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Abstract: Glucosamine (GLU) is a natural compound found in cartilage, and supplementation with
glucosamine has been shown to improve joint heath and has been linked to reduced mortality rates.
GLU is poorly absorbed and may exhibit functional properties in the gut. The purpose of this
study was to examine the impact of glucosamine on gastrointestinal function as well as changes
in fecal microbiota and metabolome. Healthy males (n = 6) and females (n = 5) (33.4 ± 7.7 years,
174.1 ± 12.0 cm, 76.5 ± 12.9 kg, 25.2 ± 3.1 kg/m2, n = 11) completed two supplementation protocols
that each spanned three weeks separated by a washout period that lasted two weeks. In a randomized,
double-blind, placebo-controlled, crossover fashion, participants ingested a daily dose of GLU
hydrochloride (3000 mg GlucosaGreen®, TSI Group Ltd., Missoula, MT, USA) or maltodextrin
placebo. Study participants completed bowel habit and gastrointestinal symptoms questionnaires
in addition to providing a stool sample that was analyzed for fecal microbiota and metabolome at
baseline and after the completion of each supplementation period. GLU significantly reduced stomach
bloating and showed a trend towards reducing constipation and hard stools. Phylogenetic diversity
(Faith’s PD) and proportions of Pseudomonadaceae, Peptococcaceae, and Bacillaceae were significantly
reduced following GLU consumption. GLU supplementation significantly reduced individual, total
branched-chain, and total amino acid excretion, with no glucosamine being detected in any of the
fecal samples. GLU had no effect on fecal short-chain fatty acids levels. GLU supplementation
provided functional gut health benefits and induced fecal microbiota and metabolome changes.

Keywords: microbiota; gut health; diversity; metabolomics; stool; gastrointestinal

1. Introduction

Glucosamine is an amino sugar found naturally in the cartilage and fluid around the
joints and is also contained in crustacean exoskeletons and some fungi. Glucosamine is one
of the most frequently supplemented ingredients consumed by U.S. adults [1], particularly
due to its potential anti-inflammatory and anti-apoptotic effects on articular cartilage and
bone [2]. In clinical trials, glucosamine has frequently shown beneficial outcomes in joint
pain, joint function, and other related clinical outcomes [3–7]. Additionally, epidemiology
data has pointed to lower mortality rates in individuals who were supplementing with
glucosamine [8,9], a surprising outcome when considering its most common application
(pain relief in osteoarthritic individuals) is in a population that typically presents with
multiple comorbidities [1,6,10]. A cohort study by Pocobelli [9] of 77,719 people who
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averaged 10 years of glucosamine use were found to have five-year mortality rates that
were significantly lower than non-glucosamine users. In addition, Ma et al. [10] followed
466,093 participants without cardiovascular disease (CVD) at baseline in the UK biobank
for a median of seven years. Glucosamine use was associated with significantly lower risks
of CVD events and death. Moreover, other data involving glucosamine has led people to
question a greater role for glucosamine in human health. For example, large prospective
cohort studies [11–14] involving glucosamine alone and in combination with chondroitin
have suggested a reduced association of risk for developing colorectal cancers. Additionally,
animal [15] and human [16] models have reported improvements in inflammatory bowel
disease after glucosamine administration. In considering this data, other potential roles of
glucosamine in human health and associated mechanisms of action may be evident, and
other mechanisms of action, besides the proposed biochemical mechanisms related to the
joints (i.e., cytokine and enzyme changes in the joints’ chondrocytes, synoviocytes and
synovial fluid), should be investigated to elucidate the potential benefits seen systemically
by glucosamine supplementation.

Within the human digestive tract, only 10–12% of the ingested glucosamine is ab-
sorbed [17–19]. In fact, glucosamine absorption is so low it has previously been used as
a coating agent for various drugs [20,21]. Due to its simplicity as an amino sugar, more
than 50% of ingested glucosamine is metabolized by members of the intestinal microbiota
before it is absorbed into the bloodstream [19]. For these reasons, evidence has started to
grow indicating that glycosaminoglycans such as glucosamine and chondroitin may have
potential gut health benefits. In consideration of a potential mechanism, multiple authors
have reported that glucosamine (and chondroitin) may function in various roles in the
production of anti-inflammatory compounds that are known to be increased in various
inflammatory and metabolic diseases [21–24].

Evidence that has examined the potential ability of glucosamine availability to change
the abundances of various strains and species of bacteria in the microbiome is limited.
Shmagel et al. [21] recently published a systematic review of evidence from animal and
human studies on the effects of glucosamine and chondroitin sulfate on gut microbial
composition. Of the included studies in this review, only one study, which lacked a placebo
group, examined the impact of glucosamine on the gut microbiome. In this study, Coulson
et al. [25] randomized 38 subjects with knee osteoarthritis to consume orally on a daily basis
3000 mg of glucosamine sulfate or 3000 mg of green lipped muscle extract (Perna canaliculus)
for 12 weeks. Fecal microbial analysis before and at the end of the intervention showed no
changes in total microbial diversity, the absolute abundance of Staphylococcus, Bacterioides,
and Clostridium genera tended to decrease while Lactobacillus, Streptococcus, Coliforms, and
Eubacterium genera tended to increase after supplementation. In conjunction with these
changes, Coulson et al. [25] also reported a significant improvement in osteoarthritis symp-
tom measurements and gastrointestinal symptoms. However, greater conclusions from this
study are underpinned by its lack of a placebo or appropriate control group. Most recently,
Navarro et al. [26] observed that oral co-administration of glucosamine hydrochloride
(derived from crab and shrimp) and chondroitin sulfate significantly modulated nine dif-
ferent genera after a 14-day supplementation using a placebo-controlled, crossover design.
Specifically, abundances of Lachnospiraceae, Prevotellaceae, and Desulfovibrio were increased
while Bifidobacterium and Christensenellaceae were decreased. To date, no clinical study has
investigated the ability of glucosamine by itself to impact changes in stool, gastrointestinal
symptoms and in the quantity and function of bacteria in the microbiome in compari-
son to a control group. For these reasons, the purpose of this study was to examine the
impact of three weeks of vegetarian, non-shellfish-derived glucosamine hydrochloride
supplementation on changes in the fecal microbiome, stool function, and gastrointestinal
symptoms. It was hypothesized that glucosamine supplementation would yield significant
improvements in gastrointestinal function and be responsible for significant changes in the
genera of bacteria found in the fecal microbiome.
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2. Materials and Methods
2.1. Experimental Design

Healthy males and females participated in this randomized, double-blind, placebo-
controlled, cross-over study design. As this was a pilot study designed to identify the
potential for a 3-week regimen of daily non-shellfish (fermented) glucosamine supplemen-
tation, no formal sample size analysis was completed prior to the investigation. Participants
were instructed to report to the laboratory after observing an overnight (8 to 10-h) fast while
maintaining adequate hydration. Participants were asked to abstain from exercise and
avoid alcohol and caffeine consumption for 12 h prior to each study visit. All participants
first completed an initial eligibility visit during which a comprehensive medical history,
consent document, and body mass index (BMI) assessment were completed. Results from
the BMI assessment was used to finalize eligibility. Once deemed eligible, participants
were provided with supplies to begin the study protocol.

The remainder of the study consisted of two identical patterns of testing with the
exception of which supplementation protocol was followed. (See Figure 1). Prior to
each visit, food and physical activity logs were completed, encompassing four days prior
to the scheduled laboratory visit consisting of two weekend days and two weekdays.
Each participant reported to the laboratory for a baseline measurement of height, weight,
heart rate, and blood pressure. During this visit, participants completed the Bristol Stool
Chart and Gastrointestinal Symptom Rating Scale (GSRS) to assess bowel habits and
potential gastrointestinal symptoms. Finally, participants were given instructions on how
to collect a stool sample and were instructed to do so within 24 h of each planned study
visit. At the completion of this study visit, participants were provided with their first
assigned supplement and instructed to begin supplementation 21 days prior to their
second visit. Participants were instructed to collect their second stool sample on the day of
their final supplementation dose. On the morning of their second study visit, participants
reported to the laboratory after following identical pre-study instructions as on previous
visits (fasting, abstention from caffeine and exercise). Study participants again completed
assessments for height, weight, heart rate, blood pressure, and questionnaires regarding
their bowel habits and gastrointestinal symptoms while also providing their second stool
sample and turning in completed food and activity logs. A washout period lasting a
minimum of 14 days and a maximum of 21 days separated each phase of the crossover.
Burns et al. [27] previously reported no difference in fecal DNA content after employing a
14-day washout period between three periods of three weeks of supplementation with a
resistant maltodextrin starch.

2.2. Study Participants

A CONSORT diagram for all study recruitment randomization, and project completion
is provided as Figure 2. Data collection commenced in January 2019 and was completed
in June 2019. A total of six male (age: 32.0 ± 9.6 years, height: 180.5 ± 10.0 cm, weight:
81.0 ± 11.3 kg, body mass index: 24.8 ± 2.8 kg/m2) and five female (age: 35.0 ± 5.4 years,
height: 166.5 ± 10.1 cm, weight: 71.1 ± 13.8 kg, body mass index: 25.6 ± 3.8 kg/m2)
participants completed the study protocol. Prior to participation, participants provided
their signed informed consent using an IRB approved consent document (Protocol #
IRB-19-8, Approval Date 18 October 2018) and registered with the ISRCTN registry (IS-
RCTN28637234). Participants were randomized into the study protocol if they were
between the ages of 18–50 years, had a body mass index between 18.5–27 kg/m2, weight
stable for the past three months (less than 5% variation in body mass), and were free from
all cardiovascular, pulmonary, autoimmune, musculoskeletal, gastrointestinal, psycho-
logical, or other diseases or disorders, as reported in their medical history. Participants
could not have been currently taking any antibiotics, probiotics, or have indicated that
they were actively trying to lose weight which included participating in diets that would
impact study outcomes (ketogenic or low carbohydrate diet). Alternatively, participants
were excluded if they were: diagnosed with or were being treated for celiac disease, lactose
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intolerance, digestive insufficiencies, or other gastrointestinal complications such as irrita-
ble bowel syndrome, ulcerative colitis, etc.; were a current smoker or had quit within the
past six months; were currently using anabolic steroids or any illicit or recreational drugs;
or were currently taking any antibiotic or medication known to impact study outcomes.
Participants who reported consuming a probiotic or other form of any dietary supplement
purported to impact digestion or gut health were required to stop taking that supplement
for 30 days before beginning the study trial.

Nutrients 2021, 13, 2180 3 of 18 
 

 

2. Materials and Methods 

2.1. Experimental Design 

Healthy males and females participated in this randomized, double-blind, placebo-

controlled, cross-over study design. As this was a pilot study designed to identify the po-

tential for a 3-week regimen of daily non-shellfish (fermented) glucosamine supplemen-

tation, no formal sample size analysis was completed prior to the investigation. Partici-

pants were instructed to report to the laboratory after observing an overnight (8 to 10-h) 

fast while maintaining adequate hydration. Participants were asked to abstain from exer-

cise and avoid alcohol and caffeine consumption for 12 h prior to each study visit. All 

participants first completed an initial eligibility visit during which a comprehensive med-

ical history, consent document, and body mass index (BMI) assessment were completed. 

Results from the BMI assessment was used to finalize eligibility. Once deemed eligible, 

participants were provided with supplies to begin the study protocol. 

The remainder of the study consisted of two identical patterns of testing with the 

exception of which supplementation protocol was followed. (See Figure 1). Prior to each 

visit, food and physical activity logs were completed, encompassing four days prior to the 

scheduled laboratory visit consisting of two weekend days and two weekdays. Each par-

ticipant reported to the laboratory for a baseline measurement of height, weight, heart 

rate, and blood pressure. During this visit, participants completed the Bristol Stool Chart 

and Gastrointestinal Symptom Rating Scale (GSRS) to assess bowel habits and potential 

gastrointestinal symptoms. Finally, participants were given instructions on how to collect 

a stool sample and were instructed to do so within 24 h of each planned study visit. At the 

completion of this study visit, participants were provided with their first assigned sup-

plement and instructed to begin supplementation 21 days prior to their second visit. Par-

ticipants were instructed to collect their second stool sample on the day of their final sup-

plementation dose. On the morning of their second study visit, participants reported to 

the laboratory after following identical pre-study instructions as on previous visits (fast-

ing, abstention from caffeine and exercise). Study participants again completed assess-

ments for height, weight, heart rate, blood pressure, and questionnaires regarding their 

bowel habits and gastrointestinal symptoms while also providing their second stool sam-

ple and turning in completed food and activity logs. A washout period lasting a minimum 

of 14 days and a maximum of 21 days separated each phase of the crossover. Burns et al. 

[27] previously reported no difference in fecal DNA content after employing a 14-day 

washout period between three periods of three weeks of supplementation with a resistant 

maltodextrin starch. 

 

Figure 1. Flow chart of experimental design. Figure 1. Flow chart of experimental design.

2.3. Anthropometrics

Height and weight were measured for every participant without shoes and in minimal
clothing using a standardized wall-mounted stadiometer (Tanita, model # HR-200, Tokyo,
Japan) and a self-calibrating digital scale (Tanita, model # BWB-627A Class III, Tokyo,
Japan). Prior to heart rate and blood pressure measurements, participants rested in a seated
position for five minutes. Heart rate was measured on the right arm at the radial artery,
placing the index and middle fingers two centimeters proximal to the styloid process of
the radius, by a trained research assistant. The number of heart beats was counted over
a 30-s period and multiplied by two. Blood pressure was measured on the right arm
using a standard blood pressure cuff and sphygmomanometer at the brachial artery. Two
measurements were taken and averaged. The right arm was positioned at the level of
the heart with the distal edge of the cuff placed two centimeters above the bend in the
elbow prior to the cuff being inflated to a value that was 30 mm of mercury (mmHg) higher
than the participant’s self-reported blood pressure. The cuff was deflated at approximately
3 mmHg per second until the first and fourth Korotkoff sounds were detected. Both values
associated with these events were recorded and used for the blood pressure assessment.
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2.4. Dietary and Physical Activity Logs

Study participants completed assessments of food intake and physical activity at the
beginning and end of each phase of testing. Intake was reported over a four-day period
prior to in-lab assessments encompassing two weekdays and two weekend days. All
activities of daily living as well as exercise and sleep were self-reported by participants in a
24-h fitness log. All food intake encompassing food type, preparation style, and amount
were self-reported on paper by participants for the four-day assessment period.

2.5. Supplementation Protocol

In a double-blind manner, a glucosamine supplement or a maltodextrin placebo
was distributed in identical opaque capsules to all participants. On a daily basis, partici-
pants were instructed to ingest three capsules, each containing 1000 mg of Glucosamine
Hydrochloride (GlucosaGreen® TSI Group Ltd. Missoula, MT, USA) or a placebo (mal-
todextrin) identical in appearance for a total of 21 days. Each visit at the beginning of the
supplementation regimen (Visits 1 and 4, respectively; See Figure 1) occurred on or before
the first day of supplementation while the final day of supplementation occurred the day
before each participant’s follow-up visit for that study period (Visits 2 and 4, respectively).
Participants were instructed to ingest the supplement 15–30 min before breakfast with
eight fluid ounces of cold water. In the case of a missed dose, participants were instructed
to consume the missed dose as soon as possible with a meal. A maltodextrin placebo was
used due to previous research that demonstrated a lack of changes in fecal microbiome
content after 7.5 [27] and 15 [28] grams of resistant maltodextrin were ingested. The dose
of maltodextrin used in the present study was two to five-fold lower, respectively, than
these investigations.
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2.6. Stool Quality and Gastrointestinal Questionnaires

Participants completed electronic (Qualtrics, Inc., Washington, DC, USA) versions of
the Bristol Stool Chart [29] and the Gastrointestinal Symptoms Rating Scale (GSRS) [30]
at four time points throughout the entire study protocol. The first two questionnaires
were completed before and after the first supplementation period while the final two
questionnaires were collected before and after the second supplementation period.

Briefly, the Bristol Stool Chart requires participants to classify their bowel movements
into one of seven different types of stool. Type 1 was classified as being “Separate hard
lumps, like nuts (hard to pass)”, Type 2 being “Sausage-shaped, lumpy, uncomfortable
to pass”, Type 3 being “Like a sausage, with cracks on its surface”, Type 4 being “Like a
sausage or snake, smooth and soft”, Type 5 being “Soft blobs with clear-cut edges, passes
easily”, Type 6 being “Fluffy pieces with ragged edges, a mushy stool”, and Type 7 being
“Watery, no solid pieces, entirely liquid”. The Gastrointestinal Symptoms Rating Scale
(GSRS) [30], a 15-item clinical rating scale was completed a total of four times to assess
symptoms related to gastrointestinal distress during the past week. Each item was scored
on a seven-point scale where 1 = No Discomfort at all; 2 = Minor Discomfort; 3 = Mild
Discomfort; 4 = Moderate Discomfort; 5 = Moderately Severe Discomfort; 6 = Severe
Discomfort; 7 = Very Severe Discomfort. The GSRS encompasses areas such as: pain and
discomfort in upper abdomen, heartburn, acid reflux, hunger pangs, nausea, stomach rum-
bling, bloating, burping, passing gas or flatus, constipation, diarrhea, hard stools, urgent
need to have a bowel movement, and sensation of not completely emptying the bowels.

2.7. Stool Collection

Stool specimens were collected at four time points throughout the entire study protocol.
The first two samples were collected before and after the first supplementation period
while the final two samples were collected before and after the second supplementation
period. All stool specimens were collected no more than 24-h prior to that study participant
being scheduled to complete their laboratory visit. All samples were immediately frozen
after sample collection by the study participants. Participants were instructed to keep
their samples in the freezer and to remove them at the latest possible time to minimize
thawing during transfer to the laboratory for storage. Participants were provided with all
materials necessary to collect, store, and transport the stool specimen including commode
fecal collection system, fecal collection tubes with screw top lids and scoops attached,
disposable gloves, freezer packs, specimen labels, and transfer containers. Participants
were instructed to raise the toilet seat and place the stool collection frame on the back of
the toilet bowl and then lower the toilet seat down and place the collection bowl in frame.
Participants then sat on the toilet and collected a stool sample in the container. Participants
were instructed, if possible, not to urinate into the collection container. Participants then
extracted a representative stool sample and filled each of the two provided sample collection
tubes. Tubes were then secured, labeled, and frozen. All remaining stool was discarded
into the toilet and flushed. Upon arrival in the laboratory each sample was immediately
stored at −80 ◦C.

2.8. Fecal Microbiota Analysis

DNA was extracted from fecal samples by mechanical lysis with a FastPrep-24 (MP
Biomedicals, Burlingame, CA, USA) and later purified using the DNA Fast Stool Minikit
(Qiagen Inc. USA, Germantown, MD, USA) according to previously described meth-
ods [31]. The V4 region of bacterial 16S rRNA genes (294 bp) was amplified in 35 cycles
according to previously described methods [32] with Takara ExTaq (Takara Bio USA,
Mountain View, CA, USA) and the F515 (5′-GTGCCAGCMGCCGCGGTAA-3′) and R806
(5′-GGATACHVGGGTWTCTAAT-3′) primer containing random eight base pair barcode
sequences on the 5′ end of the forward primer [33]. The Qubit Fluorometer (Thermo Fisher
Scientific, San Francisco, CA, USA) was used to quantify PCR product concentrations
prior to combining the PCR products in equal quantities for purification with the Wizard



Nutrients 2021, 13, 2180 7 of 18

SV Gel and PCR Cleanup kit (Promega, Madison, WI, USA). The IonTorrent Fragment
Plus Library Kit (Thermo Fisher) with AMPure XP Magnetic Beads (Beckman Coulter Life
Sciences, Pasadena, CA, USA) was then used for DNA sequencing library preparation.
Library purity and concentration was measured on a 2100 Bioanalyzer System (Agilent
Technologies, Santa Clara, CA, USA). The library was diluted to 20 pM and then sequenced
with an Ion Genestudio S5 System (Thermo Fisher).

Ion Torrent BAM files of raw DNA sequencing data were converted to the FASTQ for-
mat using BEDTools [34] and then analyzed using Quantitative Insights into Microbiology
(QIIME2) version 2019.10 [35]. Reads shorter than 200 bp in length were removed. The
sequences were demultiplexed using the cutadapt demux-single command [36], denoised
using the QIIME deblur denoise-16S command [37], and truncated to a length of 270 bp to
trim low q-score base positions. Multiple sequence Alignment using Fast Fourier Trans-
form (MAFFT) was used for read alignment, while gapped and unconserved alignments
were filtered using the alignment mask plugin [38]. A phylogenetic tree was generated
using FastTree [39], and taxonomic classification was performed against the Greengenes
13.8 database [40]. Sequences of mitochondria and chloroplast origin were filtered from
downstream analysis, leaving a total of 1,391,259 total high-quality reads associated with
taxonomic annotations. Samples were rarified to 7874 reads for alpha and beta diversity
analysis. Two samples were eliminated from the downstream analysis (GLC_3_L_Pre,
GLC_7_L_Post), due to having low levels of annotated reads (GLC_7_L_Post: 8.3% reads
annotated past kingdom level, GLC_3_L_Pre: 42.7% reads annotated past kingdom level).
Beta diversity metrics of Bray-Curtis distances and Weighted and Unweighted Unifrac
distances were plotted using principal coordinate analysis (PCoA) [32]. Alpha diver-
sity metrics of Observed OTUs, Shannon Evenness, and Faith’s Phylogenetic Diversity
were calculated.

2.9. Fecal Metabolome Analysis

Samples were manually homogenized with a sterile micro-spatula, and approximately
250 mg of fecal material was weighed and extracted using 1.5 mL of ice-cold Dulbecco’s
phosphate buffered saline (DPBS, 1X, pH 7.4). After extraction, samples were centrifuged,
and the pellet was dried using a Labconco FreeZone 4.5 L Freeze Dry System to determine
fecal dry weight. The supernatant was sequentially filtered through a 0.22 m pore-size
syringe filter (Millex-GP syringe filter, Millipore, Billerica, MA, USA) to remove microbes
followed by a 3 kDa ultra-centrifugal filter (Amicon ultra-centrifugal filter, Millipore,
Billerica, MA, USA) to remove any excess proteins. To 207 L of the filtrate, 23 L of an internal
standard (5 mM DSS-d6 (trimethyl-silyl-propane-sulfonate) containing 0.2% NaN3 in 99.8%
D2O was added to aid in quantification of metabolites. The pH of each sample was adjusted
to 6.8 ± 0.1 through addition of small amounts of NaOH or HCl. Samples were transferred
to 3 mm Bruker NMR tubes (Bruker, Brillerica, MA, USA) and stored at 4ºC until spectral
acquisition. Nuclear magnetic resonance (NMR) spectra were acquired using a Bruker
Avance 600 MHz NMR spectrometer equipped with a SampleJet autosampler (Bruker
BioSpin, Billerica, MA USA) at 298 K using the NOESY 1H pre-saturation experiment
(‘noesypr1d’). Data were acquired with a spectral width of 12 ppm, a 2.5-s acquisition
time, a relaxation delay of 2.5 s, and a 100-millisecond mixing time using 32 transients and
8 dummy scans. Water saturation was applied during the relaxation delay and mixing
time. Each spectrum was Fourier Transformed with zero filling to 128,000 data points, and
the resulting Free Induction Decay (FID) was transformed with an exponential apodization
function corresponding to a line-broadening of 0.5 Hz. Spectra were subsequently phased
and baseline corrected using Chenomx NMRSuite Processor v8.3 (Chenomx Inc., Edmonton,
AB, Canada). Metabolites were identified and quantified based on the known concentration
of the internal standard, using Chenomx NMRSuite Profiler v8.3 based on the established
method of targeted profiling [41]. All compounds in the database have been verified against
known concentrations of reference NMR spectra of pure compounds, and this method has
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been shown to be reproducible and accurate [42,43]. The measured concentrations were
corrected as described in He et al. [44].

2.10. Statistical Analysis

Primary outcomes for this study were considered to be between-group differences
between the components of the GSRS and the Bristol Stool Chart with secondary outcomes
being the metabolomic analysis. No between-gender analysis was completed due to low
sample size. All analysis was completed with both genders collapsed using Microsoft Excel
and the Statistical Package for the Social Sciences (v23; SPSS Inc., Chicago, IL, USA). Before
any statistical tests were completed normality was assessed for all dependent variables. All
non-normal data was log-transformed and then analyzed using both parametric and non-
parametric approaches. For all dependent measures, descriptive statistics are presented
herein as mean ± standard deviations. When the normality assumption was met, paired
samples t-tests were computed using the post-pre changes for all variables and data was
presented as means ± standard deviation. When the normality assumption was not met,
Wilcoxon signed rank tests were completed using post-pre changes for all variables. For all
statistical tests, data was considered statistically significant when the probability of type I
error was 0.05 or less. A p-value between 0.05–0.10 was considered to be a statistical trend.
Using this approach, no situations arose where the final statistical decision was different,
whether a parametric or non-parametric approach was used. As such, between-group effect
sizes, p-values, and 95% confidence intervals were computed to accompany traditional
hypothesis testing outcomes.

To determine significant differences between bacterial alpha diversity metrics (the
measure of microbiome diversity within a single sample), a paired t-test was used between
alpha diversity values of different sample groups (p < 0.05). Significant differences in
beta diversity (the measure of similarity or dissimilarity of multiple samples) between
groups was also determined using the qiime diversity beta-group-significance command
in QIIME2, which performs pairwise Permutational Multivariate Analysis of Variance
(PERMANOVA) tests on beta diversity distance matrices (p < 0.05). Differential abundance
of taxa between sample groups were evaluated using Multivariate Analysis by Linear
Models (MaAsLin) in R version 4.0.2 [45] using the Maaslin2 command in the Maaslin2
R library [46] on rarified taxonomy data generated by QIIME2 (p < 0.05). Additional
evaluation of differential abundance of taxa was performed using Analysis of Composition
of Microbiomes (ANCOM) using the qiime composition ancom command after collapsing
the feature table to the family level (level 5) using the qiime taxa collapse command on
QIIME2 [47]. Data visualization was performed using the ggplot2 package, with data
frame manipulation commands from the dplyr package, within the tidyverse collection of
R packages [48].

3. Results
3.1. Adverse Events

No formalized approach to recording adverse events was completed primarily because
gastrointestinal symptoms were being recorded four times throughout the study protocol.
Nonetheless, participants were asked during each visit if they experienced any other
adverse events associated with the research study that they needed to report and no other
adverse events were reported.

3.2. Supplement Compliance

Compliance for the collection of dietary, physical activity data, and fecal samples
were recorded throughout the protocol. Overall compliance for the entire study cohort
across both conditions was calculated to be 86% with compliance exhibited by individual
participants ranging from 50–100%. One male and one female participant during the
glucosamine condition failed to turn in any diet, physical, or fecal sample compliance
information. One female during the glucosamine condition, did not turn in food or physical
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activity records and in the placebo condition did not turn in any post-supplementation diet
or physical activity records.

3.3. Baseline Differences

Eleven people completed the entire study protocol. In support of the crossover
approach and washout creating homogenous cohorts at the start of supplementation, no
differences in baseline levels of all dependent variables were observed (p = 0.13–1.000).
Only one value (GSRS rating for Hard Stools) tended to be different (p = 0.08). Additionally,
mixed factorial ANOVA revealed no significant order x condition interactions for all
dependent variables.

3.4. Participant Demographics and Hemodynamics

Table 1 contains body mass, sleep, physical activity, hemodynamic, and dietary data
for all participants. No between-group or within-group differences were identified for any
of these variables.

Table 1. Participant Demographics, Hemodynamics, and Dietary Intake.

PLA GLU PLA vs. GLU

Pre Post p Pre Post p p

Body Mass (kg) 77.0 ± 13.3 76.6 ± 12.6 0.15 76.5 ± 12.7 76.8 ± 12.5 0.60 0.43
Heart Rate (beats/min) 66.8 ± 10.4 65.8 ± 7.9 0.69 66.8 ± 7.7 63.1 ± 8.1 0.22 0.62

Systolic BP (mmHg) 123.6 ± 12.2 116.7 ± 13.3 0.04 121.7 ± 14.2 119.4 ± 10.8 0.60 0.09
Diastolic BP (mmHg) 74.3 ± 7.0 72.1 ± 8.2 0.02 73.9 ± 9.3 77.0 ± 9.8 0.33 0.11

Physical Activity
(min/day) 51 ± 29 53 ± 29 0.90 45 ± 24 32 ± 20 0.33 0.56

Energy (kcal/day) 2037 ± 621 2091 ± 742 0.32 2146 ± 663 2085 ± 530 0.82 0.92
Carbohydrate (g/day) 213 ± 50 210 ± 91 0.76 209 ± 69 189 ± 36 0.80 0.82

Protein (g/day) 124 ± 68 118 ± 51 0.78 124 ± 52 123 ± 46 0.93 0.90
Fat (g/day) 75 ± 28 87 ± 35 0.08 89 ± 14 91 ± 36 0.35 0.86

Placebo (PLA); Glucosamine (GLU).

3.5. Bristol Stool Chart

No significant changes in Bristol Stool chart ratings were observed within the PLA
(p = 0.10) and GLU (p = 0.10) or between group (p = 0.20) (Table 2).
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Table 2. Bristol Stool Chart and Gastrointestinal Symptom Rating Scale.

PLA GLU PLA vs. GLU

Pre Post p d Pre Post p d p * % d 95% CI

Bristol Stool 3.1 ± 0.8 4.0 ± 1.4 0.10 0.79 3.3 ± 0.8 3.6 ± 0.8 0.10 0.38 0.20 −19.9 −0.61 (−1.83, 0.74)

GSRS1 1.3 ± 0.6 1.5 ± 0.7 0.08 0.31 1.2 ± 0.4 1.5 ± 0.7 0.18 0.53 1.00 31.3 0.69 (−0.42, 0.42)
GSRS2 1.0 ± 0.0 1.1 ± 0.3 0.32 0.47 1.1 ± 0.3 1.2 ± 0.4 0.56 0.28 1.00 −0.9 0.00 (−0.30, 0.30)
GSRS3 1.0 ± 0.0 1.0 ± 0.0 1.00 0.00 1.0 ± 0.0 1.2 ± 0.4 0.16 0.71 0.16 20.0 1.00 (−0.09, 0.45)
GSRS4 1.6 ± 0.7 1.2 ± 0.4 0.05 0.70 1.8 ± 1.0 1.2 ± 0.4 0.08 0.79 0.45 −11.3 −0.41 (−1.07, 0.53)
GSRS5 1.5 ± 1.2 1.3 ± 0.5 0.71 0.22 1.3 ± 0.9 1.6 ± 1.2 0.32 0.28 0.33 35.4 0.48 (−0.46, 1.37)
GSRS6 1.1 ± 0.3 1.2 ± 0.4 0.32 0.28 1.5 ± 0.7 2.2 ± 1.3 0.10 0.67 0.16 37.6 0.77 (−0.32, 1.41)
GSRS7 1.7 ± 1.3 2.4 ± 1.3 0.03 0.54 1.9 ± 1.2 2.1 ± 1.2 0.32 0.17 0.03 −30.7 −0.40 (−0.81, −0.10)
GSRS8 1.0 ± 0.0 1.1 ± 0.3 0.32 0.47 1.2 ± 0.4 1.2 ± 0.4 1.0 0.00 0.56 −10 −0.31 (−0.45, 0.27)
GSRS9 2.1 ± 1.1 2.6 ± 1.5 0.25 0.38 1.8 ± 0.8 2.5 ± 1.2 0.08 0.69 0.87 8.8 0.08 (−1.51, 1.69)

GSRS10 1.1 ± 0.3 1.4 ± 0.5 0.18 0.73 1.8 ± 1.4 1.1 ± 0.3 0.10 0.69 0.10 −64.9 −1.29 (−2.20, 0.20)
GSRS11 1.0 ± 0.0 1.2 ± 0.4 0.16 0.71 1.0 ± 0.0 1.7 ± 1.6 0.11 0.62 0.29 55.0 0.68 (−0.55, 1.64)
GSRS12 *** *** *** *** *** *** *** *** *** *** *** ***
GSRS13 1.3 ± 0.7 1.1 ± 0.3 0.41 0.37 1.6 ± 1.0 1.1 ± 0.3 0.10 0.68 0.08 −15.5 −0.43 (−0.59, 0.04)
GSRS14 1.0 ± 0.0 1.1 ± 0.3 0.32 0.47 1.3 ± 0.9 1.6 ± 0.9 0.08 0.33 0.16 13.0 0.29 (−0.09, 0.45)
GSRS15 1.4 ± 0.7 1.2 ± 0.4 0.48 0.35 1.7 ± 1.1 1.1 ± 0.3 0.07 0.74 0.20 −23.8 −0.67 (−1.21, 0.30)

Diarrhea 2.0 ± 0.0 2.3 ± 0.7 0.18 0.61 2.3 ± 0.9 3.3 ± 1.6 0.02 0.77 0.13 30.6 0.76 (−0.36, 1.81)
Ingestion 5.9 ± 2.1 7.3 ± 2.8 0.09 0.57 6.5 ± 2.5 7.9 ± 3.0 0.07 0.51 0.88 −0.4 0.04 (−2.52, 2.70)

Constipation 3.7 ± 1.3 3.6 ± 0.8 0.93 0.09 5.1 ± 3.5 3.3 ± 0.9 0.07 0.70 0.06 −33.3 −0.89 (−3.70, 0.24)
Abdom Pain 4.3 ± 1.9 4.0 ± 1.2 0.55 0.19 4.3 ± 1.7 4.2 ± 1.7 0.67 0.06 0.86 4.2 0.11 (−1.05, 1.41)

Reflux 2.0 ± 0.0 2.1 ± 0.3 0.32 0.47 2.1 ± 0.3 2.4 ± 0.7 0.18 0.56 0.16 8.4 0.45 (−0.09, 0.45)

Values inside table are means ± standard deviations for each specified variable and timepoint. Bold-type face = Between-group difference
(p < 0.05). * = p-value computed using non-parametric statistical approaches (Wilcoxon-signed rank test). GSRS1 = Pain and discomfort
in upper abdomen or stomach; GSRS2 = Heartburn; GSRS3 = Acid reflux; GSRS4 = Hunger pangs; GSRS5 = Nausea; GSRS6 = Stomach
rumbling; GSRS7 = Stomach bloating; GSRS8 = Burping; GSRS9 = Passing gas or flatulence; GSRS10 = Constipation; GSRS11 = Diarrhea;
GSRS 12 = (***) Was not assessed due to technical error; GSRS13 = Hard stools; GSRS14 = Urgent need to have a bowel movement; GSRS15
= Sensation of not completely emptying the bowels; Diarrhea = Combined score of GSRS11 and GSRS14; Ingestion = Combined score of
GSRS6, GSRS7, GSRS8, and GSRS9; Constipation = Combined score of GSRS10, GSRS13, and GSRS14; Abdom Pain = Combined score of
GSRS 1, GSRS4, and GSRS5; Reflux = Combined score of GSRS2 and GSRS3.

3.6. Gastrointestinal Symptom Rating Scale

Significantly greater increases in stomach bloating (GSRS7) were reported in the PLA
group when compared to changes observed in GLU (condition x time, p = 0.03). Addi-
tionally, stomach bloating ratings in PLA significantly increased (p = 0.03) from baseline
while no changes were observed (p = 0.32) in GLU. Both ‘Constipation’ (GSRS10, p = 0.10)
and ‘Hard Stools’ (GSRS13, p = 0.08) exhibited a trend for the changes observed during
supplementation to be different between groups. Within-group changes for ‘Constipation’
indicated a decrease in GLU (Pre: 1.82 ± 1.4 vs. Post: 1.09 ± 0.3, p = 0.10) while values
reported for PLA increased (Pre: 1.09 ± 0.3 vs. Post: 1.36 ± 0.5, p = 0.18). Additionally,
within-group changes for ‘Hard Stools’ showed a larger decrease in GLU (Pre: 1.55 ± 1.04
vs. Post: 1.09 ± 0.3, p = 0.10) when compared to changes observed in PLA (Pre: 1.27 ± 0.65
vs. Post: 1.09 ± 0.3, p = 0.41). No other GSRS variables exhibited changes between groups
as a result of supplementation. Notably, other GSRS variables for both PLA and GLU
exhibited tendencies (p = 0.05 to 0.10) to change from their baseline scores. ‘Constipation
Syndrome’ exhibited a trend for the changes observed between GLU and PLA to be dif-
ferent (p = 0.06). In this respect, changes in GLU tended to decrease from baseline (Pre:
5.09 ± 3.45 vs. Post: 3.27 ± 0.9, p = 0.07) while no change was observed in PLA (Pre:
3.73 ± 1.27 vs. Post: 3.64 ± 0.81, p = 0.93). Interestingly, both PLA and GLU observed
similar increases (a negative change) in the ingestion syndrome (p = 0.07 for both GLU and
PLA), but no between-group changes were observed (p = 0.88). All other GSRS changes are
observed in Table 2. One male participant during the Glucosamine condition self-reported
increased frequency and severity of diarrhea secondary to international travel during his
supplementation protocol. His results have not been removed from the analysis.

3.7. Fecal Microbiota Diversity

Longitudinal analysis showed that the alpha diversity of the bacterial communities
in the fecal contents was significantly decreased following GLU consumption compared
to baseline values (Faith’s Phylogenetic Diversity (PD), paired t-test, treatment + time,
p = 4.59 × 10−3) (Figure 3A). By comparison, Faith’s PD did not change over time when
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PLA was consumed (Figure 3A). The other alpha diversity measures (Observed OTUs
or Shannon Evenness) were not significantly altered by the inclusion of either GLU or
PLA into the diet (p > 0.05, paired t-test). Although bacterial beta diversity as assessed by
unweighted Unifrac distances showed that the fecal microbiota changed over time between
fecal samples collected before and after GLU or PLA consumption (Figure 3B), the changes
in beta-diversity were not significantly different compared to baseline (PERMANOVA,
p > 0.05). No significant differences in fecal microbiota diversity according to the weighted
Unifrac and Bray-Curtis Dissimilarity metrics (p > 0.05, PERMANOVA) were found.

Nutrients 2021, 13, 2180 11 of 18 
 

 

 

Figure 3. Intestinal microbiota diversity before and after glucosamine consumption. (A) Faith’s Phylogenetic Diversity of 

bacterial contents in fecal samples before and after PLA and GLU consumption, with points representing individual fecal 

sample communities. Bacterial composition before and after GLU treatment was significantly different (* Student t-test, p 

< 0.05). (B) Principal Coordinates Analysis (PCoA) of bacterial beta-diversity according to the unweighted UniFrac metric. 

The solid black lines connect the fecal microbiota from one individual at each of the four fecal collection time points. The 

dots for each condition are color coordinated whereby the light and dark blue dots are the Pre and Post-Supplementation 

GLU samples, respectively. Similarly, the pink and dark red dots are Pre and Post PLA samples, respectively. 

Lachnospiraceae and Ruminococcaceae (Firmicutes) and Bactroidaceae (Bacteroidetes) 

families comprised the majority of bacterial taxa present in the fecal contents (84.8 ± 4.7% 

combined relative abundance) (Figure 4). No other bacterial families were present at an 

average relative abundance higher than 5% in any of the fecal samples. Comparisons be-

tween the fecal microbiota contents showed that the levels of Enterococcaceae and Lactococ-

cus were variable, but not in a manner that was associated with GLU consumption (Figure 

5). Among the other taxa identified, lower proportions of Pseudomonadaceae (p = 0.014, Log2 

FC = −1.05), Peptococcaceae (p = 0.021, Log2 FC = −4.52), and Bacillaceae (p = 0.038, not de-

tected post-GLU), and were found after GLU intake compared to baseline (GLU (Pre)) 

(Figure 5). By comparison, there were no significant differences in bacterial composition 

after PLA ingestion compared to PLA (Pre) (MaAsLin p > 0.05). Additionally, levels of 

Peptococcaceae and Bacillaceae were also significantly reduced after GLU intake compared 

to either before (PLA (Pre)) or after PLA (PLA (Post)) consumption (Figure 5). While the 

proportions of those two families were also lower at GLU (Pre) baseline compared to the 

PLA (Post) time point, those differences were not significant (MaAsLin, p > 0.05). 

 

Figure 4. Relative abundance of bacteria shown at the family level. Proportions of individual bacte-

rial families pre- and post-GLU and -PLA consumption. ASVs were combined if their family-level 

taxonomic designations were identical. The seventeen most abundant bacterial families are anno-

tated, with all other taxa grouped under the annotation of “Other”. 

A B

Figure 3. Intestinal microbiota diversity before and after glucosamine consumption. (A) Faith’s Phylogenetic Diversity of
bacterial contents in fecal samples before and after PLA and GLU consumption, with points representing individual fecal
sample communities. Bacterial composition before and after GLU treatment was significantly different (* Student t-test,
p < 0.05). (B) Principal Coordinates Analysis (PCoA) of bacterial beta-diversity according to the unweighted UniFrac metric.
The solid black lines connect the fecal microbiota from one individual at each of the four fecal collection time points. The
dots for each condition are color coordinated whereby the light and dark blue dots are the Pre and Post-Supplementation
GLU samples, respectively. Similarly, the pink and dark red dots are Pre and Post PLA samples, respectively.

Lachnospiraceae and Ruminococcaceae (Firmicutes) and Bactroidaceae (Bacteroidetes) fam-
ilies comprised the majority of bacterial taxa present in the fecal contents (84.8 ± 4.7%
combined relative abundance) (Figure 4). No other bacterial families were present at
an average relative abundance higher than 5% in any of the fecal samples. Compar-
isons between the fecal microbiota contents showed that the levels of Enterococcaceae and
Lactococcus were variable, but not in a manner that was associated with GLU consump-
tion (Figure 5). Among the other taxa identified, lower proportions of Pseudomonadaceae
(p = 0.014, Log2 FC = −1.05), Peptococcaceae (p = 0.021, Log2 FC = −4.52), and Bacillaceae
(p = 0.038, not detected post-GLU), and were found after GLU intake compared to baseline
(GLU (Pre)) (Figure 5). By comparison, there were no significant differences in bacterial
composition after PLA ingestion compared to PLA (Pre) (MaAsLin p > 0.05). Additionally,
levels of Peptococcaceae and Bacillaceae were also significantly reduced after GLU intake com-
pared to either before (PLA (Pre)) or after PLA (PLA (Post)) consumption (Figure 5). While
the proportions of those two families were also lower at GLU (Pre) baseline compared to
the PLA (Post) time point, those differences were not significant (MaAsLin, p > 0.05).
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Figure 4. Relative abundance of bacteria shown at the family level. Proportions of individual
bacterial families pre- and post-GLU and -PLA consumption. ASVs were combined if their family-
level taxonomic designations were identical. The seventeen most abundant bacterial families are
annotated, with all other taxa grouped under the annotation of “Other”.
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Figure 5. Bacterial taxa present in significantly different proportions in fecal contents before and after PLA and GLU
supplementation. The white background for Enterococcaceae and Lactococcus indicates that these taxa were present in
significantly different proportions between PLA and GLU (PRE). The yellow background for Pseudomonadaceae denotes a
significant difference between GLU (Pre) and GLU (Post). The purple background for Peptococcaceae and Bacillaceae denotes
a significant difference for GLU (Post) compared to GLU (Pre) as well as to both PLA (Pre) and PLA (Post). Taxa were
compared using MaAsLin (p < 0.05).

3.8. Fecal Metabolome

GLU and PLA supplementation had no effect on individual or total short-chain fatty
acids (p > 0.05) (Table 3).
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Table 3. Fecal Short-Chain Fatty Acids.

PLA vs. GLU

PLA GLU p‡ % d 95% CI

Formate Pre 244 ± 116 d = 0.09 298 ± 166 d = 0.43 0.25 30.7 0.49 (−270, 81)
Post 255 ± 135 p * = 0.56 403 ± 299 p * = 0.20

Acetate Pre 55,604 ± 17,431 d = 0.19 40,675 ± 12,876 d = 0.25 0.90 0.5 −0.05 (−14,026, 15,644)
Post 59,417 ± 22,185 p * = 0.70 43,680 ± 11,351 p * = 0.46

Propionate Pre 15,419 ± 8193 d = 0.18 12,596 ± 4145 d = 0.01 0.48 −10.0 −0.22 (−3303, 6411)
Post 17,040 ± 9419 p * = 0.86 12,663 ± 5766 p * = 0.96

Butyrate Pre 15,244 ± 9517 d = 0.08 11,370 ± 5781 d = 0.35 0.51 14.3 0.19 (−6234, 3366)
Post 15,978 ± 7809 p * = 0.87 13,538 ± 6558 p * = 0.14

Iso-butyrate Pre 1787 ± 984 d = 0.45 2097 ± 887 d = 0.12 0.11 −38.6 −0.59 (−193, 1612)
Post 2356 ± 1474 p * = 0.52 1956 ± 1334 p * = 0.73

Isovalerate Pre 1542 ± 967 d = 0.37 1885 ± 886 d = 0.16 0.09 −18.9 −0.33 (−365, 1377)
Post 1956 ± 1226 p * = 0.68 1712 ± 1304 p * = 0.67

Valerate Pre 2674 ± 1362 d = 0.24 2691 ± 1314 d = 0.08 0.22 −36.0 −0.53 (−110, 1283)
Post 3063 ± 1833 p * = 0.80 2574 ± 1519 p * = 0.78

Total SCFA
Pre 92,514 ± 35,299 d = 0.20 71,612 ± 22,891 d = 0.20 0.81 −1.3 −0.08 (−21,884, 27,156)
Post 100,064 ± 41,479 p * = 0.80 76,527 ± 25,492 p * = 0.49

Values inside table are means ± standard deviations for each specified variable and time point. * = p-value computed using paired samples
t-test. ‡ p-value computed using 2 × 2 within-within factorial ANOVA.

Compared to baseline, GLU supplementation significantly reduced fecal glutamate,
isoleucine, leucine and valine content (p < 0.05), as well as total branched-chain amino
acid (−24%, p < 0.05), and total amino acids (−21%, p < 0.05). No significant changes
were observed for any of the individual or total amino acids in the control group (p > 0.05)
(Table 4).

Table 4. Fecal Amino Acids.

PLA vs. GLU

PLA GLU p ‡ % d 95% CI

Alanine Pre 2503 ± 1098 d = 0.31 2667 ± 1134 d = 0.46 0.24 −33.4 −0.72 (−688, 2415)
Post 2928 ± 1636 p * = 0.62 2228 ± 721 p * = 0.16

Glutamate Pre 7857 ± 2856 d = 0.20 8882 ± 3831 d = 0.78 0.01 −30.7 −0.90 (801, 4504)
Post 8400 ± 2641 p * = 0.68 6773 ± 2223 p * = 0.04

Glycine Pre 1082 ± 438 d = 0.27 1207 ± 514 d = 0.53 0.22 −34.5 −0.76 (−293, 1091)
Post 1238 ± 684 p * = 0.63 965 ± 399 p * = 0.09

Isoleucine Pre 904 ± 402 d = 0.28 1029 ± 462 d = 0.59 0.17 −40.5 −0.84 (−202, 995)
Post 1049 ± 603 p * = 0.50 777 ± 388 p * = 0.05

Leucine Pre 1303 ± 611 d = 0.10 1422 ± 622 d = 0.58 0.23 −28.4 −0.64 (−307, 1101)
Post 1372 ± 737 p * = 0.68 1094 ± 496 p * = 0.05

Lysine Pre 1658 ± 748 d = 0.22 1834 ± 815 d = 0.55 0.07 −32.1 −0.73 (−56, 1194)
Post 1847 ± 943 p * = 0.59 1454 ± 554 p * = 0.11

Methionine Pre 374 ± 367 d = 0.08 424 ± 290 d = 0.28 0.55 −23.7 −0.18 (−263, 458)
Post 399 ± 292 p * = 0.84 352 ± 210 p * = 0.15

Phenylalanine Pre 625 ± 311 d = 0.04 629 ± 280 d = 0.34 0.52 −15.6 −0.34 (−237, 434)
Post 638 ± 331 p * = 0.70 544 ± 208 p * = 0.26

Proline Pre 709 ± 304 d = 0.02 687 ± 280 d = 0.11 0.85 −5.7 −0.12 (−413, 493)
Post 716 ± 383 p * = 0.99 654 ± 326 p * = 0.63

Threonine Pre 768 ± 311 d = 0.22 831 ± 355 d = 0.56 0.16 −31.8 −0.73 (−127, 641)
Post 853 ± 455 p * = 0.53 659 ± 252 p * = 0.14

Tyrosine Pre 789 ± 468 d = 0.21 874 ± 394 d = 0.49 0.16 −30.5 −0.66 (−128, 640)
Post 879 ± 387 p * = 0.60 707 ± 273 p * = 0.14

Valine Pre 1180 ± 507 d = 0.30 1351 ± 610 d = 0.65 0.15 −42.4 −0.90 (−239, 1329)
Post 1376 ± 791 p * = 0.46 1003 ± 451 p * = 0.03

Total BCAAs
Pre 3386 ± 1502 d = 0.22 3802 ± 1674 d = 0.62 0.18 −36.5 −0.80 (−3413, 735)
Post 3796 ± 2123 p * = 0.54 2873 ± 1312 p * = 0.04

Total AA Pre 19,752 ± 7608 d = 0.24 21,838 ± 8104 d = 0.68 0.06 −31.0 −0.89 (−246, 13,390)
Post 21,694 ± 8345 p * = 0.59 17,208 ± 5190 p * = 0.02

Values inside table are means ± standard deviations for each specified variable and time point. Bold-type face = Between-group difference
(p < 0.05). * = p-value computed using paired samples t-test. ‡ p-value computed using 2 × 2 within-within factorial ANOVA.
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PLA supplementation did not result in any significant changes of miscellaneous fecal
metabolites (p > 0.05) (Table 5). GLU supplementation significantly reduced nucleotides
compared to baseline (uracil, p = 0.02), and between groups (ribose, p = 0.01 and uracil,
p = 0.04). No GLU was detected in either group.

Table 5. Misc. Fecal Metabolites.

PLA vs. GLU

PLA p * GLU p * p‡ % d 95% CI

Amino Acid Breakdown Products

Cadaverine Pre 157 ± 76 d = 0.58 170 ± 52 d = 0.09 0.23 −29.1 −0.73 (−35, 128)
Post 198 ± 66 p * = 0.30 165 ± 56 p * = 0.80

Putrescine Pre 90 ± 84 d = 0.17 92 ± 59 d = 0.38 0.88 5.0 0.06 (−79, 69)
Post 108 ± 120 p * = 0.69 115 ± 61 p * = 0.20

p-Cresol Pre 464 ± 298 d = 0.25 597 ± 330 d = 0.10 0.29 −27.7 −0.34 (−144, 421)
Post 557 ± 421 p * = 0.98 551 ± 537 p * = 0.72

Urocanate Pre 103 ± 29 d = 0.46 104 ± 57 d = 0.36 0.17 −38.7 −0.81 (−21, 100)
Post 124 ± 58 p * = 0.21 85 ± 48 p * = 0.30

Nucleotide Breakdown Products

Hypoxanthine Pre 392 ± 224 d = 0.13 414 ± 190 d = 0.53 0.22 −27.1 −0.59 (−83, 317)
Post 420 ± 222 p * = 0.73 325 ± 143 p * = 0.06

Ribose Pre 1110 ± 552 d = 0.74 1428 ± 760 d = 0.15 0.01 −37.4 −0.77 (158, 714)
Post 1450 ± 339 p * = 0.07 1332 ± 533 p * = 0.65

Uracil Pre 866 ± 425 d = 0.17 922 ± 352 d = 0.74 0.04 −34.7 −0.81 (26, 604)
Post 943 ± 469 p * = 0.65 684 ± 287 p * = 0.02

Microbially Produced Fermentation Products

Ethanol Pre 1293 ± 2442 d = 0.45 169 ± 98 d = 0.69 0.33 123.7 0.71 (−2940, 1108)
Post 481 ± 784 p * = 0.43 272 ± 187 p * = 0.04

Fumarate Pre 175 ± 75 d = 0.41 225 ± 151 d = 0.05 0.40 −29.4 −0.43 (−84, 190)
Post 221 ± 139 p * = 0.19 218 ± 115 p * = 0.84

Lactate Pre 38 ± 20 d = 0.50 60 ± 49 d = 0.40 0.56 107.7 0.40 (−394, 229)
Post 68 ± 82 p * = 0.47 172 ± 396 p * = 0.43

Methionine-sulfoxide
Pre 241 ± 166 d = 0.19 258 ± 191 d = 0.33 0.29 37.4 −0.51 (−95, 282)
Post 278 ± 222 p * = 0.42 202 ± 149 p * = 0.39

Phenylacetate Pre 888 ± 577 d = 0.28 1095 ± 511 d = 0.27 0.22 −30.6 −0.4 (−210, 791)
Post 1082 ± 772 p * = 0.78 999 ± 786 p * = 0.70

Succinate Pre 924 ± 642 d = 0.15 635 ± 289 d = 0.34 0.94 8.0 0.03 (−497, 462)
Post 1029 ± 712 p * = 0.99 758 ± 430 p * = 0.48

Likely Host Derived

3-Hydroxybutyrate Pre 74 ± 37 d = 0.35 89 ± 62 d = 0.26 0.98 4.3 0.02 (−60, 58)
Post 60 ± 42 p * = 0.53 76 ± 35 p * = 0.41

N-Acetylglucosamine Pre 260 ± 216 d = 0.12 249 ± 147 d = 0.41 0.56 −34.9 −0.48 (−248, 425)
Post 286 ± 207 p * = 0.81 187 ± 152 p * = 0.16

Likely Diet Derived

Glucosamine Pre n.d. n.d.
Post n.d. n.d.

Glucose Pre 3650 ± 3069 d = 0.16 2229 ± 2054 d = 0.45 0.38 61.4 0.59 (−5329, 2252)
Post 3217 ± 2414 p * = 0.90 3334 ± 2753 p * = 0.23

Glycerol Pre 6013 ± 2267 d = 0.22 7458 ± 7347 d = 0.18 0.55 −33.0 −0.40 (−5965, 10,342)
Post 7141 ± 7055 p * = 0.62 6397 ± 3575 p * = 0.47

Nicotinate Pre 371 ± 153 d = 0.31 327 ± 162 d = 0.41 0.76 −6.6 −0.13 (−105, 139)
Post 332 ± 95 p * = 0.27 271 ± 106 p * = 0.23

Xylose Pre 594 ± 317 d = 0.23 441 ± 420 d = 0.54 0.23 70.8 0.82 (−912, 250)
Post 525 ± 271 p * = 0.83 702 ± 545 p * = 0.31

Values inside table are means ± standard deviations for each specified variable and time point. Bold-type face = Between-group
difference (p < 0.05). * = p-value computed using paired samples t-test. ‡ p-value computed using 2 × 2 within-within factorial ANOVA.
n.d. = non detectable.

4. Discussion

This study sought to determine the impact of a three-week glucosamine supplemen-
tation protocol on changes in stool quality, gastrointestinal symptoms, and microbiome
diversity, enrichment, and function. Our primary findings indicate that glucosamine ad-
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ministration resulted in favorable changes in stomach bloating in comparison to placebo,
while no changes in stool quality were observed. Additionally, changes in constipation
and hard stools tended to exhibit between-group differences that favored glucosamine
supplementation. Modest but significant alterations in bacterial composition in the fecal
samples were observed with glucosamine consumption, including reductions in alpha
diversity and reduced proportions of several bacterial taxa. These changes occurred in the
absence of observable modifications to the fecal metabolome. The findings of this study
suggest that benefits of glucosamine consumption may be partially related to modification
of the intestinal environment including the gut microbiota. Results from the present in-
vestigation are unique as they represent the first placebo-controlled data involving just
glucosamine supplementation in healthy subjects. In this respect, previous data by Coul-
son et al. [25] who had osteoarthritic patients supplement for 12 weeks with 3000 mg of
glucosamine align with our outcomes demonstrating some improvements in markers of
gastrointestinal symptoms.

The reduction in bacterial alpha-diversity (a metric of the total bacterial contents in
the fecal samples) with the inclusion of glucosamine in the diet is consistent with previous
reports where both glucosamine and chondroitin [26] or glucosamine and green lipped
muscle extract [25] were consumed. However, our other findings differed from these studies
including a lack of an effect on bacterial beta-diversity and differences between the affected
taxa compared with those prior reports. Specifically, we found significant reductions in
the proportions of Pseudomonadaceae, Peptococcaceae, and Bacillaceae in the fecal contents
when glucosamine was consumed compared to baseline samples. It is also notable that the
levels of Peptococcaceae and Bacillaceae were also significantly reduced after GLU compared
to before and after PLA consumption, thereby indicating a longitudinal and treatment
specific effect. Conversely, despite reductions in the proportions of these taxa, there was no
single bacterial genus or family that was enriched in the present study. These findings may
be due to glucosamine-mediated inhibition of certain bacterial taxa and the concurrent
(non-specific) enrichment of multiple bacterial species able to metabolize this compound.
Lastly, the cross-over, longitudinal design study and inclusion of baseline samples showed
how the bacterial contents within a single individual can change over time. Comparisons
of the baseline samples indicated significant variations in the abundance of Enterococcaceae
and Lactococcus suggesting that other factors may determine the levels of these taxa in the
distal intestine. While Navarro et al. [26] recruited healthy subjects, the differences in the
supplementation protocol (14 vs. 21 days, combination of glucosamine + chondroitin vs.
glucosamine alone, 1500 mg vs. 3000 mg dose and frequency of glucosamine, and the
source of glucosamine (shellfish-derived vs. fermentation)) may have led to differences in
our observed outcomes.

No GLU was detected in either group in the fecal metabolome analysis. The origin
of N-acetylglucosamine in the feces is not clear and is likely not to be derived from the
supplementary glucosamine, as N-acetylglucosamine is made by bacteria and used for
cell wall synthesis, or by the host, and is part of the extracellular matrix. Therefore, the
origin of this compound in the feces is not clear. Lower BCAA, total amino acids, and
glutamate could indicate increased absorption of those nutrients, increased utilization by
microbes, or decreased production, assuming that some of the amino acids come directly
from gut bacteria. Additionally, reduced nitrogen excretion could indicate reduced muscle
protein breakdown, potentially due to reduced inflammation. Gut microbiota-derived
metabolites affect many biological processes of the host, including appetite control and
weight management. Amino acids are among the gut microbiota-derived metabolites
which have previously demonstrated alterations in obesity, indicating potential alternative
health applications for glucosamine [49].

Future research is needed to better identify an optimal dosing regimen and to see
if other populations exhibit similar or different responses to our measured outcomes.
Strengths from our investigation center upon it being the first randomized, double-blind,
placebo-controlled trial to examine the impact of acute glucosamine supplementation on
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changes in fecal microbiota and the metabolome, in conjunction with changes in stool
quality and gastrointestinal outcomes. Our crossover design further limited between-group
variability and our dietary control approach leading up to the collection of each sample
was consistent with other study designs of this nature. However, our study was not
free of limitations as longer supplementation periods and greater sample sizes should be
investigated in future studies.

5. Conclusions

In conclusion, results from the first study to examine the impact of three weeks
of non-shellfish derived glucosamine supplementation against a placebo in a random-
ized, crossover fashion in healthy men and women revealed significant improvements in
functional outcomes such as stomach bloating in addition to a favorable trend towards
improvements in ratings of constipation and hard stools. Bacterial diversity in the fecal
contents was significantly decreased following GLU consumption compared to baseline
values. GLU supplementation significantly reduced individual and total branched-chain
amino acid excretion, with no effect on fecal short-chain fatty acid levels.
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