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Interactions betweenmuscle stem cells, mesenchymal-
derived cells and immune cells in muscle homeostasis,
regeneration and disease

J Farup1, L Madaro2,3, PL Puri2,3 and UR Mikkelsen*,1,4

Recent evidence has revealed the importance of reciprocal functional interactions between different types of mononuclear
cells in coordinating the repair of injured muscles. In particular, signals released from the inflammatory infiltrate and
from mesenchymal interstitial cells (also known as fibro-adipogenic progenitors (FAPs)) appear to instruct muscle stem
cells (satellite cells) to break quiescence, proliferate and differentiate. Interestingly, conditions that compromise the
functional integrity of this network can bias muscle repair toward pathological outcomes that are typically observed in chronic
muscular disorders, that is, fibrotic and fatty muscle degeneration as well as myofiber atrophy. In this review, we will
summarize the current knowledge on the regulation of this network in physiological and pathological conditions, and
anticipate the potential contribution of its cellular components to relatively unexplored conditions, such as aging and physical
exercise.
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Facts

� In skeletal muscle regenerative disorders (e.g., muscular
dystrophies) as well as age (sarcopenia)- or disease
(cachexia)-related decline in muscle mass and function,
there is an impairment of the regenerative potential, which
correlates with a progressive replacement of contractile
mass with fibrotic and adipose tissue.

� Mesenchymal-derived cells, such as Sca1+/PDGFRα+

fibro-adipogenic progenitors (FAPs), reside in the
interstitial space in skeletal muscle and can contribute
either to muscle regeneration or to fibrosis and fat
deposition.

� Functional interactions between muscle stem cells
(satellite cells), FAPs and cells from the inflammatory
infiltrate have recently been reported and appear to
determine the ability of skeletal muscle to regenerate or
undergo fibro-adipogenic degeneration.

� Ectopic adipose tissue in skeletal muscle is asso-
ciated with impaired insulin sensitivity and muscle
function.

Open Questions

� Are the interactions between satellite cells, FAPs and
inflammatory cells relevant in the pathogenesis of neuro-
muscular diseases?

� Are the interactions between satellite cells, FAPs and
inflammatory cells implicated in the functional decline of
muscles during cachexia and sarcopenia?

� Are the interactions between satellite cells, FAPs and
inflammatory cells implicated in the control of muscle
growth and homeostasis during exercise?

� Does an increased ectopic fat deposition in skeletal muscle,
from adipogenic differentiation of FAPs, alter the systemic
metabolic profile?

� Could the functional network between satellite cells,
FAPs and inflammatory cells provide potential targets
for pharmacological interventions toward promoting
compensatory regeneration in muscular disease, coun-
tering age-related or cachexia-mediated muscle atrophy,
or improving the response to exercise and the metabolic
profile?
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Reduction of muscle mass is typically observed at late stages
of many neuromuscular diseases, during aging, inactivity and
chronic systemic disorders (i.e., diabetes, cancer, rheumatoid
arthritis (RA) and chronic obstructive pulmonary disease
(COPD)) and is closely associated with impairment of
metabolic control collectively worsening the recovery of the
primary disease.1–4

The endogenous regenerative potential of skeletal muscle
provides a compensatory response against muscle loss;
however, this response cannot support continuous muscle
regeneration in chronic conditions. The regenerative capacity
of skeletal muscle relies on muscle stem cells (satellite cells
(SCs)), which proliferate in response to exercise to facilitate
muscle growth and remodeling, or following myotrauma to
repair the injured muscle.5–8 Recent works identified
mesenchymal progenitor cells termed fibro-adipogenic pro-
genitors (FAPs) that provide functional support to SCs;
however, these cells might also turn into a source of ectopic
fat deposition and fibrosis in skeletal muscle.9–15 Although
their role in humans is not fully understood, a cellular
population phenotypically and functionally similar to mouse
FAPs has been isolated from human muscle.14 FAP activity
is regulated by physical and functional interactions with
myofibers and SCs10 as well as cytokines released from
innate immune cells.11 Moreover, key regulatory intracellular
networks that control FAP lineage and function in regenerating
muscles of normal and dystrophic mice have recently been
reported.16

This review summarizes the current knowledge on the role
played by the cellular network composed by SCs, FAPs and
the inflammatory infiltrate (e.g., macrophages and eosino-
phils) during physiological and pathological perturbations of
muscle homeostasis.

Muscle Stem Cell, SC and FAP niche, Interaction with
Immune Cells and Contribution to Intramuscular Adipose
Tissue

Maintenance of muscle mass depends on the integrity of the
regenerative machinery, which is composed of SCs and other
mononucleated cell types,17–23 although, the direct contribu-
tion of SCs to myofiber hypertrophy and maintenance remains
controversial.19,24–26

SCs are located beneath the basal lamina – the anatomical
niche – and their activity is regulated by interactions with
cellular components of the 'functional niche' – FAPs, immune
as well as vessel-derived cells (Figures 1 and 2).
FAPs are non-myogenic, interstitial, mesenchymal progeni-

tors that can be isolated by virtue of the absence of SC surface
markers and by the expression of platelet-derived growth
factor receptor alpha (PDGFRα)+9 or stem cell antigen 1
(Sca1)+10 (Figure 3). When isolated from regenerating
muscles FAPs exhibit the remarkable property of promoting
SC cell proliferation and differentiation in co-culture.9,10

However, FAPs also possess an intrinsic adipogenic and
fibrogenic potential manifested in culture by exposure to
adipogenic conditions,9,10 indicating a potential contribution of
FAPs to fibrotic and adipose accumulation in diseased
muscles (Figure 2). In addition to formation of ectopic fat
and fibrous tissue, abnormal bone formation also occurs

under some circumstances in muscle, termed heterotopic
ossification,27 raising the possibility that the term FAPs does
not fully cover their potential roles.28

Two recent studies have identified both the anatomical niche
and paracrine cues from innate immune cells as signals that
regulate FAP lineage and activity.9,11 For instance, IL-4
released by eosinophils has been shown to be a key mediator
of FAP fate (Figure 2).11,15 Eosinophils provide an abundant
source of IL-4/IL-13 in different conditions.11,29–31 Chemotaxis
of eosinophils to skeletal muscle and release of IL-4/IL-13 is
observed in different conditions, such as muscle injury11 or
exercise,29 suggesting that substantial (i.e., chemically
induced muscle damage) or subtle (i.e., skeletal muscle
exercise) perturbations of skeletal muscle homeostasis may
both stimulate FAP-mediated activation of SCs. Inactivation of
IL-4-mediated signaling or eosinophil chemotaxis stimulates
the adipogenic differentiation of FAPs.11,15 Likewise, interac-
tions between FAPs and myofibers or SCs also regulate the
FAP-mediated adipogenesis.9,10 Finally, FAP activity is regu-
lated by growth factors (e.g., insulin-like growth factor 1
(IGF-1), hepatocyte growth factor (HGF)), follistatin and nitric
oxide (NO), which are secreted from FAPs themselves,
endothelial cells and M1/M2 macrophages11,32–38 (Figure 2).
In turn, FAPs provide a source of cytokines that regulate SC

activity. For instance, FAP-derived IL-6 (LM and PLP
unpublished data) activates the signal transducer and
activator of transcription 3 (STAT3) in SC.10,39–41 This pathway
is involved in SC activation and its dysregulation appears
implicated in age-dependent reduced regenerative capacity.42

FAPs also provide a substantial source of follistatin secretion,
with a tenfold higher follistatin expression in FAPs compared to
SCs.12 Follistatin is the physiological antagonist of the
negative regulator of muscle mass, myostatin12,43,44 and
besides preventingmyofiber atrophy, it may influencemyofiber
regenerative capacity through directly targeting the SCs.
Interestingly, in aged humans the reduced SC proliferation
following exercise is associated with increased co-localization
ofmyostatin in SCs of agedmuscle.21 Thus, the FAP-mediated
release of follistatin may play a role in SC regulation in rodent
as well as in human muscle.
These results suggest that FAPs from regenerating muscles

retain a functional bipotency, whose resolution is dependent
on anatomical factors (e.g., interactions with myofibers, other
cell types or extracellular matrix), systemic factors and
local concentrations of soluble cues (such as the signals
released by the niche). Dysfunctional FAP regulation by
alterations of these regulatory conditions may severely
deteriorate muscle health, affecting both muscle function
and metabolism.11,15,45,46 As for the latter, FAPs may
influence the metabolic activity of the muscle since ectopic
adipocytes are associated with impaired insulin sensitivity,
metabolic syndrome and type 2 diabetes (T2D).47–49 In this
regard, it is intriguing to speculate as to what extent systemic
circulating factors may alter FAP differentiation, including
high glucose conditions shown to induce adipogenesis in
muscle-derived stem cells.50 Moreover, deregulated FAP
activity can contribute to the increased intramuscular
adipose tissue (IMAT) observed in aged muscles51

and in patients with RA,52 COPD53 and cancer
cachexia (Figure 5).54 Thus, FAPs may hold a dual role in
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which they provide important paracrine stimuli to support SC
function in healthy muscle, while contributing to ectopic
adipose accumulation in pathological conditions48,55,56

(Figures 2 and 5), thereby leading to reduced insulin
sensitivity48,57 and decreased muscle function.58,59

Role of SCs, FAPs and immune cells in neuromuscular
disorders. Most neuromuscular disorders are initially
alleviated by the regenerative potential of skeletal muscles.
For instance, in Duchenne muscular dystrophy (DMD),
compensatory regeneration at earlier stages of disease tends
to counter the degeneration of dystrophin-deficient myofibers.
While, at least in mouse models of muscular dystrophy, this
reactive regeneration resembles muscle repair following
injury, as the disease progresses the asynchronous waves
of regeneration and the changes in niche caused by chronic
regeneration eventually bias the repair toward pathogenic
fibrosis and fat deposition.60,61

Optimal regeneration entails a sequence of events that
ensures temporally coordinated interactions between SCs,
FAPs and cells of the immune system. An initial activation of
resident immune cells and the inflammatory infiltrate,62 is
typically followed by the sequential activation of FAPs and
SCs.63,64 Progressive impairment of the interplay between
SCs, FAPs and immune system is emerging as a key event in
switching regeneration from compensatory to pathogenic.65,66

In particular, FAPs appear to play a central role in this
switch.59,67

Recent studies have revealed that FAPs from dystrophic
muscles of mdx mice – the DMD mouse model – retain a
phenotypic and functional bipotency, as they can either
support compensatory regeneration at early stages of
disease progression, or mediate fibrotic and fat
deposition (Figure 4).12,16 This alternative phenotype is
regulated at the epigenetic level by a network formed by
muscle-specific microRNA (the myomiRs miR-1.2, miR-133

Figure 1 (a) Schematic illustration of localization of satellite cell, FAP, macrophage and eosinophil in relation to muscle fibers and capillaries. Compare with image in b. Sizes
of individual cells are not drawn to scale. (b) Immunohistochemical staining of human muscle biopsy cross-section with antibodies against Pax7 (brown), laminin (green) and
MHCI (red). Nuclei are stained blue with DAPI

Fibro-adipogenic progenitors in skeletal muscle
J Farup et al

3

Cell Death and Disease



and miR-206) that target key subunits of the SWI/SNF
chromatin-remodeling complex. In particular, expression of
myomiRs correlates with the ability of FAPs to support SC-
mediated myogenesis and to adopt a myogenic phenotype at
the expense of the fibro-adipogenic lineage.16 This outcome is
typical of compensatory regeneration at early stages of
disease progression and likely reflects the action of cues from
a regeneration-conducive SC niche that resolve FAP bipo-
tency into the pro-myogenic phenotype. Saccone et al.16

showed that myomiRs selectively target two variants of the
BAF60 subunit of SWI/SNF complex (BAF60A and B), which
activate chromatin remodeling at fibrotic and adipogenic loci.
This leads to the selection of the alternative variant – BAF60C
– which promotes chromatin remodeling at muscle loci68 and
mediates FAP commitment to the myogenic lineage16

(Figure 4).
Importantly, this intracellular network is controlled by

histone deacetylases (HDACs),69 whose activity is consti-
tutively active in DMD muscles.70 In normal conditions
(i.e., physiological regeneration) reversible HDAC-mediated
repression of myomiR allows the expression of BAF60A
and B variants and supports maintenance of bipotency in
FAPs. In dystrophic muscles, constitutive HDAC activity
represses BAF60C and myomiR and favors the expression
of BAF60A and B, which direct the fibro-adipogenic
phenotype of FAPs. Interestingly, this dynamic HDAC-
mediated regulation of phenotypic and functional bipotency
of FAPs is observed at early, but not late stages of disease
progression in mdx mice, and accounts for the restriction of
the beneficial effects of HDAC inhibitors at early but not late
stages of disease.12

Future studies should establish how FAP bipotency, and
relative resolution, is regulated by cues from the regenerative
microenvironment and should elucidate the signals that
controls reciprocal interactions between FAPs, immune

system and SCs within physiological and pathological
contexts. For instance, it would be interesting to evaluate the
contribution of FAPs to the excessive levels of transforming
growth factor-β2 (TGFβ2), which are induced by elevated
canonical Wnt signaling in dystrophic muscles and affect the
behavior of SCs.71

As the human counterpart of FAPs has been identified as
PDGFRα+ cells in healthy and diseased muscles,14 the
functional and molecular characterization of human FAPs
can provide novel interesting targets for the development of
pharmacological treatment of muscular diseases.

Role of SCs, FAPs and immune cells during ageing and
metabolic dysfunctions. Aging is associated with an
accelerated loss of skeletal muscle mass (sarcopenia)
and with a reduced regenerative capacity of the muscu-
lature, leading to a loss of strength and function.72–74

In rodents, the aging muscle and SC niche has been shown
to disrupt SC function and myofiber regenerative
capacity.75–78 Local changes in the SC milieu include a
number of events that can alter signaling in SCs. For
instance, constitutively elevated activation of p38 kinase,
STAT3 activity and reduced Notch signaling has been
observed in aged SCs.46,47,79–82 Likewise, increased TGFβ
activity and induction of the cyclin-dependent kinase
inhibitors associated to inhibition of cellular proliferation,
such as p15, p16 and p21, have been reported as potential
triggers of SC senescence.79–81

The events described above likely depend on extensive
changes in the SC niche, including deregulated activity and
number of FAPs or additional cellular components, such as
fibroblasts and adipocytes,74 that originate from FAP differ-
entiation. In a mouse model of young and old mice sharing the
circulatory system (heterochronic parabiosis model) aged
SCs were rejuvenated by exposure to a young systemic
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environment suggesting that the tissue-specific stem cells
retain their proliferative potential, but that the aged systemic
environment prevents full activation.76 These findings have
been sparsely investigated by in vitro studies on human
primary cells, leading to contradictory results.80,82 Age-
induced changes in the systemic milieu include reduced local
capillary network and endothelial cell apoptosis/senescence,
which can lead to reduced secretion of SC stimulatory factors,
impaired chemotaxis of immune cells and collectively a more
negative balance between positive and negative regulators of

SC activity. Recent evidence points to the importance of
systemic concentrations of the circulating proteins such as
oxytocin83 or growth differentiation factor 11 (GDF11),84

although it is currently controversial whether GDF11 levels
decrease or increasewith aging, aswell as the relative efficacy
of GDF11 supplementation in countering the functional
decline of aged muscle and SCs.85

Interestingly, sarcopenia in rodents is not further acceler-
ated during conditional ablation of Pax7+ SCs.25 However,
despite the lack of direct effects on muscle fiber size, ablation

Figure 3 Mononuclear cell isolation procedure from skeletal muscle composed of mechanical and enzymatic digestion, filtration, blocking, antigen labeling and finally multiple
parameter FACS to sort out selected cell populations. (A) Representative plots showing FACS strategy to sort lineage-negative (Ter119− CD45− CD31−) SCs (α7 integrin+) and
FAPs (Sca1+) as well as lineage-positive macrophages (MPs, CD11b+ F480+) from skeletal muscle of healthy (a) and mdx (b) mice. (B) Representative images of adipogenic (Oil
Red O (a)) and fibrogenic (α-smooth muscle actin (b)) phenotype of FAPs during differentiation
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of Pax7+ cells during sarcopenia generated increased levels of
collagen deposition, preferentially in fast muscles,25 which
could derive from fibrogenic differentiation of FAPs. In human
skeletal muscle in vivo the SC content in type II muscle fibers is
selectively reduced with aging, whereas the number of SCs in
type I fibers remains similar to young individuals, following the
pattern of a selective atrophy of type II muscle fibers.86,87

Thus, while SC content does decrease during sarcopenia in
both rodent and human skeletal muscle, it is not yet entirely
defined to what extent the decrease in SC content can
account for muscle atrophy or vice versa. Although this
selective deterioration of type II fibers and their SC content in
human skeletal muscle is partly reversible by resistance
training,87,89 the responsiveness of SCs to a single bout of
resistance exercise is reduced with aging.21,88 Even lifelong
(endurance) exercise does not seem to prevent the decre-
ment in type II fiber size or SC content compared to type I
fibers.90 However, the amount of adipose infiltration in the old
untrained muscle was larger than in the trained groups
(unpublished observation, URM). It is therefore intriguing to
speculate that changes in the muscle microenvironment or
systemic environment related to inactivity or ageing can
condition FAP phenotype and ability to release important
paracrine cues to SCs and myofibers to support regeneration
and muscle growth.
In addition to muscle atrophy, inactivity and ageing are

commonly associated with increased adiposity, together
leading to metabolic dysfunctions such as dyslipidemia,
decreased insulin sensitivity, hyperglycemia and an increased
risk of developing diabetes mellitus (i.e., T2D). Since skeletal
muscle is the most abundant tissue of the body for glucose
disposal, muscle sensitivity to insulin action is essential in
development of whole body insulin resistance and
hyperglycemia.91 Moreover, patients with T2D show a greater
decline in muscle mass, muscle strength and functional
capacity with aging.92 A common observation in conditions
associated with impaired skeletal muscle insulin sensitivity is
accumulation of ectopic lipids within (intracellular) and
between (extracellular) skeletal muscle fibers48,56,57,93,94

(as illustrated in Figure 1), which is linked to reduced insulin
sensitivity48,57,94 and decreased muscle function.58 Paradoxi-
cally, endurance athletes also display an elevated level of

intracellular lipid (termed athletes-paradox), presumably
serving as energy source during physical activity,95 although
they also exhibit increased insulin sensitivity, as compared
to healthy untrained subjects.96,97 In contrast, the IMAT
(i.e., adipose tissue within a muscle but located outside
the myofiber) is to our knowledge not increased in athletes
and is associated with reduced insulin sensitivity in both
healthy47 and obese48 subjects as well as in acromegaly
patients.49 Although the origin of IMAT is not yet known,56

murine muscle-derived stem cells have been shown to
undergo adipogenic differentiation upon exposure to
elevated glucose levels in vitro,50 providing a potential
link between adipocyte accumulation and the systemic
milieu. Moreover, while previous work proposed that
IMAT can originate from trans-differentiation of myogenic
stem cells,50,56,98 increasing evidence suggests that
FAPs could constitute the mesenchymal stem cells respon-
sible for IMAT accumulation in skeletal muscle.12,14,99,100

In addition, FAP-derived adipocytes may have reduced
insulin sensitivity compared to conventional adipocytes,
suggesting that accumulation of FAP-derived adipocytes
may contribute to a compromised peripheral insulin
sensitivity.101

Presently, the role of FAPs and their interplay with SCs,
eosinophils or macrophages in relation to development of T2D
is unknown. However, dysfunctional regulation of FAPs
mediated by changes in IL-4 signaling may influence skeletal
muscle homeostasis. Interestingly, IL-4 levels have been
reported to be positively associated with insulin sensitivity102

and IL-4 promoter polymorphisms have been associated with
T2D.103 Moreover, IL-4-mediated signaling may prevent
adipogenesis in muscle and adipose tissue.102,104 In white
adipose tissue, IL-4 released from tissue-resident eosinophils
regulates the presence of M2 macrophages,31 which are
positively associated with insulin sensitivity.105 When geneti-
cally depleting IL-4 secreting eosinophils the content of the M2
macrophage phenotype in adipose tissue is reduced and this
is associated with a substantial decrease in glucose tolerance
and insulin sensitivity.31 These changes are less explored in
humans, however, increased expression of the inflammatory
macrophage phenotype marker; CD11c in skeletal muscle of
T2D patients has been reported.106

Figure 4 HDACs control an epigenetic network that determines FAP ability to support either regeneration or fibro-adipogenic degeneration. Inhibition of HDAC induced an
upregulation of BAF60c that is engaged in the SWI/SNF complex leading to an increase of the myomiR expression and ultimately promoting a pro-myogenic phenotype in FAPs
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Reduced insulin sensitivity is often associated with aging107

and in chronic diseases that cause cachexia.108,109 Patients
suffering from cachexia or patients affected by metabolic
syndrome may display elevated levels of glucocorticoids110

that may influence IL-4 secretion. Interestingly, elevated
glucocorticoid levels (such as those reached upon dexa-
methasone treatment) in mice increase the adipogenic
differentiation of FAPs, which is otherwise suppressed through
IL-4-mediated signaling.15 The effect of dexamethasone
treatment on FAP adipogenesis may relate to suppression of
eosinophil release of IL-4111 as suggested by Dong et al.15

Thus, elevated levels of glucocorticoids during disease (either
as medical treatment or endocrine release) could increase
adipocyte accumulation in skeletal muscle through adipogenic
differentiation of FAPs and hereby negatively impact the
insulin sensitivity of skeletal muscle.47,48 Given that steroids
are used in the treatment of many muscular disorders
(including DMD), the interactions between glucocorticoids,
FAP, SCs and cells of the immune system deserve future
investigation.

Role of SCs, FAPs and immune cells in cachexia.
Cachexia consists of an accelerated muscle loss that is
associated with chronic diseases, complicates their recovery
and is an independent predictor of morbidity and
mortality.112–114 Skeletal muscle wasting is a common
phenomenon in cancer patients,115–119 and cancer-related
muscle loss affects up to 80% of patients with advanced
cancer, leading to poorer prognosis, reduced treatment
response and increased risk of complications during surgery
and chemotherapy. Ultimately, cachexia accounts for 420%
of all cancer-related deaths.120–124

Since both SCs and FAPs may influence muscle home-
ostasis and growth, their interactions can be implicated in
cachexia. In rodents, cancer cachexia is associated with
muscle damage and deregulation of Pax7 expression in SCs
and interstitial cells, through increased NF-κB activity,125

suggesting that NF-κB may contribute to muscle wasting in
cancer.125 In muscle biopsies from pancreatic cancer patients
with accelerated weight loss, an increased number of Pax7+

cells was observed, indicating that cancer cachexia is
associated with an expansion of the myogenic precursor
pool.125 Expansion of the Sca1+ cell population that resemble
mouse FAPs, was also observed in cachectic muscles from
tumor-bearing mice. Interestingly, this Sca1+ population
preferentially adopt the myogenic lineage under the influence
of tumor environment, by expressing the SC-specific tran-
scription factor Pax7, which is induced by serum factors from
cachectic mice and patients, in an NF-κB-dependent manner;
however, completion of differentiation was also inhibited by the
persistent expression of Pax7.125 Restoring the myogenic
potential of these cells by Pax7 downregulation or by ectopic
expression of MyoD, promoted cell differentiation and fiber
fusion and reversed muscle wasting.125 These results reiter-
ate the concept that Sca1+ cells have a latent myogenic
potential that can be induced by environmental signals, for
example, the elevated levels of cytokines from systemic
inflammation. Since, Pax7 expression is regulated by
inflammation-induced signals,126 these data reveal again the
important interactions between the immune system and FAPs

in the control of muscle regeneration. However, it is important
to note that Sca1+ cells might only account for a subpopulation
of FAPs, or even a distinct population of cells induced in tumor-
bearing conditions. A recent study not only identified stromal
cells by expression of fibroblast activation protein α (but also
uniformly expressing FAP markers such as CD90, PDGFRα
and Sca1), and observed a depletion of these stromal cells to
be underlying the cancer-induced cachexia.127 Specifically,
these stromal cells appeared to maintain muscle size through
paracrine secretion of follistatin, which in turn reduced the
muscle expression of ubiquitin ligases such as atrogin-1 and
muscle RING-finger 1 (MuRF1) involved in muscle protein
breakdown.127 It remains to be investigated if factors released
directly by the tumor, alterations in immune cell content/
function or other mechanisms may underlie the depletion of
the stromal cells in skeletal muscle during cancer cachexia. If
these stromal cells are indeed FAPs, an alternative explana-
tion for the cell content depletion during cachexia may relate to
an increased adipogenic differentiation of the FAPs. In this
regard the progression of cachexia has been associated with
an increased amount of intramuscular lipid droplets,54 and
although the source of these is not identified they could
originate from FAPs.
Multiple chronic diseases are also associated with elevated

systemic inflammation including RA.128–133 In RA patients,
loss of muscle strength is associated with RA duration rather
than with chronological age, in contrast to the decline with age
observed in the general population.134 This indicates a
disease-related effect on muscle strength that surpasses the
effect of aging. Increased IMAT, potentially originating from
FAPs, is observed in the muscle of RA patients and this
reduction in muscle density associates with greater joint
destruction.52 Furthermore, type II fiber atrophy in RA patients
has been reported,135 but compared to patients with osteoar-
thritis the absolute numbers of SC136 and their in vitro
regenerative potential137 were not different in RA patients.
COPD is another frequent cause of disease-related

cachexia and premature death worldwide.138 COPD is often
accompanied by pronounced muscle wasting (atrophy of both
type I and II fibers has been reported139) and metabolic
dysfunction.138,140 Notably, the loss of muscle mass is an
independent predictor of mortality in COPD patients.1,112 The
alterations in immune cell function and the chronic inflamma-
tory condition is believed to be a substantial contributor to the
loss of muscle mass along with an impaired regenerative
capacity and cellular apoptosis.138,140 SC content is not
altered in themuscles of COPD patients compared to controls;
however, primary SCs isolated from COPD patients displayed
a delayed activation in culture and decreased expression of
myosin heavy chain expression during myotube formation
compared to controls.141 Interestingly, the increased number
of central nuclei observed in the muscles of COPD patients
with preserved muscle mass, as compared to those who lost
muscle mass,141,142 suggests that the ability of the muscle to
regenerate could attenuate the extent of COPD-related
cachexia.
Collectively, the potential role for SC and FAPs in relation to

muscle loss due to chronic inflammatory diseases is a matter
of current and future investigations (Figure 5).
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Exercise as a Strategy to Improve Muscle Health –

Stimulation of SC and FAPs by Exercise

Skeletal muscle is a highly plastic tissue that adapts to stimuli,
by proportionally adjusting mass and strength (resistance
training) or aerobic capacity (endurance training) in response
to exercise. Both acute and prolonged resistance exercise
stimulates the proliferation of SCs in healthy subjects,143–147

and even non-hypertrophying endurance exercise can induce
proliferation of at least some SC populations.7 Although the
potential impact of different training modalities on the immune-
FAP-SC network are described separately below, it is
important to note some remarkable differences, and the
relative impact on the network, between physical exercise and
the pathological conditions described in the previous para-
graphs. For instance, in most pathological conditions FAPs are
activated by physical injury, which triggers extensive changes
in the microenvironment, (e.g., myofiber degeneration in
muscular dystrophies) or by elevated systemic concentration
of inflammatory cytokines (e.g., cachexia); by contrast, during
training most of these signals are absent – except for the case
of strenuous exercise – and the predominant changes
occurring in exercised muscles are of metabolic (redox
alterations) or biomechanical (contraction/relaxation cycles)
nature. As FAPs occupy an interstitial position they are a great
candidate as cell types that sense these changes and transmit
them to SCs via specific cues. In this regard, recent work
reported that SIRT1, a NAD(+)-dependent HDAC known as
redox and nutrient sensor, promotes the metabolic switch from
fatty acid oxidation to glycolysis during the SC transition from
quiescence to proliferation.148 Moreover, SIRT1 regulates
autophagic flux in SCs to cope with the high bioenergetic
demands during the activation process.149 Finally, SIRT1

connects changes in SC metabolism with changes in the
transcriptional machinery towardmyogenic commitment of the
SC.148 This reprogramming of cellular metabolism decreases
intracellular NAD(+) levels and the activity of the HDACSIRT1,
leading to elevated H4K16 acetylation and activation of
muscle gene transcription. Future studies should establish
whether SIRT1 is activated by FAP-derived signals.

Resistance and Endurance Training, Muscle Hypertrophy
and Insulin Sensitivity

Although the role of SCs during myofiber regeneration has
been extensively studied and reviewed,8,22,23,150–153 it is
debated whether SCs possess a role in myofiber hypertrophy
in the adult muscle.154,155 In earlier studies, irradiation was
used to ablate SC activity, whereby overload induced
hypertrophy in rodents was prevented,154,156,157 indicating a
direct linkage between SCs and myofiber hypertrophy.
However, a later study opposes this contention by showing
an intact hypertrophic response in myofibers of SC-depleted
muscles in rodents.26 Although these findings from conditional
knockout mice seem to reject the hypothesis that SCs are
essential for hypertrophy, more recent results indicate that the
lack of SCs can attenuate myofiber hypertrophy in the later
phases of an overload period.19 The latter is supported by
other studies suggesting an important role for SC in myofiber
growth and myonuclei accretion.24,158,159 In agreement,
IGF-1, which can accentuate resistance training-induced
muscle hypertrophy,160 may in part act through increased
proliferation and differentiation of SC to support myofiber
growth.161 This is supported by the increased expression of
IGF-1 splice variants in human SCs following eccentric
resistance exercise.162

Figure 5 Schematic illustration showing potential role of FAP-SC and their interplay in muscle: atrophy (as observed with aging and disease), hypertrophy and insulin
sensitivity. IL-4, interleukin-4; IMAT, intramuscular adipose tissue; T2D, type 2 diabetes
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In several human studies, robust increases in the number of
SCs has been shown both acutely21,163,164 and following
prolonged 143,144,165–168 resistance exercise in both young
and old humans.87–89 In contrast, SC proliferation following
resistance exercise may be impaired during ageing and in
patients affected by chronic muscular disorders, with current
evidence suggesting that this impairment originates from
alterations in cues from the SC niche or the systemic
environment.20,21,76,83,88 However, long-term resistance train-
ing can reverse the SC distribution in elderly muscle toward
that of young muscle.169 Knowledge about the regulation of
FAPs in relation to resistance training and hypertrophy is
lacking, but in rodents the involvement of a SC-FAP interplay in
successful muscle regeneration after muscle damage has
been convincingly demonstrated.9,11,28 Although damage/
regeneration is not a prerequisite for resistance training
adaptations,170 the rodent findings combined with human SC
data suggest that SC-FAP interplay may have a central role in
resistance training adaptations (Figure 5). Furthermore,
detraining in elderly is accompanied by an increased amount
of muscle fat infiltration which can be reversed by resistance
training,171 and reducing ectopic fat accumulation may
enhance myofiber anabolic signaling.46 Collectively, this area
awaits further investigation in humans; however, the present
body of data indicates that FAPs may be regulated with
resistance exercise-induced hypertrophy. One mechanism
may relate to the recently identified circulating hormone
Meteorin like, which is secreted from skeletal muscle upon
exercise and triggers IL-4, and IL-13 production by eosinophils
in adipose tissue. These cytokines cause alternative activation
of M2 macrophages29,172 as shown in Figure 2, and are also
involved in the regulation of FAP activity, further providing a
tentative link between exercise, immune cell activation and
FAP regulation.
Endurance exercise increases insulin sensitivity and glu-

cose tolerance,173–176 for example, via increased protein
expression of insulin receptor substrate-1 (IRS-1) and
GLUT4176,177 in skeletal muscle. Although increased energy
expenditure through endurance training reduces accumula-
tion of adipose tissue, insulin sensitivity and glucose tolerance
are improved independent of weight loss.178 The SC response
to endurance training has only been evaluated in a few human
studies, and increased SC numbers are reported in
most,179–181 but not all182 of these, mostly in the absence of
muscle fiber hypertrophy. Recently, hypertrophy of both type I
and IIa fibers was observed following 12 weeks of aerobic
training, with a concomitant increase in SC number only in
type I fibers.181 Furthermore, non-hypertrophying endurance
exercise can induce proliferation of SC populations in hybrid
fibers (type I/II) without effect on the SC content of type I or II
fibers.7 Generally, these data indicate a role for SC prolifera-
tion and turnover in muscle maintenance even in the absence
of fiber hypertrophy, which is in line with the suggested role for
SC-FAP interplay in regulation of a healthy muscle.

Perspectives and Conclusions

FAPs are emerging as a 'cellular filter' between external
perturbations (either local or systemic changes in physical,
metabolic and inflammatory cues) and the effectors of the

muscle regeneration machinery – the SC. Depending on the
nature of the perturbations FAPs appear to adopt specific
phenotypic and functional properties indicating a highly
heterogeneous cell population.183 Thus, FAP heterogeneity
and the dynamic transition from a physiological to compen-
satory or pathological subpopulation appears as a key issue
to investigate in future studies. In particular, the anatomical
derivation of FAPs might reveal important differences.
For instance, in the presence of physical insults, the
ensuing vessel injury or transient ischemia might direct a
composition of FAPs that is phenotypically and functionally
different from cells derived by the expansion of resident
interstitial FAPs.
Overall, the elucidation of the interplay between SCs, FAPs,

their niche and immune cells might have an impact not only in
the discovery of interventions toward restoringmuscle function
and correcting metabolic dysregulation in pathological condi-
tions, but also to improve muscle anabolism and insulin
sensitivity, which commonly decreases during aging, inactivity
and certain disease states.
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