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ABSTRACT

Background: Concerns about patient privacy have limited access to COVID-19 datasets. Data synthesis is one

approach for making such data broadly available to the research community in a privacy protective manner.

Objectives: Evaluate the utility of synthetic data by comparing analysis results between real and synthetic data.

Methods: A gradient boosted classification tree was built to predict death using Ontario’s 90 514 COVID-19 case

records linked with community comorbidity, demographic, and socioeconomic characteristics. Model accuracy

and relationships were evaluated, as well as privacy risks. The same model was developed on a synthesized

dataset and compared to one from the original data.

Results: The AUROC and AUPRC for the real data model were 0.945 [95% confidence interval (CI), 0.941–0.948]

and 0.34 (95% CI, 0.313–0.368), respectively. The synthetic data model had AUROC and AUPRC of 0.94 (95% CI,

0.936–0.944) and 0.313 (95% CI, 0.286–0.342) with confidence interval overlap of 45.05% and 52.02% when com-

pared with the real data. The most important predictors of death for the real and synthetic models were in

descending order: age, days since January 1, 2020, type of exposure, and gender. The functional relationships

were similar between the two data sets. Attribute disclosure risks were 0.0585, and membership disclosure risk

was low.

Conclusions: This synthetic dataset could be used as a proxy for the real dataset.
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LAY SUMMARY

There remains a strong need for sharing COVID-19 data with the research community. This study evaluates whether data

synthesis can address that need. We synthesized the Ontario case database of 90 514 individuals testing positive for SARS-

CoV-2 and created a synthetic version of that. The synthesis method used sequential decision trees. A machine learning

(gradient boosted trees) mortality prediction model was constructed using the synthetic data and its accuracy and the rela-

tionships it detected were compared to the real data. The results of the real and synthetic data models were similar and the

conclusions were the same. A privacy risk assessment on the synthetic data showed that the attribute and membership dis-

closure risks were low. We conclude that the synthetic version of the COVID-19 testing dataset can be shared more broadly

as it has high utility and privacy characteristics.
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INTRODUCTION

COVID-19 has created demand for an unprecedented level of data

sharing with researchers, health care providers, and public health

organizations.1–3 Even before the current pandemic, global health

and funding agencies have been calling for greater sharing of public

health data.4,5 To address the needs of global health research, data

sharing must include clinical data collected from routine care as well

as clinical trials.6 There is also significant potential value in using

Artificial Intelligence methods to analyze COVID-19 data,7 but such

analytic methods require large volumes of data,8 further amplifying

the need for efficient and scalable data sharing mechanisms.

Some organizations have already set up large scale COVID-19

data sharing programs. For example, South Korea is providing ac-

cess to 5 years of health insurance benefit claims for COVID-19

patients for research purposes through the Health Insurance Review

and Assessment (HIRA) service (the national health insurer).9,10 The

NIH is providing data through a secure enclave as part of the Na-

tional COVID Cohort Collaborative (N3C).11 The Observational

Health Data Sciences and Informatics (OHDSI) organization has

made large datasets from participating organizations available

through a federated analysis model.12 The Government of Ontario

is similarly making population level administrative and clinical data-

bases available to the research community.13

However, privacy concerns have historically acted as a barrier to

local and global sharing of public health data.14,15 These concerns

are growing in the context of making COVID-19 data more accessi-

ble,16–19 and some governments have begun to reduce the amount of

information being shared about COVID cases.16,20–25 It is known

that privacy concerns make individuals reluctant to seek care and

adopt other privacy protective behaviors,26 and providers can be re-

luctant to report cases to public health authorities due to concerns

about patient privacy,27–32 even in the context of a pandemic.32

Privacy enhancing technologies can address this risk by creating

databases with perturbed data that can be shared with a very small

risk of identifying individual patients. Data synthesis is one ap-

proach for achieving that.33,34 It has long been recognized that syn-

thetic data is a key approach for data dissemination complementing

more traditional disclosure control methods,35 and has been

highlighted as a key privacy enhancing technology to enable data ac-

cess for the coming decade.36

A number of recent efforts have made large COVID-19 datasets

available specifically through data synthesis. The Clinical Practice

Research Datalink (CPRD) database in the UK has made available a

COVID-19 symptoms and risk factors synthetic dataset based on

primary care encounters in the UK.37,38 The NIH’s N3C is also

developing synthetic datasets for broader sharing with

researchers.11,39

Multiple researchers and analyses have noted that synthetic data

does not have an elevated identity disclosure (privacy) risk because

there is no unique or one-to-one mapping between the records in the

synthetic data with the records in the original data.35,40–47 There-

fore, a key remaining question is whether a synthetic version of

COVID-19 datasets can provide reasonably good data utility and

act as a proxy for real data. If that is the case, then synthetic

COVID-19 datasets can be shared more broadly for secondary anal-

ysis and research.

This paper focuses on an assessment of the utility of a synthetic

variant of the Ontario COVID-19 case dataset using a commonly

applied data synthesis approach: sequential trees. Utility was defined

as the ability to replicate patterns and analysis conclusions from the

synthetic data that were in the original data.48 Specifically, we eval-

uate the extent to which synthetic data can replicate the accuracy

and functional relationships of a gradient boosted tree (GBT) classi-

fication model predicting death for 90 514 Ontario cases.

MATERIALS AND METHODS

The objective was to construct a prediction model of COVID-19

mortality in Ontario using the real data and compare that to the

same model developed on the synthetic data. The outcome was a

binary indicator of death over the study period. The predictors were

individual and community variables reflecting factors that have been

shown in the literature to affect COVID-19 mortality.

The Supplementary Material contains a review of factors that

have been found to affect COVID-19 mortality and that we consider

in our analysis.

Our primary analysis uses a machine learning technique. It has

been argued, specifically in the context of COVID-19 mortality pre-

diction, that machine learning models are better at fully using the in-

formation in clinical datasets compared to traditional regression

methods.49

Data set
The dataset we used was obtained on November 15 from Esri Cana-

da’s COVID-19 dashboard,50 which is collected from the Public

Health Agency of Canada and curated. The last case was reported

on that day. The full dataset consisted of 306 816 Canadian cases.

Because the values were incomplete for some provinces, our analysis

focused only on Ontario with 100 368 records at the time the data

was obtained. The fields in that dataset are shown in Table 1.

This case data were linked with community information for each

of the health regions in Ontario.51 The variables related to the

health region are shown in Table 2. These variables were also con-

sidered in our mortality prediction model. Following recommended

practices, the selection of these predictors was informed by previous

literature,52 and a literature review is provided in the Supplementary

Appendix.

There are precedents for using population or community metrics

in prediction models in the context of COVID-19. For example, a

model of student transmission of the disease was constructed and

population values from prior publications were used to instantiate

it.53 Similarly, a mortality model used population values from the

China CDC.54 In both cases, individual-level data were created

through simulation, using the population values to define sampling dis-

tribution parameters. In another study, a baseline model was developed

using individual-level data on a related outcome (hospitalizations with

Table 1. Fields in the Canadian COVID-19 case dataset used for our

study

Variables Definitions

Date reported Number of days since January 1, 2020

Health region 34 unique regions

Age group Decades from 20 to 80þ (ordinal)

Gender

Exposure Close contact, outbreak, travel, not reported

Case status Recovered, deceased, active
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diagnoses of pneumonia and influenza) then its predictions were ad-

justed to match COVID-19 case fatality rates.55

In our study, simulating individual-level data from the commu-

nity prevalence values would require an independence assumption

among the covariates, which would weaken the overall model. Fur-

thermore, the prevalence values we use can be seen as the

individual-level likelihoods of a particular characteristic.

Cases where the case status was unknown or still active were re-

moved. That way we only had recovered and deceased individuals.

The final dataset had 90 514 observations. Of these, 3456 were de-

ceased, which represents 3.82% of the Ontario dataset.

Synthesis method
The individual level variables in Table 1 were synthesized. The link-

ing of the datasets with the community variables was performed on

the synthetic data.

There are a number of data synthesis methods that have been

used recently in the literature, such as Bayesian networks,56–58 and

Generative Adversarial Networks.40,59,60 In this study, we used an-

other approach that has been applied quite extensively for the syn-

thesis of health and social sciences data, namely sequential

classification and regression trees.61–69 Classification and regression

trees70 have been proposed for data synthesis when implemented in

a sequential manner.71 Furthermore, existing evaluations have con-

cluded that the privacy risks using sequential tree synthesis is

low.47,72 With these types of models, a variable is synthesized by us-

ing the values earlier in the sequence as predictors. Conceptually, se-

quential synthesis is similar to modeling multiple outcome variables

using classifier chains73 and regressor chains.74 The details of the

specific method we used are described elsewhere.75

Analysis methods
The same analysis was performed on the real and the synthetic data-

sets, and the results were compared. The analysis methods were se-

lected to reflect common approaches that are used to model

mortality. Our main analytical method uses a machine learning tech-

nique and the sensitivity analysis uses a regression technique. Both

were operationalized to provide interpretable models, with an em-

phasis on selecting the most important variables and understanding

the functional form of relationships.

The primary data analysis method is shown in Figure 1. Gradient

boosted classification trees (GBT)76 were used to build a predictive

model of death. Five hundred bootstrap samples were used to com-

pute 95% confidence intervals for all results reported. For each

bootstrap sample, the records that were out-of-sample were used as

the test dataset for that iteration. Five-fold cross validation was used

to determine the optimal number of trees for the GBT model built

within each bootstrap iteration. Because the dataset was imbal-

anced, under sampling of the majority class was used to create a bal-

anced training dataset, within each bootstrap iteration.77

We compared the bootstrap confidence interval overlap between

the two datasets. Confidence interval overlap has been proposed for

evaluating the utility of privacy protective data transformations,78

which is defined as the percentage average of the real and synthetic

confidence intervals that overlap. The definition of this overlap is

provided in the appendix. To interpret confidence interval overlap,

Table 2. Fields included on the health region community

Variables Definitions

Proportion living in rural areas Rural areas are defined as all territory lying outside population centers

(population centers have a population of at least 1000 and a density of

400 or more persons per square kilometer)

Proportion of immigrants An immigrant as a person who is, or who has ever been, a landed immi-

grant or permanent resident. Such a person has been granted the right

to live in Canada permanently by immigration authorities. Immigrants

who have obtained Canadian citizenship by naturalization are in-

cluded in this group.

Proportion of aboriginal population Aboriginal identity is based on whether the person identified with the

Aboriginal peoples of Canada. This includes those who are First

Nations, M�etis or Inuk (Inuit) and/or those who are registered or

treaty Indians (i.e. registered under the Indian Act of Canada) and/or

those who have membership in a First Nation or Indian band.

Prevalence of diabetes Population age 12 and older who reported having been diagnosed by a

health professional as having type 1 or type 2 diabetes; includes

females age 15 and older who reported having been diagnosed with

gestational diabetes.

Prevalence of COPD Population age 35 and older who reported being diagnosed by a health

professional with chronic bronchitis, emphysema or chronic obstruc-

tive pulmonary disease (COPD).

Prevalence of high blood pressure Population age 12 and older who reported that they have been diagnosed

by a health professional as having high blood pressure.

Family medicine physicians per 100 000 population The number of family medicine physicians per 100 000 population.

Proportion reporting Moderate-to-severe Food Insecurity Food security is commonly understood to exist in a household when all

people, at all times, have access to sufficient safe and nutritious food

for an active and healthy life. Conversely, food insecurity occurs when

food quality and/or quantity are compromised and is typically associ-

ated with limited financial resources.

The definitions are taken from the source document [51].
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we propose a minimal acceptable overlap of 37.5%, as explained

and justified in the appendix.

Calibration

Probability calibration was performed as the predicted probabilities

from boosted decision tree models do not correspond directly with

the true probabilities of class membership. This discrepancy is am-

plified when data are under-sampled. Boosted decision trees can be

viewed as additive logistic regression, meaning that the predictions

made by boosting are trying to fit a logit of the true probabilities,

rather than directly fitting the true probabilities.76,79 Isotonic regres-

sion can be used to calibrate the probabilities of boosted decision

trees to ensure that the predicted probabilities correspond with the

true probabilities of class membership.79,80 To calibrate the pre-

dicted probabilities byi, using the true class labels yi, the following re-

gression model is fit: yi ¼ m byið Þ þ ei where m is an isotonic (non-

decreasing) function. Calibrated probabilities are used for assessing

model performance and conditional partial dependence.

Model accuracy

We compared the real and synthetic datasets in terms of the death

prediction model accuracy. Model accuracy was assessed using the

Area Under the Receiver Operating Characteristic curve

(AUROC).81 The ROC plots the false positive rate against recall and

is commonly used to evaluate the performance of binary classifiers

in machine learning. For binary classification tasks a AUROC of 0.5

is the expected performance of a random classifier, whereas an

AUROC of 1 is the expected performance of a perfect classifier.

Another metric which focuses on predictions of the positive class

is the Area Under the Precision-Recall Curve (AUPRC).82 Interpreta-

tion of AUPRC is dependent on the class distribution of the out-

come. This means it is particularly important to evaluate AUPRC on

the test data with true class distributions as the minimal achievable

value is dependent on that distribution,83 and the AUPRC value of a

random classifier is the rate of the positive class,83 which in our case

is 0.0382.

Variable importance

We compared the variable importance in the models built using the

real and synthetic datasets. One general purpose method for evaluat-

ing variable importance, or to determine which predictors are most

relevant to predicting the outcome, is to use permutation.84,85 If we

let a training set of predictors be X with each row denoted by xi,

and the corresponding outcome variable by yi, then we can permute

a predictor variable j to get xj
i. A model built from the training data-

set is f ð:Þ. The importance of a predictor variable can be given by us-

ing the model built on the training data to computePn
i¼1

�
L
�

yi; f ðxj
iÞ
�
� L

�
yi; f ðxiÞ

��
where Lð:Þ is a loss function,

such as prediction accuracy, and n is the total number of observa-

tions. This then gives us the importance of the variable j.

There is evidence that permuting a variable is biased towards

predictors that are correlated with other predictors and that have

many categories.86,87 The reason is that, if we have two predictors

that are positively correlated, say x1 and x2, then there will be no

training examples where x1 is large and x2 is small, which means

that the predictions made in that region will be extrapolations,

resulting in high importance for these two variables.88

An alternative is to permute and reconstruct the model from the

(undersampled) training data, and then compare the prediction ac-

curacy on the original and permuted models88,89 as follows:
Pn

i¼1

�
L�

yi; f
jðxiÞ

�
� L

�
yi; f ðxiÞ

��
where f jð:Þ is the model built with per-

muted variable j. This approach addresses the bias risk and the aver-

age difference in loss (or accuracy) across multiple permutations

allows us to prioritize the variables.

Conditional partial dependence plots

To illustrate the relationships between the most important predictor

variables and the outcome of interest, conditional partial depen-

dence plots were constructed.90 Traditionally, partial dependence

plots for the jth variable plot 1
n

Pn
i ¼ 1 f xi

j ¼ J k½ �� �
against J½k� where

xi
j ¼ J k½ � is the ith observation where the jth variable is set to J½k� and

Figure 1. Process diagram for the analysis method. The diagram shows the steps for each iteration of the bootstrap sampling. The testing data is the out-of-sam-

ple subset in each bootstrap iteration. cPDP stands for conditional partial dependency plot.
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J ½� is the set of unique values for the jth variable. Partial dependence

plots have been subject to criticism as not all observations may plau-

sibly be observed with xi
j ¼ J k½ �, leading to poor predictions due to

extrapolation.88 Conditional partial dependence plots aim to mini-

mize extrapolation by calculating partial dependence within condi-

tional subgroups, and then pools the results across subgroups. It

also isolates the effect of a variable so we can view its impact, within

the model, on the outcome.

Sensitivity analysis

The data synthesis method that we used was based on decision trees,

as was the primary modeling method for predicting mortality. There

is the potential that using similar methods for synthesis and analysis

creates a positive data utility bias in that the generative model learns

specific patterns in the data that the analysis model is able to also de-

tect in the generated data. The risk is that a different analysis

method may not be able to detect the same pattern. To guard against

this, we also built logistic regression mortality models using each of

the real and synthetic datasets. Logistic regression is a common ana-

lytical approach in epidemiology and would not be biased from us-

ing data generated by a sequential tree synthesizer. This would

allow us to directly test the sensitivity of the results to the analytical

method used. The methods and results from this logistic regression

model are included in the appendix.

Evaluating distinguishability
We also compared the multivariate distributions of the real and syn-

thetic data using a distinguishability metric. We applied an omnibus

comparison of multivariate distributions using a binary classi-

fier.91,92 This means that we build a discriminator model that

attempts to distinguish between real and synthetic datasets. If it is

not able to tell the difference, then that indicates that the real and

synthetic data are similar to each other. The distinguishability metric

we use is based on propensity scores.93,94 Additional details to how

we have adapted it to our specific context are described in the ap-

pendix, but the basic concept is that it is an interpretable mean

squared error compared to guessing whether a record is real or syn-

thetic.

Evaluating privacy
To evaluate the privacy risks of the synthetic data we tested for two

types of disclosure. The first is attribute disclosure conditional on

identity disclosure, which assesses the probability of mapping a syn-

thetic record to a real person, and conditional on that learning some-

thing new about the individual.47 The second is membership

disclosure which assesses whether an adversary would reliably know

whether a target individual was in the real dataset used for synthesis.

The details of the methods used for each of these two evaluations

are provided in the appendix.

RESULTS

Descriptive statistics
The summary statistics for the real dataset are shown in Table 3.

GBT model results
The AUROC value for the GBT model on the real data was 0.945

and the AUPRC was 0.340 as shown in Table 4. The baseline death

rate was 3.82% and therefore the AUPRC is a considerable im-

provement over that. The GBT model built on the synthetic data

yielded similar model accuracy results with a AUROC of 0.940 and

AUPRC of 0.313 (CI overlap 45.50% and 52.02%, respectively,

and they are both above our threshold).

The variable importance for the real data is shown in Figures 2

and 3 using each of the prediction accuracy measures. All CI values

are above our overlap threshold. The variables with the largest im-

pact on the outcome are from the individual characteristics. The

community level characteristics did not have a significant effect on

death. The most important variable is age, followed by date

reported, exposure, and gender. By far the most important predictor

of death is age with an approximately 6% increase in AUROC with

its inclusion. The confidence intervals for the accuracy gain associ-

ated with gender and exposure cross zero when quantified using

AUPRC or AUROC; for both the real and synthetic datasets. We

therefore focus only on the effects of date and age as the two most

important predictor variables.

Table 3. Summary statistics on the variables analyzed (n¼ 90 514

Ontario cases)

Variable Mean (SD) Proportion

Date reported 214.43 (82.66)

(days since January 1, 2020)

Gender

Male 48.5%

Age group

<20 11.2%

[20–29] 20.8%

[30–39] 15.5%

[40–49] 13.8%

[50–59] 14.7%

[60–69] 9.4%

[70–79] 5.3%

80þ 9.3%

Exposure

Travel related 3.4%

Close contact 40%

Outbreak 24.6%

Not reported 32%

% living in rural areas 6.98 (12)

% of immigrants 37.04 (14.59)

% of aboriginal population 1.64 (2.04)

Prevalence of diabetes 7.73 (1.45)

Prevalence of COPD 3.26 (1.38)

Prevalence of high blood pressure 17.29 (2.2)

Family medicine physicians per

100 000 Population

112.57 (102.5)

Proportion reporting moderate-

to-severe food insecurity

7.99 (1.81)

Table 4. Mean model accuracy results for the real and synthetic

datasets with the 95% bootstrap confidence interval

Accuracy

metric Real data Synthetic data

CI

overlap

AUROC 0.945 (0.941–0.948) 0.940 (0.936–0.945) 45.50%

AUPRC 0.340 (0.314–0.368) 0.313 (0.286–0.342) 52.02%

The confidence interval overlap between the real and synthetic CIs is also

shown in the last column.
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Figure 4 illustrates the conditional partial dependence observed

across the date reported for the two GBT models. The 95%

bootstrap confidence intervals for the synthetic data align well with

those constructed from the real data. This indicates that the models

produced using synthetic data will yield the same conclusions as

those produced using the real data. This plot shows that, after fac-

toring out other effects, this model captures an increasing probabil-

ity of death over time, which does decrease and eventually plateau.

There is an uptick that started at the tail end of the reporting period.

Figure 5 illustrates the conditional partial dependence observed

across the age groups in the GBT models built using the real and syn-

thetic datasets. The predicted probability of death increases monotoni-

cally with age group, with individuals greater than 80 years old

having a mean predicted probability of death of 16.4% and 17.7% in

the real and synthetic datasets, respectively. The GBT model built

from synthetic data results in similar estimates, with a mean confi-

dence interval overlap of 83.52% across all age groups, and the over-

lap for each age group exceeding our minimal threshold.

The sensitivity analysis results included in the appendix show

that very similar logistic regression models would be constructed

from the real and synthetic datasets, and the accuracy results are

similar between the two and similar to the GBT model results.

Figure 2. Variable importance using the permutation method with AUROC as the accuracy metric and the 95% bootstrap confidence interval. The values on the

side are the confidence interval overlap values between the real and synthetic datasets.

Figure 3. Variable importance using the permutation method with AUPRC as the accuracy metric and the 95% bootstrap confidence interval. The values on the

side are the confidence interval overlap values between the real and synthetic datasets.
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Distinguishability
The distinguishability between the real and synthetic datasets was

0.04 (on a scale from zero to one). This is quite low and indicates

that the discriminator was not able to tell the difference between the

real and synthetic datasets.

Privacy assessment
The probability of attribute disclosure conditional on identity dis-

closure for this dataset was 0.0585. This value is below the com-

monly used threshold of 0.09. This threshold has been

recommended by the European Medicines Agency (EMA)95 and

Health Canada97 for datasets to be considered to have a low risk of

identification. The risk value for the original data was 0.3284.

Therefore, the synthesis reduced this risk considerably.

For membership disclosure, the ability of an adversary to dis-

criminate between a record that was used in synthesis (i.e. in the

training dataset) and one that was not was evaluated using the stan-

dardized mean difference (SMD). The full dataset was split into a

training dataset and a holdout, and the training dataset was synthe-

sized. The distances between the training and synthesized dataset,

and between the holdout and the synthesized dataset were com-

puted. The SMD between the two distances was calculated at -

0.063. This means that the distance between the training data and

the synthetic data as slightly larger than holdout data and synthetic

data. However, this value is below the commonly used 0.1 threshold

which typically signifies a meaningful difference. This means that

the likelihood of a successful membership disclosure is low. Further

details about the methodology and justifications are provided in the

appendix.

DISCUSSION AND CONCLUSIONS

Summary
We found that the analysis results between the real and synthetic

datasets for the Ontario cohort of the Canadian COVID-19 case

dataset were similar, and the conclusions from that analysis were

the same. Gradient boosted classification trees were used to model

the relationship between multiple factors and death. We found that

age and the date since the start of 2020 were the biggest factors af-

fecting the probability of death. These results are consistent with

other reports from the literature.

Figure 4. Conditional partial dependence plot for date reported with bootstrap confidence intervals on the real and synthetic datasets. The date reported is mea-

sured as the number of days since January 1, 2020.

Figure 5. Conditional partial dependence plot for age with 95% bootstrap confidence intervals on the real and synthetic data. Confidence interval overlap is anno-

tated at the top of the plot for each age group.
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We did not find a relationship between community characteris-

tics associated with the public health regions where a case was

reported and death (such as the percentage of immigrants and the

percentage of individuals with diabetes, COPD, and high blood

pressure). It is likely that such community-level measures over a

large geographic region are not sufficiently associated with individ-

ual characteristics and therefore they are not sufficiently discrimina-

tory with respect to the outcome in our models. This further

emphasizes the importance of getting access to individual level data.

A sensitivity analysis performed to check for potential bias be-

tween the generator model and the analytic method did not reveal

evidence of bias. Different types of logistic regression models pro-

duced consistent results between real and synthetic data, and with

the GBT model.

A distinguishability test between the real and synthetic data

found that a classifier was not able to effectively tell the difference

between the real and synthetic datasets. This further supports the

modeling results above.

A privacy evaluation of attribute disclosure conditional on iden-

tity disclosure, and of membership disclosure, showed that the pri-

vacy risks of the synthetic data were low.

Given the increasing pressures to get access to data and growing

concerns about individual patient privacy risks that this presents,

the data synthesis method presented in this paper can address the

privacy concerns and we have presented some evidence that the con-

clusions drawn will be comparable to the original data.

A recent article also found that a synthesis method similar to the

one used in this study produces datasets that have high utility.98 In

that case utility was defined as prediction accuracy for a number of

different machine learning models. Our study goes further by com-

paring more robust accuracy measures, variable importance, and

model interpretability. Furthermore, our study is the first to consider

the utility of synthetic COVID-19 data. As the weight of evidence

on the utility of synthetic data increases, one would expect there to

be broader acceptance of using synthetic data as a proxy for real

data.

Limitations
Although our study used sequential classification and regression

trees for data synthesis, other methods could also have been used

and may have produced comparable results. We did not evaluate the

utility of multiple methods as that was not the objective of the cur-

rent study, but rather it was to see if a common synthesis method

could produce useful synthetic data. The current study can serve as a

baseline (dataset and methods) for future work comparing multiple

synthesis methods.

Our results were performed on the Ontario cohort of 90 514

records within the Canadian COVID-19 case dataset. Further analy-

sis on more complex COVID-19 datasets, such as those including

co-morbidities and socio-economic factors at the individual level,

should be performed to add more weight to our findings and further

assess the utility of synthetic data. The current study shows good po-

tential that justifies additional effort to evaluate the utility of com-

plex synthetic datasets.
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