-arginine analogues activate eNOS uncoupling, leading to an overwhelming vascular superoxide
generation [42]. Then, superoxide can rapidly react with nitric oxide to form peroxynitrite [43].
This reaction results in reducing nitric oxide bioavailability [44]. In the present study, increases in
plasma MDA levels and vascular superoxide production were accompanied by decreased plasma
NOx levels observed in the L-NAME hypertensive rats. Hesperidin alleviated L-NAME-induced
oxidative stress and thus increased NO bioavailability with an increase in the plasma NOx level.
Many studies have confirmed that hesperidin has a strong antioxidant activity [26,45]. Hesperidin
exhibits its antioxidant properties with two main mechanisms, including directly scavenging reactive
oxygen species [46], and boosting cellular antioxidant defense [25]. Thus, this is one of the possible
mechanisms of the cardiovascular protective effects of hesperidin in this study that might have involved
its antioxidant capability, resulting in increased NO bioavailability, which reduced vascular resistance.

There is substantial evidence to suggest that inflammation is one of pathologies that occurs in
L-NAME hypertensive rats [47,48]. The results of this study proved that, as in the previous studies,
there were increases in the levels of pro-inflammatory cytokine, TNF-α, in plasma and expression of
TNF-α protein in the heart tissue of L-NAME hypertensive rats. Myocardial TGF-β protein expression
was also observed in L-NAME hypertensive rats. It is well-established that TGF-β plays an important
role in responses to inflammation to activate fibrogenesis, which is an important pathological process
for cardiac remodeling [49,50]. The present study has also shown that hesperidin attenuated cardiac
remodeling, accompanied by decreased systemic and heart inflammation in L-NAME hypertensive
rats. The protein expression of TGF-β in cardiac tissue was also down-regulated in the hesperidin
supplemented group. The anti-inflammatory effect of hesperidin has been clearly revealed in both
cellular and animal models. In human umbilical vein endothelial cells, hesperidin significantly
suppressed TNF-α [51]. Li and coworkers demonstrated that hesperidin decreased the production of
IL-1β, IL-6, and TNF-α in a rat model of rheumatoid arthritis [52]. Thus, the current results confirmed
that the cardiprotective effect of hesperidin was associated with its great anti-inflammatory effect.

Additionally, vascular remodeling with collagen deposition was associated with the
overexpression of MMP-2 and MMP-9 in aortic tissue in L-NAME hypertensive rats, as shown in
this study. Several studies report that MMPs play an important role in physiological processes that
contribute to hypertension-induced maladaptive arterial changes and sustained hypertension [53,54].
The overexpression of MMP-mediated vascular remodeling was stimulated by oxidative stress and
inflammatory cytokines [54]. Del Mauro and coworkers demonstrated that MMP-2 and MMP-9 activity
was a pathologic process in L-NAME-induced morphometric alterations in the aorta [55]. Interestingly,
the authors of the present study first reported L-NAME-induced hypertension and vascular remodeling
in rats in which there was an up-regulation of MMP-2 and MMP-9 protein expression in response
to oxidative stress. Hesperidin prevented vascular remodeling induced by L-NAME associated with
the down-regulation of MMP-2 and MMP-9. This effect might be involved in its antioxidant and
anti-inflammatory effects, which further inhibited MMP activation and collagen degradation.

Captopril was used as a positive control to prevent the development of hypertension and
cardiovascular remodeling. These findings are supported by previous studies that found that captopril
prevented high blood pressure, left ventricular hypertrophy, and vascular remodeling induced by
L-NAME in rats [56,57]. Captopril also reduced oxidative stress and inflammatory markers and
suppressed protein expressions of TNF-R1, TGF-β1, and MMPs. An antioxidative effect of captopril
in the present study might be associated with two main mechanisms, direct and indirect effects.
Captopril contains free sulfhydryl groups that directly scavenge oxygen free radicals [58], or it
suppresses AT1R-mediated NADPH oxidase expression and superoxide production [10]. It has
been demonstrated that captopril improved ventricular hypertrophy in rats by suppressing MMP-2
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and MMP-9 expression [59]. In addition, an anti-inflammatory effect of captopril in the animal model
of hypertension has been reported [60].

In conclusion, the findings of this study indicated that hesperidin had cardiovascular protective
effects by preventing the L-NAME-induced development of hypertension and cardiovascular
remodeling in rats. These effects were affirmed by reducing oxidative stress and inflammation.
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