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Abstract

Robot-aided gait therapy offers a promising approach towards improving gait function in individuals with neurological
disorders such as stroke or spinal cord injury. However, incorporation of appropriate control strategies is essential for
actively engaging the patient in the therapeutic process. Although several control algorithms (such as assist-as-needed and
error augmentation) have been proposed to improve active patient participation, we hypothesize that the therapeutic
benefits of these control algorithms can be greatly enhanced if combined with a motor learning task to facilitate neural
reorganization and motor recovery. Here, we describe an active robotic training approach (patient-cooperative robotic gait
training combined with a motor learning task) using the Lokomat and pilot-tested whether this approach can enhance
active patient participation during training. Six neurologically intact adults and three chronic stroke survivors participated in
this pilot feasibility study. Participants walked in a Lokomat while simultaneously performing a foot target-tracking task that
necessitated greater hip and knee flexion during the swing phase of the gait. We computed the changes in tracking error as
a measure of motor performance and changes in muscle activation as a measure of active subject participation. Repeated
practice of the motor-learning task resulted in significant reductions in target-tracking error in all subjects. Muscle activation
was also significantly higher during active robotic training compared to simply walking in the robot. The data from stroke
participants also showed a trend similar to neurologically intact participants. These findings provide a proof-of-concept
demonstration that combining robotic gait training with a motor learning task enhances active participation.
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Introduction

Physical therapy is an important component of recovery after a

neurological injury, such as stroke or spinal cord injury [1]. With

the growing aging population and associated ailments, there is a

great demand for physical therapy services. Using robots to assist

in providing therapy is a promising approach to meet this

heightened demand [2].

There are several advantages in using robots to assist during

therapy. First, the dosage of therapy, which is a strong determinant

of neural plasticity and recovery, can be substantially increased.

Second, therapy can be provided in diverse and novel dynamic

environments, which may be critical for generalizing motor

recovery to tasks other than those that are practiced. Third, the

physical burden on the therapist can be greatly alleviated thereby

minimizing work-related injuries. Finally, patient performance and

progression can be objectively monitored using sensors built into

the robot.

While there are advantages in using a robot, there are also

challenges. A major challenge for robots is the need to at least

partly emulate the skills of a trained therapist [3]. Therapists, for

example, can assess each patient’s physical capacity and scale their

assistance based on the need. They can also provide resistance to

movements when appropriate. However, most robots are designed

to provide constant assistance without taking into account each

patient’s functional ability. As a result, therapy is not tailored to

each patient’s need and the ability of a robot to induce neural

plasticity is potentially negated.

One approach to overcome this limitation is to actively engage

the patient in the robotic training process. Researchers have

attempted to achieve this goal by incorporating control algorithms

that require the patient to actively initiate movements to perform

the task [4]. A good example is the development of patient-

cooperative control algorithm for the gait rehabilitation robot

called as the Lokomat [5], [6]. This algorithm allows the user to

control the amount of assistance provided by the robot during the

training process. Therefore, by reducing the amount of guidance

provided by the robot, the participant can be encouraged to

initiate active movements.

In addition to developing appropriate control algorithms,

another important component of therapy is to take advantage of

the plasticity in the nervous system. The corticospinal system has

the remarkable ability to undergo structural and functional

alterations in response to motor training [7], [8], [9], [10].

However, repetitive motor activity alone is not sufficient to drive

cortical reorganization. Ideally, motor training should also involve
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skill acquisition to induce neuronal plasticity that is indicative of

motor recovery [11]. Therefore, combining robotic interventions

with skill learning tasks is expected to augment cortical plasticity

and motor recovery. While the concept of combining robotic

training with a motor learning task to improve active participation

has been studied in the upper extremity [2], [12], there is a paucity

of research on this issue in the lower extremity. Moreover, a large

majority of research on the lower extremity have used tasks that

are clinically less relevant to improving function (such as single

joint movements), thereby questioning its applicability in individ-

uals with neurological disorders [13], [14]. Additionally, the few

studies that have combined robotic training with a functionally

relevant motor learning task have either used devices that are not

commercially available or have utilized suboptimal control

algorithms (e.g., gravity compensation) to minimize robot dynam-

ics and interaction forces [15], [16]. Further, it is not clear from

these studies whether incorporation of a motor learning task

actually improves active participation as motor output or physical

effort has not been quantified.

Therefore, the purpose of this study was to test the technical

feasibility (i.e., provide evidence of proof-of-concept) of combining

Lokomat-assisted walking with a functionally relevant motor

learning task in improving short-term motor performance and

active participation (note that motor performance refers to the

performance in the context of the given motor task and is not to be

confused with functional motor recovery). The novelty of the

current study is that we used a commercially available gait training

robot (i.e., the Lokomat) with sophisticated control algorithms to

effectively compensate for robot dynamics while performing the

motor learning task. Further, we evaluated muscle activation

patterns of several lower-extremity muscles as an indication of

active participation. The results of this pilot-study provide

evidence that this kind of active robotic training facilitates greater

participation and is a feasible way of modifying gait patterns when

walking in a robotic exoskeleton.

Materials and Methods

Participants
Six young adults (5 males and 1 female; Age: 30.464.4 years;

Height: 1.7160.04 meters; Weight: 66.465.4 kg) with no signs of

neurological or orthopedic impairment participated in the study.

All participants were right leg dominant as determined by their

preferred leg for kicking a ball [17], [18], [19], [20]. In addition,

data from 3 male chronic stroke survivors (Age: 51.365 years;

Height: 1.796.03 meters; Weight: 86.067.4 kg; Stroke duration:

2.463.2 years; Lower extremity Fugl-Meyer score: 24.067.2)

were also collected. The study procedures were approved by the

Northwestern University Human Subjects Research Institutional

Review Board. Prior to participation, all participants were

provided with a brief overview of the study and written informed

consent was obtained using a form approved by the Institutional

Review Board.

Experimental Protocol
The experiment was performed on a Lokomat system that

incorporated an advanced robotic control algorithm [5], [6]. The

Lokomat is a robotic gait training device that has been widely used

in the rehabilitation of individuals with neurological disorders. The

device is traditionally configured to be operated on a ‘position

control mode’ where the robot moves the legs of the participant

along a predetermined gait trajectory [21]. In general, the stiffness

of the robot is very high in this mode thereby enabling the robot to

impose the predefined motions with high repeatability and

precision. However, for the same reason, the patient has little

influence over the movement trajectories in this control mode.

On the other hand, the advanced control algorithm used here

(cooperative control) permits the device to function at low

impedance allowing the participant to overcome the forces exerted

by the robot. This control algorithm provides the user with the

ability to programmatically control the stiffness of the robot (from

full guidance to no guidance) using a graphical user interface.

When the robot is set to provide 100% guidance, the device will

essentially function as a position controlled robot with high

impedance (or stiffness), whereas when the robot is set to provide

0% guidance, the device will not provide any assistance to the

patient’s movements and will simply compensate for robot

dynamics, including inertia.

Prior to the experiment, surface electromyographic (EMG)

electrodes (Model MA-311, Motion Labs Systems, Inc., Baton

Rouge, LA, USA) were placed over the muscle bellies of vastus

medialis (VM), rectus femoris (RF), medial hamstring (MH), lateral

hamstring (LH), tibialis anterior (TA), medial gastrocnemius (MG),

soleus SO), and gluteus medius (GM) and tightly secured to the

skin using self-adhesive tapes and cohesive flexible bandages

(CoFlex, Andover Healthcare Inc., Salisbury, MA). The electrodes

were placed according to the guidelines established by the

international SENIAM initiative (www.seniam.org), except for

SO, for which the electrode was placed at 2/3rd of the line

between lateral femoral condyle and lateral malleolus located [22].

A common reference electrode was placed over the skin on the

dorsum of the hand. The quality of the EMG signals was visually

inspected to ensure that the electrodes were appropriately placed

and to verify that there were no movement or impact artifacts

during walking. The EMG signals were recorded for all the

neurologically intact individuals but on only one of the stroke

survivors.

The participant’s legs were then attached to the robotic legs

using the device’s pelvic strap and thigh and shank cuffs, according

to the manufacturer’s guidelines. The participant was positioned in

such a way that hip and knee joint axes were closely aligned to the

Lokomat’s hip and knee joint axes. The participant then

performed maximum voluntary contractions of their hip abduc-

tors, knee extensors, knee flexors, ankle dorsiflexors, and ankle

plantarflexors against a manually imposed resistance [23]. The

maximum contractions were needed for normalizing the EMG

data obtained during walking. After a 2-minute rest period, the

participant walked on a split-belt ADAL treadmill with embedded

force platforms (Techmachine, Andrezieux Boutheon, France) for

5 minutes to orient themselves to the robot and to achieve steady-

state behavior.

Following this brief orientation, baseline EMG and kinematic

data (hip and knee joint angles) were collected for two minutes

when the participant walked in the Lokomat with 10% guidance

force. The 10% guidance force was selected based on our pilot

work, which suggested that this force adequately compensated the

robot dynamics (i.e., inertia) and was most transparent to the

subjects without the robot hindering/assisting participant’s

intended motion. The kinematic data were recorded using the

potentiometers inbuilt in the Lokomat. The baseline kinematic

data were ensemble averaged and scaled to generate a target-

template trajectory. The target-template trajectory corresponded

to a gait pattern which required increasing the hip and knee joint

angle by a scale of 20% during the swing phase of the gait.

However, the target-template was displayed in the end-point space

instead of the joint space, i.e. it was a desired spatial path of the

participant’s lateral malleolus of the ankle on the sagittal plane

(Figure 1A) [15], [24], [25]. The position of the participant’s ankle

Active Robotic Gait Training

PLOS ONE | www.plosone.org 2 October 2013 | Volume 8 | Issue 10 | e77370



lateral malleolus (xa,ya), relative to greater trochanter, was

obtained by performing a forward kinematics analysis on the hip

and knee joint angles using the following equation:

xa

ya

� �
~

sin hh { sin (hk{hh)

{ cos hh { cos (hk{hh)

� �
l1

l2

� �

where l1 is thigh segment length, l2 is shank segment length, hh is

hip joint angle, and hk is knee joint angle (Figure 1A). A Hanning

window was also used to smooth any abrupt changes in the desired

target-template trajectory during the initial and final part of the

swing phase. The following formula was used to compute the

target-template trajectory from the baseline kinematic data:

xtarget

ytarget

� �
~

xba

yba

� �
z0:2

xhw

yhw

� �

where xhw, yhw represent the Hanning-windowed version of the

baseline trajectories (xba,yba). This target-template was then

displayed concurrently with the participant’s actual ankle trajec-

tory on a computer monitor placed in front of the participant. The

participant was then instructed to match the target continuously

for two minutes by modifying the kinematics of their dominant leg

(paretic leg in case of the stroke participants). The visual feedback

was displayed so that the entire series of ankle positions for one

whole gait cycle was visible on the screen (instead of just a single

point). The participant performed 5-blocks of target tracking with

each block alternated by a 2-minute block of walking with no

target-tracking. Thus, the total duration of the training was for

about 20 minutes. During the no target-tracking condition, no

visual feedback was provided and the participant was instructed to

walk in his/her natural pattern.

Data Analyses

Target-Tracking Error
In order to evaluate how well participants could track the target

template, we computed the target-tracking error for each block.

The target-tracking error was computed as the area that was not

common to both the reference trajectory (i.e., the target-template)

and the actual trajectory during each gait cycle using image

processing techniques in MATLAB (Mathworks, Natick, MA).

The error values obtained for each gait cycle were averaged to

obtain the mean error during target-tracking for a single block.

The resulting error was normalized to the error in target-tracking

during the 1st block of practice and was expressed as a percentage.

EMG Processing
To measure active subject participation in our robotic training

paradigm, we computed the mean EMG activation of the lower

extremity muscles during target-tracking and compared it to the

no target-tracking condition. The recorded raw EMG data from

baseline and target-tracking trials were band-pass filtered (20–

500 Hz), rectified, and smoothed using a zero phase-lag low pass

Butterworth digital filter (8th order, 6 Hz Cut-off). The resulting

EMG profiles for baseline and target-tracking trials were

normalized (using MVC contractions) and averaged across strides

and trials to compute mean EMG activity during these conditions.

We also divided the gait cycle in to 8 equal phases and computed

the average EMG activity during each phase (averaged across

Figure 1. Schematic representation of the active robotic training and a typical example of improvements in target-tracking
performance from a neurologically intact participant. (A) Schematic representation of the active robotic training paradigm. The training
paradigm consisted of two components: (1) walking in the Lokomat that utilized an advanced robotic control algorithm that minimized the amount
of guidance provided by the robot and (2) performing a target-tracking task during walking that involved matching their foot trajectory on the
sagittal plane (shaded region) to a target-template projected on a monitor placed in front of them. The instantaneous position of the participant’s
lateral malleolus, relative to greater trochanter, was computed by performing a forward kinematics on the hip (hh) and knee (hk) joint angles using
the participant’s thigh (l1) and shank (l2) segment length. The target-template corresponded to a gait pattern which required increasing the hip and
knee joint angle by a scale of 20% during the swing phase of the gait. (B) Example of target-tracking performance from a neurologically intact
participant at the beginning (block 1) and end of practice (block 5). Note the increase in target-tracking accuracy with practice.
doi:10.1371/journal.pone.0077370.g001
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strides and trials) to determine the approximate phases during

which the changes in EMG activation happened.

Statistical Analyses
All statistical analyses were performed using SPSS for windows

version 20.0 (SPSS Inc., Chicago, IL, USA). A formal statistical

analysis was performed only in the control participants and not in

the stroke participants. A one-factor repeated measures ANOVA

with practice block as a within-subjects factor was performed to

detect significant improvements in target-tracking performance

with practice. A significant main effect was followed by post-hoc

analysis using paired t-tests with Bonferonni correction. EMG data

were log transformed (logeEMG) prior to statistical analyses to

minimize skewness and heteroscedasticity [26], [27]. A two-factor

(walking condition and phase) repeated measures ANOVA for

each muscle was used to determine significant differences in

muscle activation between no target-tracking and target-tracking

conditions and to determine whether muscle activation was

modulated in a phase dependent manner. A significance level of

a=0.05 was set for statistical analyses. Estimates of effect size were

reported using partial g2
.

Results

Target-tracking Error
In the case of control participants, all participants were able to

reduce their target-tracking error with practice. An example of the

decrease in target-tracking error from a control participant is

shown in Figure 1B. Repeated measures ANOVA revealed a

significant main effect of practice block on target-tracking error

[F(4,20) = 9.066; P,0.001; partial g2 = 0.645; observed pow-

er = 0.996] (Figure 2A). Post-hoc analysis indicated that the

tracking-error was significantly lower in block 4 (P=0.01) and

block 5 (P=0.001) in comparison to block 1 of practice. The mean

reduction in tracking error over 5-blocks of practice was

43.6611.5%. In the case of stroke participants, two of them

showed good improvements in target-tracking performance (mean

reduction in error 35.8%, Figure 2B), whereas one participant

showed only a modest reduction in tracking error with practice

(13.5%, Figure 2B). An example of cycle-by-cycle error in target-

tracking from a stroke survivor is plotted in Figure 3.

Muscle Activation during Target-tracking
The mean magnitude of muscle activation was in general higher

(21% to 155%) during target-tracking than during no target-

tracking condition (Figure 4A). The repeated measures ANOVA

indicated that the changes in the magnitude of muscle activity

between no target-tracking and target-tracking conditions varied

based on the muscle tested. There was a significant main effect

(Figure 4A) of walking condition on lower extremity muscle

activation for the rectus femoris [F(1,5) = 8.021; P=0.037; partial

g2 = 0.616; observed power= 0.624], medial hamstring

[F(1,5) = 30.431; P=0.003; partial g2 = 0.859; observed pow-

er = 0.991], lateral hamstring [F(1,5) = 29.786; P=0.003; partial

g2 = 0.856; observed power = 0.989], and gluteus medius muscles

[F(1,5) = 14.591; P=0.012; g2 = 0.745; observed power= 0.859].

The repeated measures ANOVA also showed a significant

condition 6 phase interaction effect for the medial hamstring

[F(7,35) = 4.105; P=0.002; partial g2 = 0.451; observed pow-

er = 0.965], lateral hamstring [F(7,35) = 4.332; P=0.002; partial

g2 = 0.464; observed power= 0.974], tibialis anterior

[F(7,35) = 2.353; P=0.044; partial g2 = 0.320; observed pow-

er = 0.773], and soleus muscles [F(7,35) = 3.871; P=0.003; partial

g2 = 0.436; observed power= 0.954], indicating that the modula-

tion in activity of these muscles during target-tracking was phase-

dependent (Figure 5). The muscle activation profiles of the stroke

participant during target-tracking showed a trend similar to

controls, but were less profound, except for the tibialis anterior

muscle (Figure 4B).

Discussion

The purpose of this study was to evaluate the feasibility of

incorporating a motor learning task during Lokomat-assisted

walking and to test whether short-term motor performance and

active patient participation can be enhanced by this training

approach. The motor learning task comprised of tracking a target-

template that necessitated greater hip and knee motion during the

swing phase of the gait. We found that both neurologically intact

and stroke participants were able to perform the target-tracking

task and improve performance with practice. The target-tracking

task also resulted in an increase in active subject participation as

evidenced by greater muscle activation during this condition in

comparison to the baseline no target-tracking condition.

The inclusion of a motor learning task in the current approach

is based on a large body of evidence that suggests that the human

brain has a remarkable ability to undergo structural and functional

alterations (i.e., neuroplasticity) in response to motor training and

skill acquisition [7], [8], [9], [10]. Because neuroplasticity is critical

for recovery after a neurological injury, it has been suggested that

the same mechanisms underlying motor learning may also

contribute to motor recovery after injury [28], [29]. Although

the concept of motor learning and its importance to motor

recovery has been well studied in the upper extremity [30], [31],

[32], [33], [34], this has been relatively overlooked in the lower

extremity. This could be possibly due to the fact that walking is

considered to be an automatic activity, essentially requiring little

cognitive effort [35]. However, there is evidence to support that

plastic changes are also possible in the leg motor area following

motor skill training [36], [37]. The paradigm described in this

study provides an approach to incorporating a skill acquisition task

for the lower extremity and opens the opportunity to study the

effects of motor learning on neuroplasticity and recovery after

stroke. While we recognize that several studies have studied the

concept of motor adaptation (a form of motor learning) in a

functional task such as gait [38], [39], [40], [41], there have been

several lines of evidence that suggest that motor adaptation is

qualitatively different from skill acquisition and may contribute less

to motor recovery than skill learning [28], [42].

From the perspective of robotic training, active engagement of

the patient in the therapeutic process is a key component for

optimal recovery after stroke. Studies examining the clinical

efficacy of robot-aided gait therapy have shown mixed results [43],

[44], [45], [46], [47]. While the results are conflicting, there is a

consensus that robot-aided gait training is not demonstrably

superior to conventional therapy (when matched for dose) in

participants who have preserved ambulatory capacity [48].

Moreover, two recent major clinical trials in sub-acute and

chronic stroke survivors revealed that robot-aided gait rehabilita-

tion is substantially inferior to conventional rehabilitation [43],

[49]. A pervasive notion in the neuroscience community for the

lack of superior outcomes with robot-based interventions is that

the control algorithms used to provide therapy do not facilitate

active participation and interferes with motor learning [4]. For

example, most conventional gait training robots are controlled

using position-control algorithms where the robot imposes a

predefined gait pattern without taking participant’s volitional

effort into account. Studies have shown that excessive guidance

Active Robotic Gait Training
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from the robot makes the participant tend to remain passive and

results in a reduction of physical effort from the participant as the

robot provides full guidance to their limb movements [50].

Physical guidance to movements is also known to impair motor

learning due to reduced intralimb kinematic variability during

locomotor training [51]. The use of patient-cooperative control

strategy is known to improve active patient participation (as

measured through EMG activation) in the training [52]. More-

over, it also induces larger kinematic variability than a position-

control strategy, which may also enhance motor recovery [52].

Here, we show that the addition of a motor learning task on top of

a patient-cooperative control strategy further increases active

participation by inducing greater muscle activation. Therefore, it

is expected that the proposed active robotic training paradigm

would augment therapeutic outcomes to a larger extent than the

patient-cooperative robotic training, which has already demon-

strated some superiority over the conventional robotic training

using position control algorithms [52], [53].

It is to be noted that the current study used a target template

that was a scaled-up version of the swing phase of the footpath

trajectory. We chose this template for three reasons, all of which

have clinical implications: First, using a pattern that increases hip

and knee flexion will increase active participation and prevent

‘‘motor slacking’’ (i.e., letting the robot do all the work). Second,

because we only scale up the swing phase (and not the stance

phase), the successful matching of the template requires decou-

pling of the hip and knee joint motions during the latter part of

swing phase (extending the knee while maintaining hip flexion).

Training with a pattern that requires this decoupling has potential

implications for overcoming the abnormal muscle synergy that is

observed after stroke. It is also important to note that the transition

between the original stance phase motion and the ‘‘modified’’

swing phase motion is not abrupt because of the smoothing by the

Hanning window. Finally, from a clinical perspective, producing

greater hip and knee flexion during the swing phase of the gait has

direct implications to the characteristic stiff-knee gait observed

after stroke. However, it is worth noting that the template can be

customized according to the need of the patient’s impairment. For

example, a common impairment in stroke patients is limited hip

extension during stance phase of the gait. In this case, a target-

template that was created by scaling the hip angle during the late

stance phase of the gait would be ideal for training.

The present study utilized a target-tracking template that

primarily required greater hip and knee flexor muscle activation

during the swing phase of walking. Accordingly, we observed

substantial EMG increases in the medial and lateral hamstring

Figure 2. Improvements in target-tracking performance with practice. (A) Data from neurologically intact participants demonstrating the
reduction in target-tracking error with practice. Target-tracking error is shown as % error observed in block 1. Significant differences were observed
between block 1 vs. block 4 and block 1 vs. block 5. (B) Changes in target-tracking performance of 3 chronic stroke survivors. Note that two
participants showed good reduction in target-tracking error with practice, whereas one participant showed only a modest reduction in tracking-error.
doi:10.1371/journal.pone.0077370.g002

Figure 3. Cycle-by-cycle target-tracking error from a stroke
participant. Example of cycle-by-cycle target tracking error from a
stroke participant. The dotted vertical lines indicate the end of a
practice block.
doi:10.1371/journal.pone.0077370.g003
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muscles during initial- and mid-swing phases (gait phases 6 and 7,

Figure 5). In addition, we also observed phase-dependent muscle

activation changes even in many non-targeted muscles. The

tibialis anterior muscle showed higher activation both during the

early stance and initial swing phases (gait phases 2 and 6

respectively, Figure 5) and the soleus muscle showed higher

activation during the mid- and terminal-swing (gait phases 7 and 8,

Figure 5). Although we were not able to record ankle angle in the

Lokomat, the changes in muscle activity during target-tracking

seem to resemble changes in muscle activity observed during

obstacle crossing tasks (such as increased dorsiflexion during initial

swing) [54]. The observation of phase-dependent changes in

activity of the non-targeted muscles suggests that the target-

tracking paradigm requires the coordination between multiple

muscles in the lower limb. While the increases in muscle activation

in some of the muscles were not substantial, it is expected that even

a slight increase in muscle activity over a prolonged period of time

will substantially increase the overall muscle work. It is possible

that some of the increase in muscle activation simply reflects a

global increase in muscle co-contraction observed in early stages of

motor learning [55], [56]. However, we believe that this does not

account for all the changes for two reasons. First, the relative

timing of changes in muscle activation in many muscles was phase-

dependent and differed for different muscles and second, we have

shown previously in a case report that long-term training using this

paradigm resulted in improvements in muscle coordination,

resembling patterns observed in control participants [36].

Although the term active participation can also include cognitive

factors like motivation and attention, the observed increase in

muscle activation of several of the lower extremity muscles

provides proof-of-concept that active robotic training paradigm

can successfully minimize motor slacking.

There are some limitations to this study. First, the sample size

was low, the sample did not include individuals with a recent

stroke (i.e., acute/sub-acute), and the participants were younger

than the mean age for suffering a stroke. Therefore, we

recommend caution when generalizing the study results. Second,

we tested only one target-template to verify the feasibility of

performing a motor learning task while walking in the Lokomat.

As a result, it is not clear whether this template is optimal for

improving active participation. It seems that there is an inherent

trade-off between increasing active participation and maintaining

the duration of training (so as not to induce fatigue) that may need

to be further explored. A third limitation is that we did not test the

long-term retention of tracking-performance. It would be impor-

tant to know whether participants can retain their motor

performance over longer time periods and whether this ability

generalizes to different target-templates, which would suggest an

increase in behavioral flexibility [29]. A fourth limitation is that

individuals with substantial motor impairments may not be a

suitable candidate for this robotic training paradigm as some

amount of hip and knee flexor strength is required to perform the

target-tracking task. However, these candidates may still benefit by

robotic training with reduced guidance as opposed to full guidance

[53], which is the current standard of practice in many clinics.

Finally, the optimal feedback modality and practice schedule to

maximize learning and recovery is still under debate. While we

utilized a visual feedback paradigm, others have proposed a force

feedback paradigm (such as error augmentation or reduction) to

facilitate learning [57]. There is also some evidence to suggest that

a combination of visual and force-feedback may have greater

effects than either feedback modality alone [16] although there is

the possibility that the effects of feedback on learning may be

subject-specific.

In summary, this study pilot-tested a robotic training paradigm

termed active robotic training to improve short-term locomotor

performance and to effectively engage the participant in the

training process. Active robotic training comprised of walking in a

patient-cooperative robot while simultaneously performing a

motor learning task. The results of this pilot study provide

proof-of-concept for the feasibility of combining robotic gait

training with a motor learning task both in neurologically intact

Figure 4. Muscle activation changes during target-tracking. (A) Mean muscle activation changes during target-tracking in neurologically
intact individuals. In general, higher activation was observed for all the tested muscles. However, statistical significance was obtained only for rectus
femoris, medial hamstring, lateral hamstring, and gluteus medius muscles. (B) Mean muscle activation changes during target-tracking from a stroke
survivor. Note that the muscle activation profiles of the stroke participant during target-tracking showed a trend similar to the control participants,
but were less profound, except for the tibialis anterior muscle. VM=vastus medialis, RF = rectus femoris, MH=medial hamstring, LH= lateral
hamstring, TA= tibialis anterior, MG=medial gastrocnemius, SO= soleus, and GM=gluteus medius. Changes in muscle activation during target-
tracking are shown as a % of no target-tracking condition.
doi:10.1371/journal.pone.0077370.g004
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adults and in stroke survivors. We found that the tracking-error,

which is indicative of motor performance, was effectively

minimized with practice. More importantly, active robotic training

also increased EMG activity of several lower extremity muscles

indicating that the participants were more actively engaged in the

training than during simple patient-cooperative robotic training.

Future trials are needed to establish the therapeutic benefits of

active robotic training in restoring gait function after stroke.
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