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Investigating gender differences based on emotional changes becomes essential to understand various human behaviors in our
daily life. Ten students from the University of Vienna have been recruited by recording the electroencephalogram (EEG) dataset
while watching four short emotional video clips (anger, happiness, sadness, and neutral) of audiovisual stimuli. In this study,
conventional filter and wavelet (WT) denoising techniques were applied as a preprocessing stage and Hurst exponent (Hur) and
amplitude-aware permutation entropy (AAPE) features were extracted from the EEG dataset. k-nearest neighbors (kNN) and
support vector machine (SVM) classification techniques were considered for automatic gender recognition from emotional-based
EEGs. -e main novelty of this paper is twofold: first, to investigate Hur as a complexity feature and AAPE as an irregularity
parameter for the emotional-based EEGs using two-way analysis of variance (ANOVA) and then integrating these features to
propose a new CompEn hybrid feature fusionmethod towards developing the novelWT CompEn gender recognition framework
as a core for an automated gender recognition model to be sensitive for identifying gender roles in the brain-emotion relationship
for females and males. -e results illustrated the effectiveness of Hur and AAPE features as remarkable indices for investigating
gender-based anger, sadness, happiness, and neutral emotional state. Moreover, the proposed WT CompEn framework achieved
significant enhancement in SVM classification accuracy of 100%, indicating that the novel WT CompEn may offer a useful way
for reliable enhancement of gender recognition of different emotional states. -erefore, the novel WT CompEn framework is a
crucial goal for improving the process of automatic gender recognition from emotional-based EEG signals allowing for more
comprehensive insights to understand various gender differences and human behavior effects of an intervention on the brain.

1. Introduction

Perceiving gender based on human emotions has gained lots
of research interest to investigate personal characteristics in
neuroscience and psychology [1]. Gender differences pri-
marily based on processing emotions have attracted precise
interest due to their attainable utility in understanding
human psychopathology such as depression and

nervousness that might also be associated with the differ-
ential response of females and males to stress [2].

-us far, few researchers have investigated gender
variations primarily based on emotional changes [3], and
most of them report substantial differences [2]. Accordingly,
the kind of stimulus could be visual, auditory, or audiovisual
stimuli. -e visual stimuli and auditory stimuli are related to
an increase or decrease in the sensorimotor rhythm
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amplitude [4]. To reveal personal characteristics that would
be valuable in recognizing individual gender accurately in
daily life, visual and auditory stimuli are considered as two
common ways for human beings to elicit different emotional
states [2]. Recently, researchers indicated that, to provide the
best environment for automatic emotion recognition, they
need to get the combined effect of both visual and auditory
stimuli to elicit a specific emotional state [5]. Audiovisual
elicitations utilizing short film video clips are usually used to
elicit various conditions of emotion better compared to the
other modalities [4, 6–9]. Hence, in this work, emotions
were precipitated with the aid of the use of short audiovisual
video clips.

From the psychological point of view, the emotional
state can be distinguished and grouped into two emotional
models: the discrete model and the dimensional model. -e
discrete model comprises a lot of discrete emotional states
that are identified to be one of the core emotions, and all
other different emotions are considered part of these pri-
mary emotions (anger, fear, disgust, surprise, happiness, and
sadness) or an aggregate of them [10, 11]. -e dimensional
model is a two-dimensional (2D) cognitive-emotional state
model that is broadly utilized in mapping emotion recog-
nition applications. It plots emotions on two scales, valence-
arousal plots, where valence is in the horizontal axis and is
considered as the polarity or the quality of an emotion
ranging from unpleasant to pleasant and arousal is in the
vertical axis and is considered as the intensity of emotion
ranging from calm to excited [12]. -erefore, the 2D cog-
nitive-emotional state model is the mapping of all emotions
onto the valence-arousal graph, as portrayed in the cir-
cumplex model of emotion [13, 14]. Other researchers have
proposed a three-dimensional (3D) cognitive-emotional
state model which takes into consideration the attention-
rejection property in addition to the 2D model [8, 15–17].

In this study, the conventional filter and wavelet (WT)
denoising techniques were applied as a preprocessing stage
to the EEG dataset. Hurst exponent (Hur) complexity
feature and amplitude-aware permutation entropy (AAPE)

irregularity parameter have been computed to investigate
the gender changes of the emotional-based EEGs. Subse-
quently, the individual performances of these features were
statistically examined using two-way analysis of variance
(ANOVA) to recognize a gender-specific role in the brain-
emotion relationship for females and males during four
short emotional video clips (anger, happiness, sadness, and
neutral) of audiovisual stimuli. -en, the used features were
combined as a novel complexity and irregularity features
(CompEn) hybrid feature fusion set towards developing the
novel WT CompEn framework for automated gender rec-
ognition system on EEG for gender identification. Finally,
kNN and SVM classification techniques were used for au-
tomatic gender identification of emotional-based EEG
datasets. -e performances of these classifiers were exam-
ined on Hur and AAPE individually and on the CompEn
feature set.

To the best of author’s knowledge, the contribution of a
gender-precise role in the brain-emotion relationship has
been tended to in this work. -erefore, the main novelty of

this paper is threefold. First, it aims to propose an automated
gender recognition system based on EEG data of different
emotional states acquired using low-cost wireless EEG de-
vices. -is can be done by investigating the changes in
complexity and irregularity features of the emotional-based
EEGs using statistical analysis. -en, integrate the employed
features as CompEn feature set towards developing the novel
WT CompEn framework as a core for automated gender
recognition system feature set to be sensitive for identifying
gender differences of emotional-based EEG signals. -ird,
the EEG elicitation convention and the EEG estimation
system are utilized without precedent for this investigation
for emotion data obtaining, and that may make gender
contrast more articulated and may accomplish better
performance.

2. Related Works

Over the last decade, studies have indicated that the possible
adequacy of biomedical signs for recognizing people by
exploring gender differences based on emotional changes
would be elicited using different physiological measure-
ments such as electrocardiogram (ECG) [18] and electro-
encephalogram (EEG) [6, 19]. Several studies illustrated the
gender differences and classification from ECG signal
analysis [20, 21], while in other studies, the gender has been
classified based on using EEG signals [22, 23].

Characterized by wide availability, affordability, and lack
of invasiveness, EEG is a clinical instrument capable of
monitoring data processing in millisecond accuracy with a
high level of temporal resolution [24], -erefore, it has
neurophysiology applications for the detection and differ-
entiation of modifications in the brain [24, 25].

A wide range of brain disorders, including seizures,
attention-deficit hyperactivity disorder (ADHD), and Alz-
heimer’s disease (AD)/vascular dementia (VaD), have been
detected based on EEG signals, while mental tasks and sleep
stages have been classified based on such signals as well
[23–26]. -e latest research has employed EEG for high
time-resolution evaluation of affective moods in people
[26–29]. Recently, EEG has been generally utilized to assess
human emotional states with high time resolution [6, 30, 31].
Given the important insight that it can provide in this
regard, EEGmay be a promising biomarker for the appraisal
of different affective reactions from an EEG dataset with
multiple channels across brain regions [32]. To give an
example of such research, brain waveforms were used in [33]
to develop a method of uninterrupted music emotion de-
tection. Similarly, in [34], real-time techniques of human
emotion detection based on EEGwere employed to devise an
integrated music therapy for the identification of present
affective moods according to neurofeedback and patient-
specific customization of treatment.

Besides being highly informative about brain physiology,
EEG signals could potentially be biomarkers of brain linear
and nonlinear behavior [26, 27, 35–37]. -e Hurst exponent
(Hur) [6, 38] and fractal dimension (FD) [39, 40] are among
the nonlinear techniques that have been adopted for the
representation of complex affective tasks and for the
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examination of complicated dynamic data generated by the
brain cortex [33, 41].

EEG signals are considered dynamic systems lacking
stability, and the uncertainty of such systems can be de-
termined by employing the nonlinear parametric index of
entropy [42]. Research into cognitive mental states, sleep
states, and approaches for categorizing affective levels has
benefitted from the application of entropy to EEG signals
[35, 43–45]. Furthermore, the use of a range of entropies for
the identification of biological gender based on EEG could
be useful in clinical analyses, especially on social emotion,
individual identification, response to therapy, clinical ef-
fectiveness, and side effects [46]. To give an example, in [1],
human emotions triggered by video clips were examined
based on sample entropy (SampEn), approximate entropy
(ApEn), and permutation entropy (PerEn), as these entro-
pies are resistant to noise and can effectively measure time
series complexity. In a different study, the analysis of EEG
signals for clinical evaluation was conducted based on PerEn
entropy and symbolic transfer entropy, hinting at the re-
lational ability of the employed EEG entropy examination
with clinical cases of different cognitive conditions [47].
Another type of entropy suggested for EEG examination is
fuzzy entropy (FuzEn), involving the substitution of
Heaviside functions with fuzzy membership functions
[48, 49]. According to existing studies, the issue of entropy
mutation is mitigated by FuzEn, but on the downside, the
relevant information is lost when employing such entropy
techniques because they entail single-scale analysis. Whereas
the speed of SampEn is better compared to FuzEn, greater
consistency and reduced reliance on data length are dem-
onstrated by FuzEn [50]. ApEn [51], SampEn [52], FuzEn
[53], and PerEn [54] constitute the four most popular en-
tropy predictors within the context of EEG signal processing
[50]. To identify how affective-based EEG signals across the
brain differ between genders, the present work concentrates
on EEG-derived indices.

Support vector networks (SVNs), artificial neural net-
works (ANNs), k-nearest neighbors (kNN) and support
vector machine (SVM) classifiers [55], and hidden Markov
models (HMM) have all been employed to investigate au-
tomatic algorithms for a system of gender categorization
[56, 57]. For instance, the SVM classifier was used in [22] to
devise an EEG signal-based automatic system of age and
gender detection, while EEG data related to resting state
were the basis of a model of automatic gender detection in
[1]. In other research, EEG sensors with wavelet transform
frequency breakdown for feature extraction and random
forest classifier enabled the creation of an automatic system
for detecting age and gender in resting state with eyes closed
[58, 59].

Most gender detection studies using EEG signals based
on emotional response focused on the linear analysis using
spectral relative powers [30, 60, 61]. However, other re-
searchers have used nonlinear features to investigate brain
complexity [62–64]. In the current study, we aim to un-
derstand the role of EEG for gender identification using the
integrated entropy and spatial features to characterize the
emotional-based signals by examining different brain region

behaviors during audiovisual video clips. Integrated features
are essential for an automatic gender detection system to
perform effectively and be solidly reliable. In this context, the
impact of gender discrepancies on the elements of EEG-
based systems of affective reaction detection and the general
performance of such systems are worth investigating. To this
end, computation of entropy features was done to highlight
the gender variability occurring in affective-based EEG
systems.

3. Materials and Methods

Figure 1 illustrates the block diagram of the proposed study.

3.1. EEGAcquisitionandRecording. Amobile and affordable
Emotiv EPOC EEG 14-channel headset (Emotiv Systems,
Inc., San Francisco, CA) was employed in this work to
capture EEG signals labeled as AF3, F7, F3, FC5, T7, P7, O1,
O2, P8, T8, FC6, F4, F8, and AF4, with the common mode
sense (CMS) left mastoid and the driven right leg (DRL)
being referenced as ground. -e positioning of the sponge-
based electrodes used by the headset was done according to
the 10–20 system, while a band-pass filter of 0.5–70Hz
frequency facilitated the filtering of electrode data. -e
frequency of sampling was 128Hz, with 0.51mV resolution.

-e study recruited a total of ten participants (6 males
and 4 females; the age of 22.6± 2.75 years, mean± standard
deviation (SD)), all university students, aged between 18 and
24 years. Before beginning the research, each participant
underwent an evaluation to ensure no prior history of
neurological or psychiatric issues and was then presented
with an informed consent form (ICF) which they were
requested to sign before participating in the study.

During the EEG recording procedure, subjects were
asked to remain relaxed and calm for the entire EEG re-
cording duration to minimize the data reading artifacts
resulting from movements. -e evaluation of the 3 emotion
states (anger, sadness, and happiness) along with the neutral
condition was conducted by allowing the participants to
view various short emotionally stimulating video clips, with
audio, following which the participants were allowed some
time to evaluate and grade their responses to the clips
employing a self-assessment questionnaire, followed by a
break of 45 seconds before viewing the next video clip
(Figure 2) [65].

-e running time of the various video clips varied from
one to the other, with the longest having a duration of four
minutes. -e emotional video clips used were selected based
on those recommended by Rottenberg et al. [65]. As pre-
viously mentioned, participants were asked to evaluate the
strength of their emotional response to each clip using a five-
point-scale SAQ; participants were asked to select either 1
(very low), 2 (low), 3 (medium), 4 (high) or 5 (very high) to
evaluate the degree of emotion experienced [31].

To enable the participants to view the affective video
clips, the used video clips were in German language and the
virtual emotion presenter (VEP) software from the Uni-
versity of Vienna was employed. -is software was chosen
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because it not only permits arbitrary viewing but also
documents extra sources of data.-e experimental work was
conducted in the Anthropology Research Laboratory, and
besides the VEP software, the equipment used included the
regular laboratory ambient lighting, LCD for screening the
video clips, and stereo speakers so that the video clips could
be accompanied by uninterrupted sound at a level acceptable
to the participants (Figure 3). -e Helsinki declaration and
subsequent refinements were followed in every research
procedure.

3.2. Preprocessing Stage. Since most artifacts occurring in
EEG signals were overlapping with brain activity, pre-
processing is essential in EEG signal processing.

3.2.1. Conventional Filtering. In this context, conventional
filters were used as an initial stage to process each channel of
the recorded EEG datasets. A notch filter at 50Hz was used
to remove the power line interference noise [32], and a
fourth-order Butterworth bandpass filter was applied with a
0.5–64Hz frequency range to limit the band of the recorded
EEG signals [66].

3.2.2. Wavelet Analysis. WT has the ability in resolving EEG
into specific time and frequency components by providing a
good time resolution and poor frequency resolution at high
frequencies and good frequency resolution and poor time
resolution at low frequencies. -e DWT is a fast

nonredundant transform used in practice for analyzing both
the low- and high-frequency components in the EEG signals
because it requires less computational time than the con-
tinuous WT (CWT) [67]. -e DWT can be processed by
obtaining the discrete value of the parameters a and b, as in
equation (1). It can be obtained as a set of decomposition
functions of the correlation between the signal f(t) and the
shifting and dilating of one specific function called mother
wavelet function ψ(t). MWT is shifted by the location pa-
rameter (b) and dilated or contracted by frequency scaling
parameter a, as in the following equation
[8, 16, 17, 36, 68–70]:

DWTm,n(f) � a
− (m/2)
0 􏽚 f(t)ψ a

− m
0 t − nb0( 􏼁dt, (1)

where a0 and b0 values are set to 2 and 1, respectively.

ψa,b(t) �
1
��
a

√ ψ
t − b

a
􏼠 􏼡, a ∈ R+

, b ∈ R. (2)

SURE threshold is an adaptive soft thresholding method,
which aims to determine the threshold limit for each level
based on Stein’s unbiased risk estimation [71] and com-
monly used value in [72–74].

In this study, the sampling frequency was 128Hz and the
EEG dataset was subjected to “sym9” from the Symlets
family with a four-decomposition level of five subband EEG
signals. Among the five subbands, cD1, cD2, cD3, and cD4
represented the decomposition detail coefficients and cA is
the decomposition approximation coefficient. -e SURE
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Figure 1: -e block diagram of the proposed study.
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threshold is an adaptive soft thresholding method that is
used to find the threshold limit for each level based on Stein’s
unbiased risk estimation [70, 74].

3.3. Features Extraction Stage. Because of the complicated
structure of the brain and its ability to perform multiple and
complex sophisticated cognitive tasks, the brain neurons are

considered to be governed by nonlinear dynamic phe-
nomena. EEG signals have been used to investigate the
chaotic behavior of the brain from nonlinear time series
[75, 76]. Since the EEG spectral-band analysis was unable to
illustrate the electrical activity of the brain and the under-
lying mechanisms of the brain function, the nonlinear
analysis based on dynamics information needs to be in-
vestigated.-e present study was undertaken to examine the
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Figure 2: -e experimental protocol of emotion [9].
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7 = Experimenter chair

Figure 3: Setup of the experimental room with presentation TV and the recorders.

Journal of Healthcare Engineering 5



gender differences from emotional-based EEG background
activity with two different features: Hurst exponent (Hur)
and amplitude-aware permutation entropy (AAPE) to il-
lustrate the complexity and irregularity features in detecting
gender differences [63, 77–79]. Indeed, the used features
were selected based on previous studies due to their use-
fulness and effectiveness in discriminating the EEG signals
[35, 80, 81]. In this stage, the filtered EEG datasets were
segmented into 3 trials, and each trial includes 10 seconds of
each video clip viewed (3×10 second period) with 1280 data
points.

3.3.1. Hurst Exponent (Hur). Hur is a measure that has been
widely used to evaluate the self-similarity and correlation
properties of fractional Brownian noise and the time series
produced by a fractional (fractal) Gaussian process. Hur is
used to evaluate the presence or absence of long-range
dependence and its degree in a time series. However, local
trends (nonstationarities) are often present in physiological
data and may compromise the ability of some methods to
measure self-similarity. Hur is the measure of the
smoothness of a fractal time series based on the asymptotic
behavior of the rescaled range of the process. In time series
analysis of EEG, Hur is used by [38, 80] to characterize the
nonstationary behavior of the EEG signals. Hur is defined as

Hur �
log(R/S)

log(T)
, (3)

where T is the duration of the sample of data and R/S is the
corresponding value of the rescaled range. -e above ex-
pression is obtained from Hurst’s generalized equation of
time series that is also valid for Brownian motion [82].

3.3.2. Amplitude-Aware Permutation Entropy (AAPE).
AAPE has been proposed to consider the amplitude in-
formation from permutation entropy (PE) to overcoming
the PE shortcoming of considering the order of the am-
plitude and discarding the information regarding the am-
plitude, besides the equal amplitude values in each
embedded vector are not considered.

To estimate AAPE, assume y � 􏼈yt+(j1− 1)l, yt+(j2− 1)l, . . . ,

yt+(jd − 1)l􏼉 is the time series, where j is the time index of the
element in the reconstruction vector, a vector including the
d! potential symbol patterns of π motifs, where d is the
embedded dimension, which determines how much infor-
mation is contained in each vector, and l is the time delay of
the order pattern i, i � 1, 2, . . . , d!. To calculate AAPE, for
each πi, p(πk) demonstrates the relative frequency as follows
[81]:

p πk( 􏼁 �

p πd,l
i􏼐 􏼑 + A/d 􏽘

d

k�1
xi+(k− 1)l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 1 − A/d − 1 􏽘

d

k�2
xi+(k− 1)l − xi+(k− 2)l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌⎡⎣ ⎤⎦ if p πd,l

i􏼐 􏼑 � 0

p πd,l
i􏼐 􏼑

􏽐
N− d+1
i�1 A/d 􏽐

d
k�1 xi+(k− 1)l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + 1 − A/d − 1􏽐

d
k�2 xi+(k− 1)l − xi+(k− 2)l

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽨 􏽩

otherwise

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

AAPE(d, l, n) � − 􏽘

πk�dl

πk�1
p πk( 􏼁ln p πk( 􏼁.

(4)

When all motifs have equal probability, the largest value
of AAPE is obtained at l � 1. For 30 seconds, N � 3840
samples, 3 windows of 10-second length (1280 samples)
were extracted from the original EEG time series for each 14
channels.

3.3.3. Complexity and Entropy Features Fusion. To get an
efficient gender recognition model in terms of high accuracy
recognition rates and to have more insights on the mental
processes for females and males, the Hur index of com-
plexity and AAPE index of irregularity have been combined
to develop a new hybrid index of complexity-entropy
(CompEn) set of feature.

3.4. Statistical Analysis Stage. -is study intends to inves-
tigate the significance of Hur and AAPE features to be re-
liable indices in detecting gender differences in anger,
happiness, sadness, and neutral emotional states. -erefore,
statistical analysis has been conducted using SPSS statistical
tool version 22. Two sessions of two-way analyses of variance
(ANOVA) were performed to realize the significant dif-
ferences among the emotions (i.e., anger, happiness, sadness,
and neutral), and Hur was considered for the first session
and AAPE was considered for the second session. Hur and
AAPE were applied as dependent variables.-e group factor
(i.e., female and male) was the independent variable. -e
significance was set at p< 0.05. Moreover, the study was
aimed to test the hypothesis that the gender differences from
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emotional-based EEG performed from the complexity and
entropy-based features would be different between females
and males.

4. Classification Stage and
Performance Measures

-e last stage for identifying neurophysiological changes in
females and males is using the classification model. In this
study, k-nearest neighbors (kNN) and support vector
machine (SVM) were used.

Given that the majority of the learning algorithms as-
sume a balanced class distribution, their results typically
favor the predominant class that gives poor class predictions.
-e class imbalance in the dataset highly affects the quality of
the classification model. However, given that the minority
class cannot be easily discriminated against, the classifier can
simply classify each instance as the majority class. In this
study, the minority class was represented by the females. A
synthetic oversampling technique (SMOTE) was applied to
overcome the data imbalance [83]. -e classifier parameters
and percentage of oversampling were determined via 10-fold
cross-validation using a grid search approach to avoid
overfitting and bias in the classification analysis [84]. -e
available dataset was divided into 10 equal size disjoint
subsets. One of these subsets was used as the test set, while
the remaining nine subsets were combined into a training set
to learn the classifier. -is procedure was performed 10
times, which resulted in 10 accuracies. -e average of these
accuracies represented the 10-fold cross-validation accuracy
of learning from this dataset [85]. Given that SMOTE
changes the dataset, the percentage of oversampling were
combined with the parameters. -erefore, those parameters
that are found with different SMOTE percentages may not
be the same. Using only the training set, the SMOTE was
used to equalize the frequency of the classes [86, 87].

kNN is one of the most popular nonparametric classi-
fication algorithms, it is more robust when k> 1 particularly
to reduce the influenced noisy points within the training set.
In this study, the Euclidean distance was utilized as a
similarity measure to classify each trial by kNN. -e clas-
sifier was trained to obtain the best value of k � 7 that
maximizes the overall classification performance evaluation.
kNN with 7 neighbors classifiers were selected based on
previous work [9, 28, 29, 43, 77, 79, 88].

Optimization of the complexity parameter C with a
range of − 4≤ log10(C)≤ 4 in C values
C ∈ 0.0001, 0.001, 0.01, 0.1, 0, 10, 100, 1000, 10000{ } on the
training set via ten-fold cross-validation yielded ideal out-
comes for the SVM classifier. During testing, C corre-
sponding to 10 gave optimal results for C values. -e
multiclass SVM classifiers were applied based on the radial
basis function (RBF) kernel. Furthermore, the training
dataset was used to determine the minimum misclassifica-
tion rate, which in turn helped to obtain the smoothing
parameter σ in the context of SVM training. Methodical
variation of σ value in different training episodes is the only
way of determining the ideal σ. Hence, in this work, vari-
ation of the σ value was done in the range of 0.1–1 at 0.1

intervals. A σ value of 0.5 was established to be associated
with the minimum misclassification rate.

-e performance of the proposed framework was
evaluated using the values of average classification accuracy,
confusion matrix, receiver operating characteristic curve
(ROC), and area under the curve (AUC).

5. Results and Discussions

5.1. Results of Preprocessing Stage. As previously described,
the EEG signal datasets were filtered by conventional filters
and subjected to the WT denoising technique. Figure 4 il-
lustrates the data obtained from channel 7, representing the
frontal brain area when subjected to the emotional state of
anger. Observation shows that the artifactual signal elements
(blue lines) present in the raw EEG signal were successfully
blocked during signal denoising, resulting in the clean EEG
signal (red line).

5.2. Results of Statistical Analysis. -e statistical character-
ization of the differences in Hur and AAPE females and
males will be discussed in the following sections.

5.2.1. Results of Hurst Exponent (Hur). -e boxplots of
Figure 5 indicate the overall pattern of Hur feature response
for the two group factor distribution (i.e., female and male)
from emotional-based EEG signals. It can be observed that
Hur provides a significant variation with a useful way to
visualize the characteristics of responses for the female and
male group factors. Furthermore, boxplot analysis dem-
onstrates themedian value, as the value inside the boxplots is
the median value of the distribution. -e typical boxplot has
lines at the upper median and lower quartile values. Figure 5
confirms the suitability of the feature for pattern
classification.

Moreover, to recognize the importance of the complexity
feature Hur method for the pattern classification, statistical
analysis using two-way ANOVA was conducted on the Hur
features. In this analysis, the group factor (i.e., female and
male) was the independent variable, whereas the Hur fea-
tures were the dependent variable. -e significance for all
statistical tests was set at p< 0.05. Normality was then
assessed using the Kolmogorov–Smirnov test, whereas ho-
moscedasticity was verified using Levene’s test. -e post hoc
comparison was performed through Duncan’s test.

Figure 6 illustrates the comparative plot of Hur which
was estimated to discriminate between females and males
based on anger, happiness, sadness, and neutral emotional
states based on EEG signal complexity. Anger, happiness,
and neutral were statistically significant from sadness,
particularly for females, whereas anger, happiness, and
sadness were statistically significant from neutral for males.
One can see that the females had significantly lower Hur
values at the four different emotional states compared to
males ((Huranger,happiness,sadness,neutral (Females)
<Huranger,happiness,sadness,neutral (Males))) with significant dif-
ferences (p< 0.05). -ese results suggest that the EEG ac-
tivities of females are significantly less complex for males.
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5.2.2. Results of Amplitude-Aware Permutation Entropy
(AAPE). -e boxplots of Figure 7 indicate the overall
pattern of AAPE feature response for the two group factor
distribution (i.e., female and male) from emotional-based
EEG signals. It can be observed that AAPE provides a
significant variation with a useful way to visualize the
characteristics of responses for the female and male group
factors. Furthermore, boxplot analysis demonstrates the
median value, as the value inside the boxplots is the median
value of the distribution. -e typical boxplot has lines at the
upper median and lower quartile values. Figure 7 confirms
the suitability of the feature for pattern classification.

Moreover, to recognize the importance of the complexity
feature AAPE method for the pattern classification, statis-
tical analysis using two-way ANOVA was conducted on the
AAPE features. In this analysis, the group factor (i.e., female

and male) was the independent variable, whereas the AAPE
features were the dependent variable. -e significance for all
statistical tests was set at p< 0.05. Normality was then
assessed using the Kolmogorov–Smirnov test, whereas ho-
moscedasticity was verified using Levene’s test. -e post hoc
comparison was performed through Duncan’s test.

In this study, AAPE has been used for discriminating
females from males based on anger, happiness, sadness, and
neutral emotional states based on EEG signal irregularities.
Figure 8 illustrates the comparative plot of AAPE; it
can be observed that sadness was statistically significant
from neutral anger and happiness. Notably, EEG signifi-
cantly had lower AAPE values in happiness and
sadness for females compared to males (AAPEhappiness,
sadness(Females)<AAPEhappiness,sadness(Males)), whereas
the females had higher AAPE values for anger and neutral
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Figure 4: -e denoising results after preprocessing stage for channel F7.
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emotional states compared to males
(AAPEanger,neutral (Females)<AAPEanger,neutral (Males))
(p< 0.05). -ese results suggest that EEG had regular be-
havioral activities for both females and males.

5.3. Results of Classification Stage. -is study has dealt with
emotional-based EEG signals for gender identification
problems. -e key design decisions for kNN and SVM used
in the classification are the training process, as they depend
on the size of the training set and the test set. However, to
comparatively evaluate the performance of the proposed
classifiers, the classifiers employed in this work were trained
on the same training data set and tested on the testing data
set.

5.3.1. Results of Hurst Exponent and Classification
Performance. Tables 1 and 2 display the confusion matrix
for female and male identification from emotional-based
EEG signals using Hur complexity index with kNN and
SVM classifiers, respectively, in which correct recognition is
shown on the diagonal and substitution errors are off-
diagonal.

In Table 1, the two diagonal cells show the percentage of
correct classification using kNN classifier. For example,

females are correctly classified with 58.3%; similarly, 100%
are correctly classified as males, whereas 41.7% of females are
incorrectly classified as males.

-e results show that kNN classifier can differentiate
females and males from emotional-based EEG signals with a
high accuracy of 83%. Moreover, Figure 9 illustrates the
ROC curve and the AUC value obtained from the investi-
gation of the Hur features.

In Table 2, the two diagonal cells show the percentage of
correct classification using SVM classifier. For example,
females are correctly classified with 80%; similarly, 90% are
correctly classified as males. Moreover, 20% of females are
incorrectly classified as males, whereas 10% of males are
incorrectly classified as females.

-e results show that SVM classifier can differentiate
females and males from emotional-based EEG signals with a
high accuracy of 86.7%. Moreover, Figure 10 illustrates the
ROC curve and the AUC value obtained from the investi-
gation of the Hur features.

5.3.2. Results of Amplitude-Aware Permutation Entropy and
Classification Performance. Tables 3 and 4 display the
confusion matrix for female and male identification from
emotional-based EEG signals using AAPE entropy index
with kNN and SVM classifiers, respectively, in which correct
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Table 1: Confusion matrix calculations for gender classification from emotional-based EEGs using Hurst exponents and kNN classifier.

Predicted
Actual

Gender Females (%) Males (%)

Hur Females 58.3 41.7
Males 0 100

Table 2: Confusion matrix calculations for gender classification from emotional-based EEGs using Hurst exponents and SVM classifier.

Predicted
Actual

Gender Females (%) Males (%)

Hur Females 80 20
Males 10 90
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Figure 9: ROC curve and the AUC values of gender classification from emotional-based EEGs using Hurst exponent features and kNN
classifier.
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recognition is shown on the diagonal and substitution errors
are off-diagonal.

In Table 3, the two diagonal cells show the percentage of
correct classification using kNN classifier. For example,
females are correctly classified with 100%; similarly, 77.8%
are correctly classified as males, whereas 22.2% of males are
incorrectly classified as females.

-e results show that kNN classifier can differentiate
females and males from emotional-based EEG signals with a
high accuracy of 86.7%. Moreover, Figure 11 shows the ROC
curve and the AUC value obtained from the investigation of
the AAPE features.

In Table 4, the two diagonal cells show the percentage of
correct classification using the SVM classifier. For example,

females are correctly classified with 90%; similarly, 90% are
correctly classified as males. Moreover, 10% of females are
incorrectly classified as males, whereas 10% of males are
incorrectly classified as females.

-e results show that the SVM classifier can differentiate
females and males from emotional-based EEG signals with a
high accuracy of 90%. Moreover, Figure 12 shows the ROC
curve and the AUC value obtained from the investigation of
the AAPE features.

5.3.3. Results of CompEn Hybrid Index and Classification
Performance. Tables 5and 6 display the confusion matrix for
female and male identification from emotional-based EEG
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Figure 10: ROC curve and the AUC values of gender classification from emotional-based EEGs using Hurst exponent features and SVM
classifier.

Table 3: Confusion matrix calculations for gender classification from emotional-based EEGs using amplitude-aware permutation entropy
and kNN classifier.

Predicted
Actual

Gender Females (%) Males (%)

AAPE Females 100 0
Males 22.2 77.8

Table 4: Confusion matrix calculations for gender classification from emotional-based EEGs using amplitude-aware permutation entropy
and SVM classifier.

Predicted
Actual

Gender Females (%) Males (%)

AAPE Females 90 10
Males 10 90
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signals using CompEn hybrid index with kNN and SVM
classifiers, respectively, in which correct recognition is shown
on the diagonal and substitution errors are off-diagonal.

From Table 5, the two diagonal cells show the percentage
of correct classification using kNN classifier. -e females are
correctly classified with 91.7%; similarly, 100% are correctly
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Figure 11: ROC curve and the AUC values of gender classification from emotional-based EEGs using amplitude-aware permutation
entropy and kNN classifier.
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Figure 12: ROC curve and the AUC values of gender classification from emotional-based EEGs using amplitude-aware permutation
entropy and SVM classifier.
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classified as males, whereas 8.3% of males are incorrectly
classified as females.

-e results show that females can be differentiated with a
high accuracy of 96.7% using kNN classifier to discriminate
females and males from emotional-based EEG signals.
Moreover, Figure 13 illustrates the ROC curve and the AUC
obtained from the investigation of the CompEn features; the
AUC was 0.96 and indicates that the proposed CompEn
hybrid index exhibits robust classification performance in
discriminating females and males from emotional-based
EEGs.

In Table 6, the two diagonal cells show the percentage of
correct classification using the SVM classifier. For example,
females are correctly classified with 100%; similarly, 100%
are correctly classified as males.

-e results show that females can be differentiated with a
high accuracy of 100% using SVM classifier as a benchmark
technique to discriminate females and males from emo-
tional-based EEG signals. Moreover, Figure 14 illustrates the
ROC curve and the AUC obtained from the investigation of
the CompEn features; the AUC was 1 and indicates that the
proposed CompEn hybrid index exhibits robust classifica-
tion performance in discriminating females and males from
emotional-based EEGs.

-erefore, the results showed that the proposed
WT CompEn framework significantly increases the classi-
fication accuracy. Indeed, the results emphasize the crucial
role played by the novel proposed WT CompEn framework
in the EEG signal processing chain, particularly in the
classification results.

Table 5: Confusion matrix calculations for gender classification from emotional-based EEGs using CompEn hybrid fusion index and kNN
classifier.

Predicted
Actual

Gender Females (%) Males (%)

CompEn Females 91.7 8.3
Males 0 100

Table 6: Confusion matrix calculations for gender classification from emotional-based EEGs using amplitude-aware permutation entropy
and SVM classifier.

Predicted
Actual

Gender Females (%) Males (%)

CompEn Females 100 0
Males 0 100
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Figure 13: ROC curve and the AUC values of gender classification from emotional-based EEGs using proposed CompEn hybrid features
and kNN classifier.
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Gender recognition framework using emotional-based
EEG signals has been performed under MATLAB R2021a on
a laptop with processor Intel Core i7-8550U CPU @
1.80GHz and 1.99GHz using 16.0GB RAM and 64-bit
operating system.

However, some limitations also need to be considered in
this study; for instance, the sample size was small and an
additional analysis with a large database should be per-
formed in the future. Despite this, the different attributes of
offline and online categorizations call for additional inves-
tigations based on real-time online experiments to validate
the results obtained. Such limitations notwithstanding, there
is an agreement between the results reported by this work
and those of other studies, which confirmed the ability of
EEG signals to identify the most gender discrepancies re-
garding anger, sadness, happiness, and neutral emotions and
those discrepancies were reflected in the EEG bands as well
[8, 17, 63, 77–79].

6. Conclusion

Conventional filters and WT techniques were used in the
preprocessing stage to denoise the EEG datasets of 10
subjects while watching four short emotional video clips
(anger, happiness, sadness, and neutral) of audiovisual
stimuli. In the second stage, Hur complexity feature and
AAPE irregularity parameter have been computed to in-
vestigate the gender changes of the emotional-based EEGs.
Moreover, ANOVA has been used to statistically examine
the individual performance of the used features to recognize
a gender-specific role in the brain-emotion relationship for
females and males during four short emotional video clips.

-en, the used features were combined as novel complexity
and irregularity features CompEn hybrid feature set towards
developing the novel WT CompEn framework as a core for
an automated gender recognition system on EEG for gender
identification. Finally, kNN and SVM classification tech-
niques have been used for automatic gender identification of
emotional-based EEG datasets. -e performances of these
classifiers were examined on Hur and AAPE individually
and on the CompEn hybrid feature set. Potentially, the novel
WT CompEn framework can be used to identify gender
differences from emotional-based EEG signals with high
classification results.

-is study has a primary limitation of the small sample
size examined during the experiment. -erefore, further
investigations will be carried out on a larger database in the
future. Like every work, this study has advantages and weak
points. However, gender detection has many advantages as
well as applications such as health care, human-computer
based interaction, knowing consumer preferences for online
retailers, and biometric. Our findings approve the effec-
tiveness of using complexity and irregularity features and
CompEn hybrid feature set towards developing the novel
WT CompEn framework as an automated gender recog-
nition system on EEG for gender identification. -is study
reveals useful insights about gender detection from emotion-
based EEG classification. More investigation can be per-
formed to describe the physiological meaning of the
extracted features. Other classification approaches can be
employed in further studies. In the future, researchers can
decrease the computation cost and processing time. It is
worth mentioning that the advantages of the current study
outweigh the drawbacks.
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“Entropy analysis of the EEG background activity in Alz-
heimer’s disease patients,” Physiological Measurement, vol. 27,
no. 3, pp. 241–253, 2006.

[28] N. Al-Qazzaz, S. Hamid Bin Mohd Ali, S. Ahmad, M. Islam,
and J. Escudero, “Automatic artifact removal in EEG of
normal and demented individuals using ICA-WT during

Journal of Healthcare Engineering 15



working memory tasks,” Sensors, vol. 17, no. 6, Article ID
1326, 2017.

[29] N. K. Al-Qazzaz, S. H. B. M. Ali, S. A. Ahmad, M. S. Islam, and
J. Escudero, “Discrimination of stroke-related mild cognitive
impairment and vascular dementia using EEG signal analy-
sis,” Medical, & Biological Engineering & Computing, vol. 56,
pp. 137–157, 2017.

[30] M. Murugappan, N. Ramachandran, and Y. Sazali, “Classi-
fication of human emotion from EEG using discrete wavelet
transform,” Journal of Biomedical Science and Engineering,
no. 4, pp. 390–396, 2010.

[31] R. Yuvaraj, M. Murugappan, N. Mohamed Ibrahim et al., “’s
disease during emotion processing,” Behavioral and Brain
Functions: BBF, vol. 10, no. 1, p. 12, 2014.

[32] N. K. Al-Qazzaz, S. H. B. Ali, S. A. Ahmad, K. Chellappan,
M. S. Islam, and J. Escudero, “Role of EEG as biomarker in the
early detection and classification of dementia,” Science World
Journal, vol. 2014, Article ID 906038, 16 pages, 2014.

[33] N. -ammasan, K. Moriyama, K.-i. Fukui, and M. Numao,
“Continuous music-emotion recognition based on electro-
encephalogram,” IEICE - Transactions on Info and Systems,
vol. E99.D, no. 4, pp. 1234–1241, 2016.

[34] O. Sourina, Y. Liu, and M. K. Nguyen, “Real-time EEG-based
emotion recognition for music therapy,” Journal on Multi-
modal User Interfaces, vol. 5, no. 1-2, pp. 27–35, 2012.

[35] N. K. Al-Qazzaz, S. Ali, M. S. Islam, S. A. Ahmad, and
J. Escudero, “EEG markers for early detection and charac-
terization of vascular dementia during working memory
tasks,” in Proceedings of the Biomedical Engineering and
Sciences (IECBES), 2016 IEEE EMBS Conference on,
pp. 347–351, IEEE, Kuala Lumpur, Malaysia, December 2016.

[36] N. K. Al-Qazzaz, S. H. M. Ali, S. Islam, S. A. Ahmad, and
J. Escudero, “EEG wavelet spectral analysis during a working
memory tasks in stroke-related mild cognitive impairment
patients,” in Proceedings of the International Conference for
Innovation in Biomedical Engineering and Life Sciences,
pp. 82–85, Springer, Putrajaya, Malaysia, December 2016.

[37] N. K. Al-Qazzaz, S. Ali, S. A. Ahmad, M. S. Islam, and
J. Escudero, “Entropy-based markers of EEG background
activity of stroke-related mild cognitive impairment and
vascular dementia patients,” in Proceedings of the 2nd In-
ternational Conference on Sensors Engineering and Electronics
Instrumental Advances, SEIA, Barcelona, Spain, September
2016.

[38] C. W. Yean, W. Khairunizam, M. I. Omar et al., “Emotional
states analyze from scaling properties of EEG signals using
hurst exponent for stroke and normal groups, Lecture Notes
in Mechanical Engineering,” in Proceedings of the Symposium
on Intelligent Manufacturing and Mechatronics, pp. 526–534,
Springer, 2019.

[39] O. Sourina and Y. Liu, “A fractal-based algorithm of emotion
recognition from EEG using arousal-valence model,” in
Proceedings of the International Conference on Bio-inspired
Systems and Signal Processing–BIOSIGNALS, pp. 209–214,
Rome, Italy, January 2011.

[40] W. Choong, W. Khairunizam, M. Omar et al., “Eeg-based
emotion assessment using detrended flunctuation analysis
(dfa),” Journal of Telecommunication, Electronic and Com-
puter Engineering, vol. 10, no. 1–13, pp. 105–109, 2018.

[41] B. Garcı́a-Mart́ınez, A. Mart́ınez-Rodrigo, R. Zangróniz
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