
ORIGINAL ARTICLE

The Virtual Anemia Trial: An Assessment of Model-Based
In Silico Clinical Trials of Anemia Treatment Algorithms
in Patients With Hemodialysis

Doris H. Fuertinger1,2*, Alice Topping1, Franz Kappel3, Stephan Thijssen1 and Peter Kotanko1,4

In silico approaches have been proposed as a novel strategy to increase the repertoire of clinical trial designs. Realistic
simulations of clinical trials can provide valuable information regarding safety and limitations of treatment protocols and have
been shown to assist in the cost-effective planning of clinical studies. In this report, we present a blueprint for the stepwise
integration of internal, external, and ecological validity considerations in virtual clinical trials (VCTs). We exemplify this
approach in the context of a model-based in silico clinical trial aimed at anemia treatment in patients undergoing
hemodialysis (HD). Hemoglobin levels and subsequent anemia treatment were simulated on a per patient level over the course
of a year and compared to real-life clinical data of 79,426 patients undergoing HD. The novel strategies presented here, aimed
to improve external and ecological validity of a VCT, significantly increased the predictive power of the discussed in silico
trial.
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE

TOPIC?
� In silico clinical trials have been proposed over the

last years as a novel strategy to increase the repertoire

of trial designs and have been acknowledged as a use-

ful tool by the scientific community, industrial research

and development departments, as well as by regulatory

agencies.
WHAT QUESTION DID THIS STUDY ADDRESS?
� The design of empirical clinical trials is guided by the

principles of internal, external, and ecological validity.

We explored different ways to set up in silico clinical tri-

als that specifically address these criteria and quanti-

fied associated improvements in prediction quality.
WHAT DOES THIS STUDY ADD TO OUR

KNOWLEDGE?
� This study outlines a methodology to integrate inter-

nal, external, and ecological validity considerations in

VCT designs. It further demonstrates the feasibility of

VCTs in patients undergoing HD, a population plagued
by excessive morbidity and mortality and high costs.
Second, we have shown the importance of adding compo-
nents that reflect the ecosystem of care (the stochastic
modules) to VCTs. Third, we have shown that personal-
ized avatars are superior to models that utilize Monte
Carlo simulations; this is an important insight that may
help to guide future research.
HOW MIGHT THIS CHANGE DRUG DISCOVERY,
DEVELOPMENT, AND/OR THERAPEUTICS?
� We believe that the presented results have the
potential to serve as a blueprint for future trial designs.
Of note, our setup enables VCTs of a range of ESAs
without the immediate need for clinical trials, thus sup-
porting the development of novel ESAs. Our large avatar
population may prove very useful for the development of
anemia treatment algorithms in clinically challenging HD
subpopulations.

Randomized controlled trials (RCTs) are assigned the high-

est level of evidence for therapeutic studies, and it is

beyond doubt that RCTs have contributed immensely to the

medical progress and have advanced patient care. By ran-

domly allocating subjects to two or more treatment groups,

RCTs randomize confounding factors. Consequently, a well-

designed and properly conducted RCT will give unbiased

results and have little risk of systematic errors (i.e., have a

high internal validity). However, RCTs may face weak-

nesses that limit their generalizability, because RCT partici-

pants may not be representative of the wider population of

interest (i.e., have poor external validity). In addition, RCT

results must also generalize to the real-life settings in which

the trial results will later be applied (i.e., should have a high

ecological validity). Other frequently noted shortcomings

are the need to recruit a sufficiently large number of

patients to conduct a properly powered study, associated

high costs, the need to establish a sophisticated trial infra-

structure, and the long duration from study inception to

completion. With multiple treatments in the pipeline, phar-

maceutical companies and academic institutions compete

for a limited pool of patients. In oncology, it has been
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estimated that only 20% of patients are eligible for clinical
trials, because many patients are excluded due to poor per-
formance status or inability to meet specific eligibility
requirements. This limitation has been illustrated by a study
showing that filling all pancreatic-cancer trials in the United
States in 2011 would have required the participation of
83% of patients with resectable pancreatic ductal adenocar-
cinoma,1 yet, only 5% of patients volunteer for trials.2 Other
areas of medicine face comparable challenges: in a recent
hemodialysis (HD) RCT sponsored by the National Insti-
tutes of Health, of 6,276 screened patients only 245 (3.9%)
were eventually randomized.3

To mitigate and overcome this challenges, alternative trial
strategies have been developed, such as adaptive design
clinical trials,4 and, in 2010, the US Food and Drug Admin-
istration released an adaptive trial design guidance docu-
ment for the industry. Despite these innovations, there is a
continued need to advance the field. Specifically, in silico
(i.e., performed entirely on a computer) trials have been
proposed as a way to increase the repertoire of trial
designs.5–8 Such virtual trials have been acknowledged as
a useful tool by the scientific community9–15 as well as by
regulatory agencies16 and questions of the design of clinical
trial simulations have been previously addressed by multi-
ple authors (see refs. 17,18).

RCTs are designed with the intent to provide internal,
external, and ecological validity. In this report, we demon-
strate step-by-step how these validity considerations can be
integrated in the design of virtual clinical trials (VCTs). We
exemplify this approach in the context of a model-based in
silico clinical trial aimed at anemia treatment in patients
with chronic HD, the Virtual Anemia Trial (VIAT). Specifi-
cally, we pursue a stepwise strategy that subsequently
addresses the topics of internal, external, and ecological
validity to improve the predictive power of the VIAT.

Physiology-based mechanistic models are the foundation
of many predictive biosimulations. The core of the VIAT is a
comprehensive physiology-based mathematical model describ-
ing the development of red blood cells (RBCs; erythropoiesis)
and the effect of erythropoiesis stimulating agents (ESAs) on
this process.19 One strength of well-designed and validated
physiology-based mathematical models is their intrinsic internal
validity as the causal relation between an intervention and the
corresponding outcome, is clearly defined and easily compre-
hensible. Further, by definition, a deterministic model design,
as the one used in the VIAT, generates reproducible results so
that a specific intervention always results in the same outcome.

To date, most in silico trials utilize Monte Carlo type sam-
pling (and resampling) techniques to create virtual patient
populations.20–26 Although conceptually attractive, Monte
Carlo simulations fall short in representing the (patho)physi-
ology of an actual individual subject, because, in general,
only population-derived estimates of patient characteristics
are represented. We overcame this limitation by applying
advanced mathematical and computational techniques to
create a large population of in silico representations
(“avatars”) of real patients undergoing HD receiving ESA
treatment for anemia. Hence, a cornerstone of our VIAT is
the integration of individual real-life clinical patient data in
the modeling process to improve external validity. To that

end, we randomly sampled almost 7,000 patients undergoing
HD from a nationally representative US HD population com-
prising over 37,000 individuals. In the next step, we created
one avatar for each sampled patient. Finally, stochastic
“clinic modules” (informed by real-life operational data) were
designed to create an in silico test environment that reflects
operational processes and challenges in dialysis clinics.
These modules included information on laboratory schedules
and processing times, patient nonadherence, and hospital-
izations, among others. By integrating such clinic modules
into the in silico trial simulations, we enhanced the ecological
validity. Finally, we present results on a VIAT conducted in
these avatars utilizing the clinic modules with the eventual
goal to improve anemia therapy for real patients.

METHODS

A comprehensive physiology-based mathematical model of
erythropoiesis was used as the basis for in silico simula-
tions of an anemia treatment protocol. Different approaches
to conduct a VCT were tested and compared with retro-
spective clinical data. The hemoglobin (Hgb) levels and the
subsequent anemia treatment were simulated on a patient
level for the course of an entire year in all in silico trials.
Results of VCTs were compared to data from 79,426
patients undergoing HD in Fresenius Kidney Care (FKC)
clinics between September 2015 and August 2016. In these
clinics, use of the tested anemia treatment protocol is part
of standard care.

Population and data eligibility
Patients were included in the analysis if they were above
18 years of age, received at least one administration of
methoxy polyethylene glycol-epoetin beta (Mircera, Roche,
Basel, Switzerland) between September 2015 and August
2016, and had clinical routine laboratory data for at least 4
months during the considered time period. Patients were
censored when they received any other ESA after their first
administration of Mircera. Further, patients with Interna-
tional Classification of Disease, 9th revision codes in their
electronic health record that indicated an increased risk for
bleedings (e.g., patients with gastric ulcers, esophageal
varices, colon polyps, etc.) were excluded.

Virtual clinical trial
An anemia treatment protocol was implemented in silico, as
used in a large number of FKC clinics, in which the ESA
was administered by the caregivers in the dialysis facility.
Per protocol, ESA dosing schedules followed biweekly or
monthly administration patterns, in general. The Hgb level
was measured weekly and ESA doses were adjusted
monthly or, under certain circumstances, biweekly. The Hgb
laboratory schedules and dose calculations were imple-
mented in silico, as stated in the anemia treatment protocol.
Clinical modules were predefined based on knowledge of
the operational process and medical requirements and
designed to reflect important parts of the clinical routine
that influenced how anemia therapy was conducted. The
stochastic modules were developed in a combination of “art
and science” based on published literature, laboratory
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performance information, and clinical experience of the phy-

sicians on the team. The dialysis facility module utilized

data on missed treatments from the literature27; current

rates were confirmed with the dialysis provider. The hospi-

tal module considered published hospitalization rates from

multiple sources28; current rates were confirmed with the

dialysis provider. For the laboratory module, we used Hgb

measurement accuracy and precision data provided by the

laboratory. Estimates of blood sample shipping delays were

obtained from the dialysis provider. The physician module

was developed in close collaboration of the two physicians

on our team (P.K. and S.T.) who provided estimates of physi-

cians’ reaction to Hgb levels at, for instance, the lower end

of the Hgb distribution (e.g., the likelihood for ESA dose

escalations outside of usual anemia algorithms in the face of

very low Hgb levels). A flowchart of the final setup (Virtual

Anemia Trial 3.0) is depicted in Figure 1. To obtain a sound

quantitative understanding of the impact of individual mod-

ules and their combined use, we used multiple iterations to

test a variety of module combinations (data not shown). The

relative importance of the stochastic modules was laboratory

(measurement variability; shipping delays)> physician (odds

to overwrite recommended ESA doses and to order blood

transfusions)> hospitalization (odds for a patient to be hospi-

talized)>dialysis facility (odds of no-shows). It turned out

that all modules contribute to the improved performance, so

we decided to keep all of them.

Statistical analysis
Data are presented as mean 6 SD where normally distrib-

uted, as medians (interquartile range) where not normally

distributed. Categorical variables are expressed as frequen-

cies and percentages of the group from which they were

derived.
Comparison of Hgb results and ESA doses were con-

ducted primarily using measurements of central tendencies

and visual depiction of Hgb and ESA distributions. Several

metrics were calculated from the raw data to better under-

stand differences in the populations based on monthly and

annual data and are found in Tables 1 and 2. Although

Hgb laboratory measurements were completed weekly for

each patient, ESA doses were administered in general at 2

or 4-week cycles. However, in rare cases, ESA administra-

tion cycles can increase up to 6 or 8 weeks necessitating

the creation of monthly, per treatment, and per patient-year

metrics to better understand the relationship between Hgb

and ESA dosing. In some cases, the monthly average of

Hgb results for each patient was used to compare Hgb dis-

tributions, especially when comparing to cumulative

monthly ESA doses per patient.
Three random samples of the FKC patient data (after

exclusion) were established using the same number of

patients as the avatar patient population (N 5 6,659) in

order to create effective comparisons of patient groups. A

single random group was selected and simulated data from

all in silico trials were compared with this group. Results of

all randomizations and patient characteristics of the groups

are found in the Supplementary Information.
Per HD treatment is a metric used to compare the

amount of ESA used at the treatment level and was calcu-

lated from the cumulative monthly ESA dose divided by the

median number of treatments in each month for each

patient. Treatment information was not available for the sim-

ulated patient data and, thus, median number of treatments

per month was calculated using FKC data. Two separate

values were used for FKC and virtual patient populations.

This was necessary as patient data was simulated for

exactly 1 year without attrition in the Virtual Anemia Trials.

The FKC patient population, however, did experience attri-

tion (64% of the FKC patients contributed an entire year of

data) and, thus, the sum of the time each patient contrib-

uted to the study in each group and expected number of

treatments per month was not equal across groups. The

average cumulative monthly dose of ESA was divided by

Figure 1 Setup schematic of Virtual Anemia Trial (VIAT) 3.0.
Blue boxes indicate “deterministic” modules: the simulation of
hemoglobin values for each Avatar using the physiology based
mathematical model and the calculation of a new dose following
the anemia therapy protocol. Green boxes indicate modules of
“stochastic” nature. VIAT 3.0 comprises modules simulating the
(random) impact of the involved laboratory (e.g., measurement
noise), physician (e.g., blood transfusion orderings), dialysis facil-
ity (e.g., nonadherence of patients to therapy), and hospital (e.g.,
hospital stays). ESA, erythropoiesis stimulating agent.

Table 1 Overall ESA doses and hemoglobin results

Data No. of patients Average ESA dosea ESA dose per-HD treatmentb ESA dose per patient year Average Hgb

VIAT 1.0 6,659 138.7 6 65.4 16.1 (8.1, 32.3) 2037.2 11.4 6 3.4

VIAT 2.0 6,659 95.9 6 54.2 8.1 (4, 16.1) 1267.6 11 6 1

VIAT 3.0 6,659 97.1 6 54.8 8.1 (4, 16.1) 1263.8 10.9 6 1.1

Clinical data 6,659 92.5 6 51.4 8.3 (6.2, 16.5) 1335.6 10.8 6 1.1

ESA, erythropoiesis stimulating agent; Hgb, hemoglobin; HD, hemodialysis; VIAT, Virtual Anemia Trial.
aMean 6 SD.
bMedian (25th percentile, 75th percentile).
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the median number of treatments for each patient group

(12.1 for the FKC comparator group with attrition and 12.4

for virtual patients). The ESA per patient year was calcu-

lated by taking the total units of administered ESA and total

number of patient-years contributed for each group for the

entire study period. Moreover, spline curves were created

to understand the relationship between Hgb and ESA in

patient populations. The spline curves were derived from a

general additive model29,30 of cumulative monthly ESA

dose and monthly average Hgb for each patient each

month.

RESULTS

A comprehensive physiology-based mathematical model of

erythropoiesis and patient-level clinical data was used to

create 6,659 avatars. An anemia protocol used in a large

cohort of patients undergoing HD was first tested using a

Monte Carlo sampling approach to create virtual patients

and then compared to the same tests conducted in avatars

that were generated based on individual patient data rou-

tinely measured in patients undergoing HD. Further, we

introduced stochastic modules that reflected the daily clini-

cal routine to increase the ecological validity of the VIATs.

In all in silico trials, individual Hgb levels, and the corre-

sponding anemia treatment were simulated for an entire

year. Results of the different in silico trial setups were com-

pared to a year of clinical data from a random comparator

group sampled from 79,426 patients undergoing HD
(“reference population”) who were treated for anemia using
the same ESA protocol.

Patient characteristics
In order to alleviate statistical problems related to sample
size differences between avatars and the patients undergoing
HD reference population, we randomly selected a comparator
group of 6,659 individuals from the reference population.
Hence, all performance assessments of the anemia protocol
are based on equally sized populations. Table 3 shows the
descriptive baseline characteristics of the reference patient
population, the comparator group (subgroup of the reference
population), and the avatar population. All three groups were
balanced with respect to their clinical and laboratory data. Dif-
ferences between the groups were that the avatar population
was slightly younger (mean age 64.1 years vs. 65.6 years in
the reference population), had been treated for a longer time
on dialysis (median vintage 3.4 years vs. 2.3 years in the ref-
erence population), and the number of white patients under-
going HD were fewer in the avatar group (57% vs. 61% in the
reference population).

Model adaptation: Avatar creation
Personalized anemia avatars were created using individual
patient data. The model fit for individual patients was of
excellent quality. The mean absolute percentage error
(MAPE) between model simulation and empirical data from
the avatar patients had a median value of 3.8% (range,
0.9%–13.7%). The MAPE distribution of the 6,659 anemia

Table 2 ESA doses per category of average monthly hemoglobin

Hgb category Data % of patients No. of ESA doses per montha Monthly cumulative ESA dosea ESA dose per HD-treatmenta

<8.0 VIAT 1.0 8.4 2.2 6 0.5 372.9 6 161.5 30.1 6 13

VIAT 2.0 0.4 2.5 6 0.6 494.9 6 99.2 39.9 6 8

VIAT 3.0 0.6 2 6 0.6 339.1 6 156.6 27.3 6 12.6

Clinical data 1.1 1.7 6 1.1 335.9 6 207.2 27.8 6 17.1

8.0–10.0 VIAT 1.0 21.5 2.1 6 0.4 337.2 6 149.5 27.2 6 12.1

VIAT 2.0 10.4 2.1 6 0.6 279.1 6 160.4 22.5 6 12.9

VIAT 3.0 12.2 1.8 6 0.6 241.1 6 152.5 19.4 6 12.3

Clinical data 18.1 1.9 6 0.9 236 6 167 19.5 6 13.8

10.0–11.0 VIAT 1.0 24.1 1.6 6 0.9 148.3 6 120.6 12.3 6 10

VIAT 2.0 46.2 1.7 6 0.7 202.5 6 148.9 16.3 6 12

VIAT 3.0 43.0 1.4 6 0.7 132.5 6 113.1 10.7 6 9.1

Clinical data 39.3 1.4 6 0.7 137.3 6 115.8 11.1 6 9.3

11.0–12.0 VIAT 1.0 18.5 0.9 6 0.8 133.9 6 93.5 10.8 6 7.5

VIAT 2.0 32.5 0.7 6 0.7 96.5 6 70.5 7.8 6 5.7

VIAT 3.0 32.8 0.8 6 0.7 96.8 6 72.4 7.8 6 5.8

Clinical data 32.6 0.9 6 0.8 108.4 6 83.8 9 6 6.9

12.0–14.0 VIAT 1.0 14.1 0.1 6 0.4 106.7 6 49.9 8.6 6 4

VIAT 2.0 9.7 0.1 6 0.3 101.6 6 45.6 8.2 6 3.7

VIAT 3.0 10.6 0.1 6 0.3 99.4 6 47.6 8 6 3.8

Clinical data 8.6 0.3 6 0.6 108.9 6 77.6 9 6 6.4

>14.0 VIAT 1.0 13.4 0 6 0.1 99.3 6 45.1 8 6 3.6

VIAT 2.0 0.9 0 6 0.1 150 6 0 12.1 6 0

VIAT 3.0 0.8 0 6 0.2 130.4 6 28 10.5 6 2.3

Clinical data 0.3 0.1 6 0.4 125 6 75.6 10.3 6 6.2

ESA, erythropoiesis stimulating agents; HD, hemodialysis; Hgb, hemoglobin; VIAT, Virtual Anemia Trial.
aMean 6 SD.
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avatars is shown in Figure 2. Although the distribution of

the model error was subtly right-skewed, the MAPE was

below 6.9% for 90% of the patients.
All model parameters that were determined for individual

patients were physiologically reasonable for patients under-

going HD. For further information on the avatars and their

creation see the Supplementary Information.

Virtual Anemia Trial 1.0: Using virtual patients created

by Monte Carlo sampling
A cohort of 6,659 virtual patients was created by randomly

sampling unique parameter values from a parameter space

defined a priori. The parameter distributions used to

describe the physiologically reasonable parameter space

had been previously determined as being meaningful for

patients undergoing HD (Fuertinger, D.H., Kappel, F.,

Zhang, H., Thijssen, S. & Kotanko, P., unpublished data).

For each virtual patient, weekly Hgb values were simulated

and decisions on ESA dose adjustments were made follow-

ing an anemia treatment protocol used in a large number of

US dialysis clinics. The results showed poor alignment with

the respective clinical data (Figure 3a). The distributions of

the predicted Hgb values (mean 6 SD, 11.3 6 3.4 g/dL) did

not reflect the empirical Hgb data (10.8 6 1.1 g/dL); com-

pare also to Table 1. Moreover, the clinically prescribed

ESA doses and the simulated prescribed doses showed an

almost inverse pattern (Figure 3b). Although the lowest

ESA dose was the one most commonly administered in the

real clinics, the simulation predicted that the highest dose

would be applied most often. This behavior resulted in a

52.5% overestimation of ESA use per patient-year in the

VIAT 1.0 compared to the clinical data.

Virtual Anemia Trial 2.0: Using personalized avatars to

improve external validity
A virtual patient population of 6,659 avatars was created

using routinely collected clinical data from individual

patients undergoing HD treated for anemia. This cohort of

virtual patients was subjected to the same anemia treatment

protocol used in the dialysis clinics. Weekly Hgb values were

simulated for each avatar and ESA dose adjustments were

made following the same protocol used in the VIAT 1.0. This

time, the predicted ESA use per patient-year underestimated

the clinical data by a mere 5.1% (Table 1). Moreover, ESA

dose distributions mirrored empirical characteristics closely

(Figure 3d). However, the simulated Hgb distribution showed

some clear deviations in the 10–11 g/dL range (Figure 3c).

A closer look at the spline curve for the monthly average

Hgb values at the monthly cumulative ESA doses (both

determined on a per patient level) revealed a wide gap

between predicted and real ESA use in the lower Hgb

Table 3 Characteristics of patients with avatars, the reference population, and the comparator group

Avatars Reference population Comparator group

No. of patients 6,659 79,426 6,659

Male, % 54 55 55

Race, white, % 57 61 62

Age, years 64.1 6 13.9 65.6 6 14 65.9 6 13.8

Body mass index, kg/m2 29.4 6 7.6 29.1 6 7.5 29.4 6 7.4

Vintage, years (range) 3.4 (1.7–5.8) 2.3 (0.7–5) 2.4 (0.7–4.9)

Comorbid diabetes, % 64 64.50 64.70

Hgb, mg/dL 10.6 6 0.5 10.7 6 0.7 10.7 6 0.7

Pretreatment weight, kg 81.8 (68.6–98.1) 81.4 (68.1–98) 81.6 (68.4–98.1)

Pretreatment SBP, mmHg 150.1 6 17.6 148.5 6 18.4 148.3 6 18.4

Post-treatment SBP, mmHg 138.2 6 16 137.9 6 16.4 137.6 6 16.4

Treatment time, minutes 221.3 6 25.4 222.7 6 28.6 222 6 29.1

Ultrafiltration volume, kg 2.44 6 0.93 2.3 6 0.9 2.34 6 0.92

Interdialytic weight gain, % 3 (2.3–3.6) 2.9 (2.3–3.5) 2.9 (2.3–3.5)

Albumin, g/dL 3.9 6 0.32 3.8 6 0.4 3.8 6 0.4

Iron dose, mcg/month 250 (150–500) 250 (150–500) 250 (150–500)

Dialysate sodium, mEq/L 137 (137–138) 137 (137–138) 137 (137–138)

Neutrophils to lymphocytes ratio 3.6 (2.7–5) 3.7 (2.7–5.2) 3.7 (2.7–5.2)

Transferrin saturation 34 6 8.1 33.6 6 8.9 33.7 6 8.7

Hgb, hemoglobin; SBP, systolic blood pressure.

Figure 2 Mean absolute percentage errors (MAPE) between
model simulation and individual patient data. Density of MAPE of
hemoglobin levels between empirical patient data and all avatars
during the model adaptation period.
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range (<10 g/dL; Figure 4a). The mean ESA dose per HD

treatment was 22.5 mcg in the VIAT 2.0 and 19.5 mcg in

the empirical data for patients, with an average monthly

Hgb of 8–10 g/dL (Table 2). For patients with an average

monthly Hgb of <8 g/dL, the gap was even more pronounced

with a difference in the per HD treatment ESA dose of 12.1

mcg (39.9 mcg vs. 27.8 mcg). Although this group is small

and, thus, did not noticeably increase the overall ESA use of

the population, this particular characteristic of the in silico

trial is disconcerting, as this specific patient group is of high

concern clinically.

Virtual Anemia Trial 3.0: Adding stochastic modules to

improve ecological validity
The avatar population was subjected to the identical ane-

mia treatment protocol as in trials 1.0 and 2.0. In the pre-

sent trial, however, we incorporated clinic modules in the

simulations to increase ecological validity. These modules

were of stochastic nature and reflected important aspects
of clinical routine. For instance, a laboratory module was
designed to add noise patterns to simulated Hgb levels to
reflect both the measurement noise of the laboratory device

and the varying fluid status of the patient. Possible ship-

ment delays of blood samples were included, and we

accounted for the fact that a small fraction of blood sam-

ples that arrive at the laboratory are unusable. A schematic

of the VIAT 3.0 setup is presented in Figure 1. For a more

detailed description of the clinic modules, see the Methods

section. Of note, the stochastic elements were added in the

simulation after the avatars had been created and these

modules were not part of the avatar generation process.
Incorporating several clinically relevant modules improved

the predictions of the in silico trial considerably. The artifi-
cial Hgb distributions resembled clinical data exceptionally
well. The mean Hgb was slightly higher than in the empiri-
cal data, with an overall narrower distribution of observed

Figure 3 Comparison of clinical data of the comparator group and simulations obtained from Virtual Anemia Trials (VIAT). Empirical
data is shown in blue across all panels; comparisons to results from VIAT 1.0, VIAT 2.0, and VIAT 3.0 are depicted in the top, middle,
and bottom row, respectively. Panels (a), (c), and (e) exhibit the distribution of empirical hemoglobin (Hgb) values routinely measured
in the clinics over the course of a year (blue) and simulated Hgb values for an entire year as obtained from VIAT 1.0 (orange), VIAT
2.0 (red), and VIAT 3.0 (green). Panels (b), (d), and (f) show the corresponding frequencies of empirical (blue) and simulated (orange,
red, and green) erythropoiesis stimulating agent (ESA) doses.
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Hgb values in the in silico data (mean 6 SD 5 10.9 6 1.1 g/dL

vs. 10.8 6 1.1 g/dL). Further, predicted ESA showed good

alignment with clinical data. The median ESA dose per treat-

ment was underestimated by 2.5%, and the cumulative ESA

dose per patient-year was underestimated by 5.4% (Table 1).

Moreover, spline curves of predicted monthly average Hgb

vs. monthly cumulative ESA dose further highlighted the

excellent agreement between simulated and empirically

observed data over the entire Hgb range (Figure 4b). Specif-

ically, the difference between predicted vs. clinic data in the

low Hgb range that was apparent in the VIAT 2.0 was no lon-

ger present after including the stochastic clinic modules.

Average per treatment ESA doses were materially identical

in in silico predictions and clinical data in low Hgb ranges,

with 19.4 mcg vs. 19.5 mcg in the 8–10 g/dL Hgb range and

27.3 mcg vs. 27.8 mcg in the <8g/dL Hgb range (VIAT 3.0

vs. clinic data; compare also Table 2).

DISCUSSION

A comprehensive physiology-based mathematical model of

erythropoiesis together with a large avatar cohort and spe-

cifically designed clinic modules was used to design and

execute a sophisticated Virtual Anemia Trial. In this report,

we show that proactively addressing the questions of exter-

nal and ecological validity in the design of an in silico trial

can significantly improve its predictive power. Our final

setup of the VCT (VIAT 3.0) clearly outperformed other

designs both with respect to the big picture (e.g., Hgb level

distribution and ESA use per patient-year) as well as more

granular metrics (e.g., number of ESA administrations in

different Hgb buckets).
Our study has several strengths. First, we used routinely

collected clinical data from a large cohort of patients under-

going chronic HD (>37,000 patients), and we used their

data over a baseline period of 90 days to create personal-

ized avatars (N 5 6,659). Importantly, patients were ran-

domly selected for avatar creation, and we did not omit

populations that may have been excluded from traditional

RCTs, such as elderly, frail, and multimorbid patients. We
consider this an important aspect, because this random
selection helped us to ensure external validity.

Further, ecological validity is a well-recognized weak spot
in traditional RCTs. For the final setup of our VCT
(VIAT 3.0), we attempted to reflect some of the key clinical,
operational, and laboratory intricacies by integrating clinic
modules. These clinic modules were designed by analyzing
the real-world challenges and using actual real-life data
from FKC clinics to determine probability estimates for hos-
pitalization patterns, laboratory processing times, and
patient nonadherence, among others. Our results clearly
indicate that improving ecological validity by integrating
these clinic modules improved the predictive quality of the
VCT. Last, we tested a widely used anemia treatment pro-
tocol, and the results of the VIATs were then compared
with clinical data obtained from patients who were treated
using the same protocol in real life (reference population
N 5 79,426, random comparator group N 5 6,659).

Although our results are of interest from a pure academic
standpoint, they may also help to address clinical and phar-
maceutical research and development needs, such as iden-
tifying optimal drug dosing and treatment schemes. With
large avatar populations at hand, the development of future
anemia treatment algorithms can be streamlined and accel-
erated by using mathematical modeling and in silico clinical
trials. Our modeling work is not just an exercise to predict
real-world data. The overarching goal of our efforts is to
improve anemia management, an aspect central to patient
care and outcomes. To achieve that goal, a series of
interim goals must be reached: first, we need an avatar
population that mirrors a real patient population to run vir-
tual trials of anemia treatment algorithms; we believe that
our results are a crucial step in that direction. Second, we
must better understand our patients’ (patho)physiology,
something our modeling approach can deliver. For exam-
ple, resistance to ESA is a major clinical concern and has
been associated with increased patient morbidity and mortal-
ity.31 However, ESA resistance is defined solely based on the
presence of an ESA requirement above some threshold (sev-
eral definitions exist in the literature). Although important,

Figure 4 Spline curves representing the relationship between hemoglobin (Hgb) and erythropoiesis stimulating agents (ESA). Blue
curves represent Hgb-ESA splines corresponding with clinical data in both panels (a,b). Results from Virtual Anemia Trials (VIAT) 2.0
and 3.0 is overlaid in red and green, respectively, a and b. Spline curves were derived from a general additive model using the cumula-
tive monthly ESA dose and monthly average Hgb for each patient each month.
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there is no routinely feasible way for the attending physician to

differentiate poor bone marrow response to ESA from short-

ened RBC life span.32 The differential diagnosis between

these two broad categories (bone marrow pathology vs. short

RBC life span) is clinically relevant as it informs subsequent

diagnostic and therapeutic steps (e.g., search for hemolysis in

the case of very short RBC life span; search for sources of

inflammation; to name a few.)
Third, it is reasonable to hypothesize that the model out-

put will aid the identification of patients at high risk for

morbidity and mortality. To test this hypothesis, the patient-

specific model-derived parameter estimates need to be

integrated into prediction models, an exciting area of future

research.
In addition to the above, realistic simulations of clinical

trials serve many purposes: they can provide valuable infor-

mation regarding safety and limitations of treatment proto-

cols, eliminate ineffective treatment schemes at an early

stage, and support the planning of clinical studies. By pre-

selecting promising dosing strategies, the chance of a suc-

cessful clinical trial can be increased and, with the support

of in silico results, the size of a subsequent trial might be

decreased. Thus, a well-designed VCT shortens the time to

assess improved and novel therapies and consequently

shortens the time to deployment in the clinical setting. As

indicated above, we consider it a major advantage that

VCTs allow for studies in patient groups who are frequently

excluded from traditional clinical trials because of ethical

and safety concerns (e.g., children, pregnant women, and

severely sick patients with multiple comorbidities) and who,

as a result, may subsequently also be denied the benefits

of the new therapies.
In summary, although RCTs remain the golden standard

for regulatory approval, the results from in silico models

and VCTs could support the development of treatment

algorithms; the novel strategies presented here help to

improve external and ecological validity of in silico trials.
This improvement has been exemplified step-by-step in a

VCT conducted using avatars of patients undergoing

chronic HD treated for anemia. Future efforts will aim at

using the discussed strategies to optimize treatment algo-

rithms that will then be rolled out to patient populations

and, it is hoped, will improve clinical care and outcomes.
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