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Introduction
In 1927, the magizoologist Newt Scamander published a semi-
nal book where he described, with a fair amount of details, all 
the known magical animals of the world. The Ministry of 
Magic classified these beasts based on their perceived level of 
danger, from 1 to 5: “boring,” ‘harmless “competent wizard 
should cope,” “dangerous,” and “impossible to train or domesti-
cate.” After reading the book—and notwithstanding the details 
on the biology and behavior of each animal (Figure 1)—some 
crucial questions stuck in my head: what drives the distribution 
of these fantastic beasts, and the geographical variation in their 
level of danger? To put it in other words, why do beasts live 
where they live, especially the most dangerous ones? The reader 
will agree this is a fundamental ecological question! The distri-
bution of animals and their phenotypes can be influenced by a 
variety of ecological factors such as food or climate, among 
others. Investigating these relationships may thus provide use-
ful information about the evolutionary forces that shaped mag-
ical biological diversity and, ultimately, about adaptation. But 
how do we tackle this issue?

The scientific method posits that, after observing a phe-
nomenon, we formulate hypotheses to explain its nature, put 
forward predictions, collect data, analyze them and finally eval-
uate our results in the light of our expectations. What about 
our fantastic beasts? We know that magical animals are wide-
spread worldwide,1 but we have no details about their current 
distribution, nor we have information about their type-specific 
abundance (I have deliberately avoided writing “species-spe-
cific” abundance: the species concept is fuzzy enough in the 
standard zoological literature!). All we know is where they 
originally come from, and what is the mean perceived level of 
danger of country-specific magical animal communities, which 
nonetheless can provide useful information about the potential 
drivers of diversity.

From the map reported in Figure 2, we observe that the 
native occurrence of magical animals and—even more so—the 
mean perceived level of danger of native animal communities, 
are seemingly greater in tropical and sub-tropical regions than 
in temperate zones. If climate plays a role, we may hypothesize 
that (1) the native distribution of fantastic beasts and (2) the 
mean danger level of a native community of beasts are related 
to temperature. Magizoology is not my field of expertise, and 
many magical beasts appear to be an odd mixture of “muggle” 
animals, which makes it quite difficult to hypothesize plausible 
biological patterns. Perhaps, at least for insect/reptile-like look-
ing beasts, thermal niches with relatively higher environmental 
temperatures might be required to secure critical physiological 
processes, thereby shaping the observed uneven distribution. If 
so, we may predict that (1) the warmer the country, the more 
likely the native occurrence of magical animals and (2) the 
warmer the native country, the higher the mean perceived level 
of danger of the community of beasts that lives in it. To address 
these questions, we may resort to regression models.

Regression is “a method that allows researchers to summarize 
how predictions or average values of an outcome vary across indi-
viduals defined by a set of predictors,”2 that is, it allows to explore 
the relationships between a response variable and a set of 
explanatory variables. Ecological processes often have many 
drivers or confounding factors that contribute to affect them 
simultaneously, thus it is unsurprising that multiple regression 
dominates in the ecological literature.3 Furthermore, regression 
can handle different kinds of response variables, which are 
common in ecological data,4 and it can be extended to allow for 
hierarchical sampling designs, which are widespread in eco-
logical studies.5–7 Importantly, to gain insights into ecological 
processes, it is crucial that response and explanatory variables 
are modeled in a biologically sensible manner.8,9 Indeed, a 
regression model in itself is not a magical problem-solver: it is 
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simply a tool, a “golem” whose “abundance of power is matched by 
its lack of wisdom.”10 Consequently, regression models are just as 
good as the instructions used to build them, which, despite 
their apparent simplicity, can be complex and subtle.2 This, in 
turn brings up a crucial question: to what extent do we need to 
master the technicalities of regression modeling to properly 
analyze our data?

It has been suggested that a solid understanding of calculus, 
algebra and mathematical statistics is needed to step from “lit-
eracy” to “fluency” in statistical modeling (including—but not 
limited to—regression analysis).11 This is indubitably true: 
arguably, however, even moderate mathematical skills may suf-
fice to achieve, if not “fluency,” at least the ability to “reason” 
and “think” statistically (sensu12), which should allow us to go a 
long way in regression modeling. As noted by Cohen et al13 ‘to 
drive a car, one does not need to be a physicist, nor an automotive 
engineer, nor even a highly skilled auto mechanic, although some of 
the latter’s skills are useful when one is stuck on the highway.’ In 
order to do that, however, we must know our car sufficiently 
well: in other words, we may possibly do without a detailed 
understanding of the model estimation “engine,” but we must 
surely know what the model components are, how inference 
works, recognize if models are “well-behaved” and understand 
their outputs.13,14 This work is a modest contribution toward 
this aim: I shall present the basic steps of classic (“frequentist”) 
regression modeling in a tutorial style, using just a few chunks 
of R codes, to help understand the data, select the most appro-
priate models, verify assumptions and provide useful advices 
for the interpretation of results. The exposition will broadly 
follow the protocol for regression-type analysis outlined in 
Zuur and Ieno.15 I assume the reader is a student in ecology, 
with some rudimentary knowledge of R programming and a 
basic understanding of linear modeling.

Let me end this introduction on a note of caution: Sir 
Ronald Fisher, one of the fathers of modern statistics, once said 
that “to consult the statistician after an experiment is f inished is 

often merely to ask him to conduct a post mortem examination. He 
can perhaps say what the experiment died of.” This exercise is 
indeed a ‘post mortem examination’: as we will see in the next 
paragraph, the original data (beside being fictional) were not 
collected with regression analysis in mind. This is not what 
should be done: indeed, decent knowledge of statistical tools is 
a fundamental prerequisite for proper data collection, and I 
wholeheartedly recommend the excellent introduction of 
Sutherland16 on the matter. Furthermore, I am simply a practi-
tioner, and any competent statistician will likely find my 
description overly simplistic. For example, I do not touch on 
issues such as model selection, multilevel modeling or non-
linear regression, which are often encountered in ecological 
studies, and only hint at alternative estimation methods such as 
Bayesian analysis. In my defense, this is merely intended as a 
fairly simple and entertaining technical exercise. Priority was 
thus given to basic understanding of applied regression over 
research protocol coherence and analytical complexity, whose 
importance I do not belittle.

Data Collection
Our predictions can be investigated by assessing the relation-
ship of the country-specific temperature with: (1) the native 
presence of fantastic beasts and (2) the mean perceived level of 
danger of the native communities of beasts. To investigate 
these relationships, we need data on the native occurrence of 
beasts in each country, on the mean perceived level of danger 
within each native country and on the temperature of each 
country.

With the first prediction, we seek to investigate the rela-
tionship between temperature and animal distribution. This is 
essentially a problem of habitat selection, “the set of rules indi-
viduals use to choose among patches that differ in some way,”17, that 
is, rules that ultimately determine the spatial distribution of 
individuals. Several methods exist to investigate this process. 
One of the simplest approaches is based on the estimation of 

Figure 1.  Nifflers are relatively harmless magical animals native to Britain, they resemble a platypus and are attracted to shiny things. Despite they can 

destroy houses, they are possibly the cutest fantastic beasts. The figures are screenshots from the 2016 movie “Fantastic beasts and where to find them” 

(the adult niffler on the left) and from the 2018 movie “Fantastic beasts: The crimes of Grindelwald” (the baby niffler on the right). Screenshots are © & ™ 

Warner Bros. Entertainment Inc. J.K. ROWLING’S WIZARDING WORLD ™ J.K. Rowling and Warner Bros. Entertainment Inc. Publishing Rights © JKR. 

(s18), and their use in this article is intended under the Fair Use guidelines.
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the probability that a sample unit is used by animals, as a func-
tion of some features of that unit, for example, elevation, cli-
mate or human-disturbance. More generally, this is a problem 
of “resource selection,” as long as the selected units are seen as 
resources, and the explanatory variables associated with these 
resource units as covariates of the resources.18 To this aim, a 
survey area can be divided into discrete sampling units of the 
same size, selected randomly or systematically, and the use or 
non-use of each unit is assessed through appropriate search 
strategies.19 This method assumes that presence (use) and 
absence (non-use) of animals within each sample unit are 
assessed without error. What do we know about the fantastic 
beasts? Most information available in the book was collected 
through observations made over years of intensive traveling.1 
Unfortunately, we do not have information on the occurrence 
of animals in randomly or systematically distributed sampling 
units of the same size, nor exact details on animal locations. All 
we have is information about native presence or absence of any 
one beast within countries. Assuming that Newt Scamander 
searched systematically throughout the continents, namely that 
the sampling effort was evenly distributed across countries, the 
country itself could be considered as the basic sampling unit. 
We could thus assign a “0” to countries with no native beasts, 
and a “1” to countries with at least a native beast. Native pres-
ence/absence of fantastic beasts was retrieved from the map in 
Figure 2 (sample size: n = 159). With the second prediction, we 
seek to investigate the relationship between temperature and 
geographical variation of a phenotypic trait, ie, the mean per-
ceived level of danger of native communities of beasts. The 
map in Figure 2 provides information on the mean perceived 

level of danger within each native country, varying from 1 to 5, 
based on the classification of the Ministry of Magic (in n = 36 
sampling units). For both predictions, the size of the sampling 
units must be accounted for: quite intuitively, the larger the 
country, the higher may be the probability of having magical 
beasts, and possibly very dangerous ones. Therefore, in order to 
separate the effect of temperature, we also need data on country 
size to control for this latter variable.

Wikipedia was used to collect information about each 
country shown in Figure 2 in terms of temperature (for the 
sake of simplicity, I used the average yearly temperature: 
https://en.wikipedia.org/wiki/List_of_countries_by_average_
yearly_temperature) and area (https://simple.wikipedia.org/
wiki/List_of_countries_by_area). Some data maneuvering was 
nonetheless necessary. For example, the Island of Drear, home 
of one of the most dangerous fantastic beasts, the Quintapeds, 
was not reported by Wikipedia. According to www.hp-lexicon.
org, “the tiny island of Drear is located off the northernmost point 
of Scotland. Its sole inhabitants are the f ierce Quintapeds. The map, 
of course, shows only the approximate location of Drear, since it is 
unplottable.” For Drear, I therefore assumed an island the size of 
Liechtenstein, with the same average temperature as the United 
Kingdom. The island might surely have different size or cli-
mate, but since it’s unplottable, nobody can prove me wrong.

I finally created a data frame with 5 columns (see 
Supplementary file 1): column 1 reports the name of each coun-
try showed in Figure 2 (“Country,” categorical variable); column 
2, the native presence or absence of beasts within each country 
(’Native,’ binary variable); column 3, the mean perceived level of 
danger of country-specific communities (’Level_of_danger,’ 

Figure 2.  Many fantastic beasts are currently widespread worldwide. This map, modified from www.harrypottercartography.wordpress.com, shows their 

native distribution. The map also reports the mean perceived level of danger of country-specific magical animal communities, based on the classification 

of the Ministry of Magic (MoM).

https://en.wikipedia.org/wiki/List_of_countries_by_average_yearly_temperature
https://en.wikipedia.org/wiki/List_of_countries_by_average_yearly_temperature
https://simple.wikipedia.org/wiki/List_of_countries_by_area
https://simple.wikipedia.org/wiki/List_of_countries_by_area
www.hp-lexicon.org
www.hp-lexicon.org
www.harrypottercartography.wordpress.com
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continuous numeric variable from 1 to 5); column 4, the average 
yearly temperature of each country (’Temperature,’ continuous 
numeric variable, in °C); column 5, the area of each country 
(’Country_size,’ continuous numeric variable, in km2). All anal-
yses have been conducted with R v. 4.0.420 in RStudio v. 
1.3.105621 for MacOS v. 10.15.6.

Regression Modeling
Native presence of fantastic beasts

Model building.  Three elements must be defined when build-
ing a (generalized) linear regression model, or (G)LM: the lin-
ear predictor, the conditional distribution of the response 
variable, and the link function.22 The linear predictor is the 
systematic part of the model, an additive or interactive combi-
nation of products of regression coefficients and explanatory 
variables; only coefficients must be linear, while continuous 
variables can take different forms (eg, log, polynomial). The 
conditional distribution is the random part of the model, and 
refers to the distribution of the response variable across the 
regression line, ie, the distribution conditional on a set of 
explanatory variables; each distribution implies a given vari-
ance (for a bestiary of probability distributions, see23). The link 
function, as the name suggests, connects the linear predictor 
with the mean of the conditional distribution: it is a transfor-
mation of the expected response that linearizes the relationship 
between the fitted value and the predictor. It does so by remov-
ing restrictions on the range of the expected response (eg, ⩾0 
or 0-1 in GLMs), and mapping the interval to an unbounded 
continuous scale (ie, ±∞), so that the predictions (ie, the fitted 
values on the scale of the response variable) can be obtained by 
applying the inverse of the link function. When defining the 
linear predictor, the response variable should be inspected for 
the form of its relationship with the explanatory variables (eg, 
linear, quadratic. .  .). When defining the conditional distribu-
tion (eg, Gaussian in simple LMs, or binomial, gamma, Poisson 
in GLMs), it doesn’t generally make much sense to look at the 

distribution of the raw response variable, which, per se, might 
look distinctly non-normal, non-gamma or non-Poisson: 
rather, the raw response variable should be inspected for its 
main characteristics, for example, whether it is continuous or 
discrete, bounded or unbounded.24 Once the conditional distri-
bution is defined, the choice of the link function (eg, identity, 
logit, log) is often canonical,23 though it can be changed based 
on the desired scale for the response.

In our model, native presence/absence of beasts is assumed 
to be the response variable, while the linear predictor includes 
average yearly temperature of the country, plus country size, 
which is the covariate that accounts for the uneven area of sam-
ple units. Presence/absence is a Bernoulli variable expressed as 
1/0, thus simple linear models would be unsuitable to fit the 
data: a Gaussian conditional distribution for the response vari-
able would allow infinite negative or positive fitted values, and 
it would require symmetric and constant variance across the 
fitted line; furthermore, the canonical identity link function in 
LMs does not transform the expected response, thus implying 
a linear relationship between the mean in the original scale and 
the predictor (Figure 3A). Instead, binary data are either 0 or 1, 
their conditional distribution is non-normal and with non-
constant variance (the “freedom” of variation of the response 
variable from the fitted line is asymmetrically reduced toward 
the extremes), and the original expected response is non-line-
arly related to the predictor (Figure 3B). We thus need a model 
with a different conditional distribution and link function to 
get the likelihood correct, in order to avoid misleading esti-
mates. Logistic regression, a form of generalized linear model, 
is the natural approach to binary data18: it prevents probabili-
ties to go below 0 and above 1, it allows to model asymmetrical 
and unequal variance, and it captures the non-linearity of the 
relationship between the unscaled response and the predictor. 
More generally, a GLM essentially allows to extend simple lin-
ear models by capturing a particular kind of variation in the 
conditional distribution of the response variable, and a 
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between unscaled response and predictor would be linear. This type of data can be handled correctly by a GLM in the form of a logistic regression (panel 

(B)), which allows to get probability values between 0 and 1, to model non-linearity, and to handle a conditional distribution with non-normal and unequal 

variance.
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particular kind of non-linearity of the relationship between the 
predictor and the expected response.23 We may say that GLMs 
are “link-linear,” so that a “GLM may be thought of as a linear 
model for a transformation of the expected response or as a nonlinear 

0 5 10 15 20 25
−

5
0

5
10

15
20

25
30

log2(Country size)

Te
m

pe
ra

tu
re

(in
°C

)

Figure 4.  A scatterplot can be used to visually investigate the 

relationship between numerical explanatory variables: in this case the 

relationship between country size and temperature does not show any 

particular pattern.

Before writing the R code for our logistic regression, for the 
sake of clarity, it is good practice to present the basic structure 
of the model15
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In our logistic regression model, the conditional distribu-
tion has mean E(Nativei ) and variance Var Nativei( ) . The 
function g (πi) represents the canonical logit-link function: as 
πi  is confined between 0 and 1, the logit-link allows to map 
the interval to the real line, that is, between ±∞. In the linear 
predictor ηi, βi  are the regression coefficients to be estimated 
from the data, while temperature and country size are the 
explanatory variables. Country size was log-transformed 
because data were sparse, namely, the gaps between datapoints 
were large, likely owing to the presence of very small and very 
large countries: you can easily check that by calling: 
plot(Native ~ Country_size, data = beasts). 
A log-transformation helps improving the fit of the model: 
log2 also allows an easy interpretation of the results, as the 
value of country size can be obtained by raising 2 to the power 
of the log-transformed value, so that increasing of 1 unit the 
log-transformed value corresponds to doubling the size of the 
country. Since temperature and log2-country size have very 
similar scales, no further transformation is required; if explan-
atory variables were from widely different scales, or interac-
tions were present, standardizing (ie, centering each continuous 
explanatory variable to its mean and then dividing by 1 stand-
ard deviation) would be an option to make different regression 
coefficients comparable.4

Both temperature and country size can be included in the anal-
ysis, as no issue of collinearity was detected in preliminary data 

beasts <- read.csv(file.choose()) # choose the .csv file interactively

regression model for the response.”25 Excellent, accessible intro-
ductions to GLMs are provided by Dunteman and Ho,26 
Buckley,22 and Pekár and Brabec.24

We start by loading the dataset:

exploration between these variables. The scatterplot between tem-
perature and country size, plot(log2(beasts$Country_
size), beasts$Temperature), does not suggest any 
relationship between these variables (Figure 4) and the function 
c o r ( l o g 2 ( b e a s t s $ C o u n t r y _ s i z e ) , 
beasts$Temperature) returned a Pearson correlation 
value of -0.07, well below the commonly accepted threshold 
of|0.7.|27 Collinearity can be also checked by applying the “vif ” 
(Variance Inflation Factor) function in the “car” package28 to the 
model fitted in the next section. VIF values < 3 are considered 
inconsequential.29

Model f itting and residual diagnostics.  The model structure 
reported above can be coded in R as:

glm_native <- glm(Native ~ Temperature + log2(Country_size),        # set explanatory variable and covariate
			        family = binomial(link = “logit”),     �# set conditional distribution and link 

function
			        data = beasts) 			         # select dataset

Before inspecting the results, it is essential to make sure the 
model complies to the underlying assumptions, so that it is pos-
sible to make proper inference (cf. Box 1). Visual residual diag-
nostics is commonly employed to this aim.30 Basically, the idea 

is this: suppose we have a sample that is representative of the 
entire population of interest; suppose also that we knew the 
“true” data generating process, that is, the “true” regression 
between response and explanatory variables in the whole 
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population. By definition, this “true” regression will capture the 
information in the data correctly, that is, it will account for all 
sources of variation, so that what is left unexplained is just ran-
dom noise. This random noise is reflected by the “errors,” that is, 
the vertical distances between each datapoint in the sample and 
the “true” regression line. However, we don’t actually know what 
the “true” regression is, as we hardly have the possibility to 
investigate the entire population, or include all potential 

explanatory variables; errors are thus unobservable. We can only 
approximate the data generating process in a sample by using a 
model.31 The question is, can we actually trust this model? To 
this aim, we can inspect the distances between each of the 
response datapoint in the sample and the regression line fitted 
with the model, that is, the “residuals.” Though residuals have 
different properties than errors,32 if the fitted model complies to 
its underlying assumptions, the residuals would approximate 

Box 1.  A bestiary of classic inference for regression models.

Statistical inference is the attempt to draw conclusions about some unknown aspect of a population, based on a sample from that population. Through 
ordinary least squares (LMs) or maximum likelihood (LMs and GLMs) we estimate ββ, a sample-based approximation (our ‘best guess’) of the ‘true’—albeit 
unknown—regression coefficient β  that links an explanatory variable to the response in the population. Typically, we are interested to know if this 
relationship is different from zero (β ≠ 0). To this end, however, β  alone is insufficient: intuitively, using only one sample makes our estimate of β uncertain, 
as the same model applied to another sample is likely to yield different estimates! The standard error (SE) returned by the model accounts for this uncertainty 
due to sampling variability, and allows to make the leap from the known (β ) to the unknown (β). How?

Classic (or ‘frequentist’) inference theoretically assumes that random samples of a given size are drawn repeatedly from the same population, and regression 
coefficients are estimated for each one of them. The realized coefficients βi  will differ because of sampling variability, but the central limit theorem ensures 
they will distribute themselves normally, for large enough sample sizes (panel A). A sampling distribution of regression coefficients is thus defined by a 
mean β , and by a standard deviation that quantifies the uncertainty in the estimation of β . The mean of the sampling distribution is approximated by β, 
the ‘signal’, and the standard deviation is approximated by SE, the ‘noise’ around β, both estimated by our regression model. We also know the % of the area 
under this curve that lies between ± a given number of standard errors from the mean: for example, 68.2% between ± 1 SE, 95.4% between ± 2 SE (panel B). 
This information is particularly relevant to inference, because it allows to account for sampling variability when testing if β  ≠ 0.
For example, we can define a confidence interval (CI) for β , using the conventional 95% threshold (α-level = 0.05). Assuming the model estimator is 
normally distributed (thus reflecting a theoretical normal sampling distribution) with known variance, the 95% CI bounds around the realized β  are 
obtained by multiplying the estimated value of SE by ± the number of standard errors needed to include 95% of the area under a normal distribution, which 
corresponds to a z-value of 1.96 (panel C). When the variance is unknown (as it is often the case) or sample size is small, the model estimator would follow 
a slightly different distribution, that is, a t-distribution: in this case, the number of standard errors used to define the 95% CI will depend on sample size, but 
the t-value will converge to 1.96 for large samples. The CI can thus be generally defined as β ± ×z t a( ) /or SE2 , an interval that, if the study is theoretically 
repeated many times, 100(1 – α)% of the times will include β .
Alternatively, we can set up a null hypothesis of no relationship between variables, that is, a sampling distribution of regression coefficients with mean zero 
( βnull  = 0) and standard deviation SE. Next, we evaluate how far the realized regression coefficient β  is from βnull . To this aim, a signal-to-noise ratio 
([ β β − null ]/SE) is calculated to obtain a standardized z- or t-score, depending on the distribution of the model estimator (see above). This score, which 
reflects the distance (measured in standard errors) between β  and zero, will follow a standard normal (z-) distribution or a standard t-distribution (panel 
D). The tabulated values of the corresponding distribution allow to associate the realized z- or t-score with a p-value for a given α-level, usually 0.05. The 
p-value can thus be defined as the probability of obtaining the z- or t-score (or more extreme values), if the study is theoretically repeated many times and 
the null hypothesis is true.
CIs and p-values both allow to assess if β  is significantly different from zero at a given α-level, while accounting for sampling variability. Namely, for α-
level = 0.05, a regression coefficient will be statistically significant if its 95% CI excludes zero or the p-value < 0.05 (panels C-D). CIs, however, convey more 
information than plain null hypothesis testing: rather than focusing on the dichotomic alternative ‘significant vs nonsignificant’, CIs focus on effect size, and 
they tend to be preferred in modern statistics.34
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the errors, that is, they would deviate unsystematically from the 
fitted regression line. It is important to stress that, because the 
true data generating process is difficult to approximate, residuals 
are best seen not as tools to assess if the model is exactly correct, 
but rather as tools to assess if the model is not grossly wrong.33 
Indeed, generic checks such as residuals vs fitted values do not 
ensure that a given model is indeed what we are looking for.24 
For example, we may be missing an important explanatory vari-
able, yet have a decent residual distribution. Despite these limi-
tations, residual plots remain fundamental tools to make sure 
there are no major violations of model assumptions.

For simple linear models, the main assumptions can be intu-
itively summarized with the acronym L.I.N.E.: the relation-
ship between mean response and predictor must be Linear; the 
responses are Independent of each other; the conditional dis-
tribution of the response variable is Normal, and it shows 
Equality of variance. For GLMs, some of these assumptions 
can be relaxed: linearity is not required, and the curvature of 
the relationship between unscaled mean response and predictor 
can be modeled using the correct link function; the responses 
are still assumed independent of each other; the conditional 
distribution of the response variable does not need to be sym-
metrical (normal) nor equal, and it can be modeled using the 
correct distribution and variance.35 Either way, (G)LMs should 
include all important variables in the predictor and have no 
multicollinearity issues. When LM assumptions are met, the 

A B C D E

Figure 5.  Scatterplots between residuals and predicted values can be used to visually inspect how well a model fits the data. (A) homoscedastic 

(unsystematic) patterns suggest a good fit, (B) humped (non-linear) patterns suggest that the systematic part of the model might have been misspecified: 

interactions or non-linear relationships may be considered, (C and D) funnel-shaped or (E) double-bowed scatters indicate that the variance changes with 

the predicted values (eg, linearly or as a proportion between 0 and 1), hence alternative conditional distributions may be considered.

plot of (standardized) residuals vs predicted values would 
reflect random noise and exhibit no pattern, that is, the residu-
als would be scattered in an unsystematic way. Severe devia-
tions from near-randomness (eg, non-linear patterns, or 
“funnel-shaped” variance) would indicate that the model has 
not captured correctly the information in the data, that is, there 
are problems with one or more assumptions (eg, important 
variables are missing, or their form is incorrectly specified; the 
assumed residual variance is wrong. .  .) (Figure 5).

Ideally, the behavior of residuals for GLMs should be similar to 
the behavior of residuals for LMs. Intuitively, however, in GLMs 
the plot of raw response residuals vs fitted values would show 
some asymmetry and inequality of variance (cf. Figure 3B), thus 
they would be inadequate for model diagnostics.35 To handle this 
issue in logistic regression, a different form of residuals may be 
used, for example, binned residuals. Arguably, however, quantile 
residuals are the most appropriate choice for GLM diagnostics.36 
Essentially, the idea is to determine the cumulative probability that 
an observation is less than or equal to the fitted value of a given 
distribution; this cumulative probability is then used to find the 
corresponding value of the standard normal variate, that is, the 
quantile residual.35 Technicalities aside, for practitioners it is 
important to know that quantile residuals have the desirable prop-
erty of being normally distributed, thus making inspection of 
GLM residuals as intuitive as residuals for LMs. Quantile residu-
als can be generated with the package “DHARMa”37:

library(“DHARMa”) 				           # load package
sim_glm_native <- simulateResiduals(glm_native)   �# generate scaled residuals by simulating from the model
plot(sim_glm_native) 				    # plot simulated residuals

Figure 6 shows that: the outlier test and the dispersion test on 
simulated residuals are non-significant; the Kolmogorov-
Smirnov test is non-significant, suggesting that the conditional 
distribution of the response variable conforms to the expecta-
tions. The plot of residuals against predicted values does not 
show any particular pattern, also suggesting that the 

assumptions of the model have been met. All in all, the model 
seems to behave well! It is also generally recommendable to 
inspect the residuals against each explanatory variable, to check 
if the relationships with the response have been modeled 
appropriately (results are not shown, but the residuals do not 
reveal any systematic pattern):
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plotResiduals(sim_glm_native, form = beasts$Temperature, xlab = “Temperature”)
plotResiduals(sim_glm_native, form = log2(beasts$Country_size), xlab = “log2(Country size)”)
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Figure 6.  Residual diagnostics for the model fitted to investigate the probability of native presence of fantastic beasts. On the left, “DHARMa” returns a 

qq-plot to detect overall deviations from the expected distribution, and several goodness of fit tests; on the right, it returns a plot of the simulated residuals 

against the predicted values. In the panel on the left, QQ stands for “quantile-quantile”, and KS for “Kolmogorov-Smirnov”.

Importantly, (G)LMs in their basic forms assume that 
random errors are independent of each other. Lack of inde-
pendence in the random errors generally arises because of 
the multilevel nature of the response variable (which can be 
modeled with the inclusion of a “grouping” or “random” 
term,7), or because of temporal or spatial correlation. In this 
example observations were assumed to be independent as we 
have neither grouping nor temporal effect. Some spatial cor-
relation might be present: conditional autoregressive (CAR) 

models can cope with correlation between neighboring 
countries (we have no details about the exact location of 
each fantastic beast), but they are beyond the scope of this 
tutorial.

Model results and interpretation.  Once we accept that our model 
is well-behaved, we can inspect the estimates with the “param-
eters” package,38 which conveniently allows to display essential 
information:

library(“parameters”)
parameters(glm_native) # show estimate, SE, 95% confidence interval, z-score, p-value

The main results, in terms of β, standard errors (SE), confi-
dence intervals, z-scores and p-values are reported in Table 1. 
This information is used to make inference: if you need a 
refresher on these concepts, Box 1 should (hopefully) help!

Table 1 shows that the native presence of fantastic beasts is 
related to country size, but not to temperature. More specifically, 
the values in Table 1 tell us that, with a temperature of 0 °C and 
a log2-country size of zero (the Intercept), the probability of 
native presence of fantastic beasts would be 0.015 (since we used 
a logit-link, this value can be obtained by back-transforming the 
intercept value [-4.16] using the inv.logit() function, 

which is simply defined as e (x)/(1 + e (x)), in the package “boot”39). 
Admittedly, assuming a country size of 1 km2 (so that the log2-
value is zero) might make poor biological sense, and it may be 
more appropriate to center the covariate “country size” to its 
mean, prior to fitting the model, so that the intercept would 
return the probability of native presence of beasts for a mean 
log2-country size (notably, the regression coefficients would not 
change, try it!). The estimated β  coefficient represents the 
expected change in the response variable for each unit change in 
the explanatory variable, while holding the other variables in the 
model constant at a given level. Unlike in simple linear models, 
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Table 1.  Estimated relationships of temperature and log2-country size with native presence of fantastic beasts.

Coefficient β SE 95% CI z-score df P-value

Native presence

  (Intercept) –4.16 1.30 (–6.70, –1.61) –3.20 156 <.001

  Temperature –0.02 0.02 (–0.07, 0.02) –0.88 156 .381

  Log2(Country_size) 0.19 0.07 (0.06, 0.33) 2.77 156 .006

Abbreviations: CI, confidence intervals; SE, standard errors.
The table reports coefficient estimates (β), standard errors (SE), 95% confidence intervals (CI), z-scores, degrees of freedom (df) and P-values. Significant coefficients in 
bold. The interpretation of these values is detailed in the main text.

where the response is not transformed, in logistic regression the 
fitted values are in the logit scale, and β  cannot be straightfor-
wardly interpreted. Rather, β  can be exponentiated to obtain 
the odds-ratio (OR), a metric often used to interpret logistic 
regression coefficients (if you are not familiar with that, check 
out Box 2!).

When increasing temperature by 1 °C, we obtain an OR of  
e (-0.02) = 0.980, which can be interpreted as a non-significant 
change (ie, with low “signal-to-noise ratio,” cf. Box 1) of -2% in 
the odds of native presence of beasts. Similarly, when increasing 
the log2-size of the country by 1 unit (ie, when doubling country 
size), we obtain an OR of e (0.19) = 1.209, which can be interpreted 
as a significant change (ie, with high “signal-to-noise ratio”) 
of + 21% in the odds of native presence of beasts. Alternatively, 

we could look at regression coefficients by using the “divide by 4” 
rule presented in Box 2. For example, when increasing tempera-
ture by 1 °C, we obtain a variation of -0.02 / 4 = -0.005 in the 
expected value π i , which can be interpreted as a non-significant 
decrease of approximately 0.5% in the probability of native pres-
ence of beasts. This rule, however, would not work well when 
increasing the log2-size of the country by 1 unit (ie, when dou-
bling country size): the expected values are very close to 0 and 
the relationship is highly non-linear (cf. Box 2 and Figure 7).

We can also extract the pseudo-R2 of the model, which 
mimics the behavior of the coefficient of determination for 
ordinary least squares models (ie, the proportionof the vari-
ance for a dependent variable that is explainedby the inde-
pendent variables), with the package “performance”42:

Box 2.  Logit, odds-ratio and other beasts.

The logit-link function assumed in logistic (and Beta) regression models takes the form:

logit lni
i
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From these formulas, we see that the logit-transformed mean—not the mean—is modeled as a linear function of the predictor; the logit-link therefore acts 
as a transformation that linearizes the relationship between the expected response and the predictor, mapping the range of probability (0,1) to the real line.25 

We also see that the logit function is the logarithm of the odds, ln i

i

π
π1−









  or ‘log-odds’, that is, the log of the ratio between the probability that the event 

will occur and the probability that it will not occur.
Since log-odds are modeled as a linear function of the predictor, β  coefficients represent the increase or decrease in the log-odds of the response for one-unit 
change in the explanatory variable. Basically, the β  of an explanatory variable is evaluated as a subtraction of log-odds, so that β  = log-odds(x + 1)—log-
odds(x), where log-odds(x + 1) refers to the log-odds when the value of the explanatory variable is just one unit larger than the value of the same variable 
associated with log-odds(x). This interpretation of β , however, is not very intuitive, and back-transforming the log values to odds is desirable. Because 
exponentiating a subtraction results in a division, by exponentiating the β  coefficients, that is, the difference in log-odds, we obtain the ‘odds-ratio’ (OR), 
which can be interpreted as the change in the odds of the response variable with every one-unit increase (indicated with an asterisk) in the explanatory 

variable. Therefore, OR e
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. In simpler words, the odds-ratio can be defined as ‘the odds on something occurring in one situation to the odds of the same 

event occurring under a second situation. An odds-ratio of 1 implies that the odds on an event occurring (and hence the probability of its occurrence) are unaffected by the 
change in the situation’.40

Admittedly, odds and odds-ratio sound a bit like obscure beasts. To better understand the relationships between response and explanatory variables is thus 
recommendable to inspect the mean predicted values graphically.41 Alternatively, the ‘divide by 4’ rule may also be used. If the relationship between the 
response and the explanatory variable does not change much in most of the predictor’s range, then this part of the logistic curve can be considered roughly 
linear. The slope, that is, the first derivative of πi  to the explanatory variable, is βπ πi i( )1− . The slope of the curve is at its maximum when π i =

1
2

, that is, 
when it equals β

4
.2 Consequently, if we divide the logit coefficients by 4, we obtain an estimate of the maximum change of the expected response for one-

unit increase in the explanatory variable. This rule works well when the probabilities do not flatten, that is, when they do not attain extreme values.25
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library(“performance”)
r2(glm_native)		   # calculate pseudo-R2 for the fitted model
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Figure 7.  Marginal relationships of temperature and log2-country size with the probability of native presence of fantastic beasts. When visualizing a 

marginal relationship in “visreg,” the other continuous explanatory variables in the model are set at their median value. Gray shaded areas show 95% 

confidence intervals. Original datapoints in red.

This function returns a fairly low value (about 7%) for the Tjur’s 
coefficient of discrimination.43 Although the residual plot did 
not give evidence of gross mis-specification, the model has lim-
ited predictive accuracy, that is, much of the variation in the 
response was not captured by the explanatory variables. We may 
further explore such accuracy by calculating the area under the 
receiver operating characteristic (ROC) curve.44 Simply put, the 
ROC curve allows to assess the ability of the model to discrimi-
nate between presence and absence of beasts in any one country, 

based on the explanatory variables used. In general, a value of the 
area under the curve (AUC) of 0.5 suggests random discrimina-
tion ability (ie, the model is equally likely to predict either pres-
ence or absence), 0.7 to 0.8 is considered an acceptable 
discrimination ability, 0.8 to 0.9 is considered excellent, and > 0.9 
is considered outstanding. If the AUC is < 0.5, the model does 
worse than chance in predicting presence/absence. The actual 
response values and the values predicted by the model can be 
used to calculate the AUC with the “pROC” package45:

library(“pROC”)
roc.glm_native <- roc(beasts$Native, predict(glm_native)) # calculate ROC curve
roc.glm_native$auc 						      # extract area under the ROC curve
plot(roc.glm_native) 					      # plot the ROC curve (not shown)

The AUC value is 0.70, suggesting that there is about 70% 
chance that the model will be able to discriminate between 
presence and absence of beasts in any one country, given the 
explanatory variables. This predictive accuracy largely owes to 
the significant explanatory variable log2-country size. Should 
we refit the model with only the non-significant explanatory 
variable (ie, temperature), we would obtain an AUC value of 
about 0.45, suggesting that flipping a coin may do better than 
the temperature-only model in predicting presence or absence 
of beasts in any one country!

With 36 events of native presence out of 159 datapoints, 
and only 2 explanatory variables in the model, our estimates 
should be OK. Rules of thumb suggest that a regression model 

is likely to be reliable when the number of explanatory variables 
is less than m/15, where m is the “limiting sample size” (which, 
for logistic regression, would correspond to the number of cases 
in the less frequent category46:). However, to account for 
potential bias due to small sample sizes, a solution may be to fit 
a model using the Firth’s method,47 which allows to reduce 
small-sample bias by placing a penalty term on the maximum 
likelihood function. Unlike traditional maximum likelihood, 
Firth’s method always allows to generate finite estimates of 
regression coefficients and associated standard errors. Firth 
regression can be fitted with the “logistf ” package48—the esti-
mates (not shown) are consistent with those of the uncorrected 
logistic regression:
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library(“logistf”)
glm_native.firth <- logistf(Native ~ Temperature + log2(Country_size),
			    	  firth = TRUE,
				     data = beasts)
parameters(glm_native.firth)

To further improve the interpretation of results, we may gen-
erate graphs of the model, which can be much more effective at 

imparting information than tables.15 We can easily plot the mar-
ginal relationships with the package “visreg”49 (Figure 7):

library(“visreg”)

par(mfrow=c(1,2)) 							                     # set multi-panel plot

visreg(glm_native, “Temperature” scale = “response” rug = FALSE,                # select model and variable
	   xlim=c(-5,30), ylim = c(0,1),				                  # set limits for x & y axes
	   xlab = “Temperature (in °C)” ylab = “Probability of native presence”)      # define labels
with(beasts, points(Temperature, Native, pch = 16, cex = 0.5, col = “red”))   # plot data points

visreg(glm_native, “Country_size” scale = “response” xtrans = log2, rug = FALSE,
       xlim=c(0,25), ylim = c(0,1),
       xlab = “log2(Country_size)” ylab = “Probability of native presence”)
with(beasts, points(log2(Country_size), Native, pch = 16, cex = 0.5, col = “red”))

Figure 7 helps visualizing the results reported in Table 1, 
namely the slightly negative, albeit non-significant, relation-
ship of temperature, and the significant positive relationship of 
log2-country size with the probability of native presence of 
beasts.

Mean perceived level of danger

Model building.  Given that fantastic beasts are natively present 
in some of our sample units, what is the relationship between 
temperature and the mean perceived level of danger of the ani-
mal communities? We focus our attention on countries where 
beasts occur, because we can’t measure a phenotypic trait where 
animals are not present. We thus need to subset our data:

beasts_danger <- subset(beasts, Native==1) # select native countries only

As we did for the logistic regression, to model variation in 
the response variable (mean level of danger) our linear pre-
dictor shall include temperature as an explanatory variable, 
and country size as a covariate to control for uneven area of 
sampling units. Our next task is choosing the appropriate 
conditional distribution for the response variable. Since the 
mean level of danger is a continuous variable, assuming a 
normal conditional distribution may be tempting (and 
indeed not wrong, but more on that later), but for didactic 
purposes let us reflect more carefully on the nature of these 
data. According to the classification of the Ministry of 
Magic, we cannot have beasts less than “boring” (< 1), nor 
beasts more than “impossible to train or domesticate” (> 5). 
Consequently, our response variable (mean level of danger) 
can take any value between 1 and 5. As seen before, in prin-
ciple Gaussian linear models are not ideal to fit these data, as 
they allow infinite negative or positive fitted values, and 

assume that the conditional distribution of the response vari-
able is symmetrically distributed with constant variance4 (cf. 
Figure 3A). This is clearly not the case with the mean per-
ceived level of danger, whose values are intrinsically con-
strained between 1 and 5. The conditional distribution of the 
response variable will be asymmetrical when the fitted values 
approach 1 or 5, and the variance will tend to be greater at 
intermediate expected values (intuitively, the “freedom” of 
variation of the response variable from the fitted line will 
reduce toward the extremes, cf. Figure 3B). We thus need a 
distribution that can accommodate these issues. An appro-
priate choice is the Beta distribution.50 Importantly, the Beta 
distribution requires data in the open interval between 0 and 
1 (that is, not including 0 and 1). We thus need some data 
manipulation before we fit our model. First, we temporarily 
scale the raw data yi, which can vary between 1 and 5, into 
data between 0 and 1, by taking yi′ = (yi—ymin) / (ymax—ymin):
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library(“glmmTMB”)
glm_danger.glmmTMB <- glmmTMB(Level_of_danger.scaled ~ Temperature + log2(Country_size),
							            family = beta_family(link = “logit”),
							            data = beasts_danger)

As we did for the logistic regression, we check the fit of the model (Figure 8):

sim_glm_danger.glmmTMB <- simulateResiduals(glm_danger.glmmTMB)
plot(sim_glm_danger.glmmTMB)

beasts_danger$Level_of_danger.scaled.temp <- (beasts_danger$Level_of_danger-1)/(5-1)

(cf.4). To avoid undefined logits for the endpoints, we may add 
and subtract a small amount to, respectively, the 0- and the 
1-values. Smithson and Verkuilen51 suggested an alternative, 

more efficient procedure to avoid zeros and ones, where the 
scaled data are compressed by taking yi′′ = [(yi′ · (n − 1) + 0.5) / 
n], where n is the sample size:

beasts_danger$Level_of_danger.scaled <- (beasts_danger$Level_of_danger.scaled.temp*
					             (length(beasts_danger$Level_of_danger.scaled.temp)-1)+0.5)/
						       length(beasts_danger$Level_of_danger.scaled.temp)

This scaling method allows to effectively shrink the yi′′ interval 
to [.005, .995] (technical details are available in Smithson and 
Verkuilen51). We are now ready to fit our Beta regression model. 
We start again by presenting the structure of the model:
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i i
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where the conditional Beta distribution has mean 
E( Level of dangeri ) and variance Var Level of dangeri( ) . 
The parameter φ  is known as the precision parameter since, 
for given values of µ i, the larger φ  the smaller the variance.50 
Intuitively, as in the logistic model, g (µi) represents the canon-
ical logit-link function: as µi  is confined between 0 and 1, the 
logit-link allows to map the interval to the real line, that is, 
between ±∞. Finally, βi  are the regression coefficients to be 
estimated from the data.

Model f itting and residual diagnostics.  The simplest way to fit a 
Beta regression model in R is through the “betareg” package52:

library(“betareg”)
glm_danger.betareg <- betareg(Level_of_danger.scaled ~ Temperature + log2(Country_size),
							            link = “logit” link.phi = “log”
							            data = beasts_danger)

“betareg,” however, is not supported by DHARMa, and although 
residual diagnostics is possible,52 I prefer to refit the model using the 
package “glmmTMB.”53 “glmmTMB” uses maximum likelihood 

estimation via “TMB” (Template Model Builder), but yields (nearly 
exactly) the same results as “betareg,” allows greater flexibility in fit-
ting regression models and can be used in DHARMa.

Figure 8A suggests that the model is not a very good fit to 
the data. Why is that? The graph on the right suggests the 
presence of a severe outlier (indicated with an asterisk). 
Looking at the data, we see that the fierce Quintapeds are 

extremely dangerous (level 5) and they are the sole inhabitants 
of the tiny island of Drear. So, a tiny island with an extremely 
high mean level of perceived danger. .  . What if we remove this 
datapoint? (Row number 33 in the dataset).
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Figure 8.  Residual diagnostics for the model fitted to investigate the variation in mean perceived level of danger of country-specific magical animal 

communities, with (A) and without (B) outlier.

glm_danger_no_outlier.glmmTMB <- glmmTMB(Level_of_danger.scaled ~ Temperature + log2(Country_size),
									          family = beta_family(link = “logit”),
									          data = beasts_danger[-c(33),])
sim_glm_danger_no_outlier.glmmTMB <- simulateResiduals(glm_danger_no_outlier.glmmTMB)
plot(sim_glm_danger_no_outlier.glmmTMB)

The residuals in Figure 8B look good now!
As we did for the logistic regression, we can also inspect the 

residuals of the model without outlier against each explanatory 

variable, to check if the relationships with the response have 
been modeled appropriately (results are not shown, but the 
residuals do not reveal any systematic pattern):
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Table 2.  Estimated relationships of temperature and log2-country size with mean perceived level of danger of country-specific animal communities.

Coefficient β SE 95% CI z-score df P-value

Level of danger (with outlier)

  (Intercept) 1.63 0.51  (0.64, 2.63) 3.21 32 <.001

  Temperature –0.01 0.01 (–0.03, 0.02) –0.48 32 .632

  Log2(Country_size) –0.10 0.03 (–0.16, –0.04) –3.51 32 <.001

Level of danger (without outlier)

  (Intercept) –1.29 0.30 (–1.88, –0.69) –4.22 31 <.001

  Temperature 0.00 0.00 (–0.01, 0.01) 0.43 31 .665

  Log2(Country_size) 0.05 0.02 (0.02, 0.08) 2.94 31 .003

Abbreviations: CI, confidence intervals; SE, standard errors.
The table reports coefficient estimates (β), standard errors (SE), 95% confidence intervals (CI), z-scores, degrees of freedom (df) and P-values. Significant coefficients 
in bold.

plotResiduals(sim_glm_danger_no_outlier.glmmTMB, form = beasts_danger[-c(33),]$Temperature,
		    xlab = “Temperature”)

plotResiduals(sim_glm_danger_no_outlier.glmmTMB, form = log2(beasts_danger[-c(33),]$Country_size),
		    xlab = “log2(Country size)”)

Model results and interpretation.  Although the model with out-
lier is not a good fit to the data, for didactic purposes we inspect 
the results of both models (Table 2):

parameters(glm_danger.glmmTMB)

parameters(glm_danger_no_outlier.glmmTMB)

The interpretation of results follows the same logic 
explained above for the logistic regression, as binomial and 
Beta regressions share the same logit-link function. Therefore, 
β  coefficients in Beta regressions can be interpreted in terms 
similar to odds-ratio: for one-unit increase in the explanatory 
variable, β  would measure a difference in log-ratios of scaled 
level of danger. With a temperature of 0 °C and a log2-country 
size of zero (the Intercept), the inverse-logit danger level of 
countries would be 0.84 for the model with outlier, and 0.21 
for the model without outlier. When increasing yearly average 
temperature by 1 °C, we obtain e (-0.01) = 0.990 for the model 
with outlier, and e (0.00) = 1.000 for the model without outlier, 
thereby suggesting non-significant changes (respectively, -1% 
and 0%) in the odds of scaled danger level. When doubling the 
size of the country, we obtain e (-0.10) = 0.905 for the model with 
outlier, and e (0.05) = 1.051 for the model without outlier, thereby 
suggesting significant opposite changes (respectively, -9.5% 
and + 5.1%) in the odds of scaled danger level. These results 
might be difficult to interpret, and the “divide by 4” rule may 

be a quicker and clearer alternative, at least for the model 
without outlier, for which the expected values are roughly lin-
ear and quite far from the extremes (cf. Figure 10). When 
increasing yearly average temperature by 1 °C, the expected 
value µi  varies approximately by 0.002 / 4 = 0.0005, thereby 
suggesting an increase of some 0.05% in the scaled level of 
danger. When doubling the size of the country we obtain a 
variation of 0.05 / 4 = 0.0125, which suggests an increase of 
approximately 1.25% in the scaled level of danger.

A note of caution: the z-test returned by the model 
requires a normally distributed population with known vari-
ance, or large sample size (cf. Box 1). With moderate to small 
samples, the test might produce inaccurate p-values and con-
fidence intervals, possibly misleading inference. Based on the 
m/15 rule of thumb for a continuous response variable,46 the 
sample size for the level of danger should suffice for our sim-
ple model, but we would feel more confident if consistent 
results were obtained using a different (non-asymptotic) 
inferential approach. Although outside of the scopes of this 
paper, Bayesian modeling is an alternative to the classic 
approach outlined in Box 1.2 Bayesian regression models 
allow to—perhaps more intuitively—generate sampling dis-
tributions for β . How does this work? Just like for the fre-
quentist model, we start by specifying a linear predictor; we 
then assign a particular kind of prior distribution to the 
regression coefficients, for example, a normal distribution 
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Figure 9.  Bayesian regression assumes a given prior distribution for the regression coefficients, and a given linear predictor. This combination is 

assumed to generate a given conditional distribution for the response (panel (A)). The prior information and the likelihood are then combined to generate a 

posterior distribution for the regression coefficients through MCMC (panel (B)).

with a given mean m and a given standard deviation s; this 
combination is assumed to generate a particular kind of con-
ditional distribution for the response, which, in this case—as 
in the frequentist counterpart, follows a Beta probability dis-
tribution (Figure 9A). As before, a logit-link is used to map 
the confined interval (0, 1) to the real line. Next, through an 
iterative procedure known as Markov chain Monte Carlo 
(MCMC), the prior information and the information derived 
from the data (likelihood) are combined to generate a poste-
rior distribution for the regression coefficients (Figure 9B).54

The estimates for each coefficient β  can thus be easily 
obtained by extracting, eg, the mean and the 2.5 and 97.5 
percentiles from the posterior distribution to obtain the 95% 
credible interval. Unlike the frequentist 95% confidence 
interval, the Bayesian 95% credible interval has an intuitive 
interpretation: it is an interval that has 95% probability of 
including the unobserved β . Our Bayesian regression model 
(without outlier) can be easily built (using default priors) with 
the package “brms,”55,56 which uses a simple glmmTMB-like 
formula syntax:

library(“brms”)
glm_danger_no_outlier.brm <- brm(Level_of_danger.scaled ~ Temperature + log2(Country_size),
								         family = Beta(link = “logit” link_phi = “log”),
								         data = beasts_danger[-c(33),])
parameters(glm_danger_no_outlier.brm, ci = 0.95)

The results (not shown) are numerically very similar to those 
obtained with the classic frequentist approach. For this model, 
lots of interesting things (estimates, diagnostics . . .) can be inter-
actively inspected with the package “shinystan”57 (not shown):

library(“shinystan”)
launch_shinystan(glm_danger_no_outlier.brm)

Bayesian estimation has the great advantage of allowing to 
move beyond the need of assuming outcomes that never hap-
pened, and it provides a natural way to reflect estimate uncer-
tainty.23 Bayesian regression models are also generally robust 

even with small samples.58 Nonetheless, Bayesian estimation is 
still relatively rare in ecology, possibly because of prior “subjec-
tivity” and MCMC complexity. Fortunately, the development of 
user-friendly packages such as “brms” or “rstanarm”59 has made 
model specification much more accessible. If this exercise has 
triggered in you the desire to know more about Bayesian regres-
sion, I would recommend the books of Zuur et  al,60 Korner-
Nievergelt et al,14 Kruschke,54 McElreath10 or Gelman et al.2

Coming back to the frequentist Beta regression model, as 
we did for the logistic regression, a visualization of the mar-
ginal relationships greatly helps the interpretation of model 
results (Figure 10):
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Figure 10.  Marginal relationships of temperature and log2-country size with scaled mean perceived level of danger of country-specific magical animal 

communities, with (left column) and without (right column) outlier. Gray shaded areas show 95% confidence intervals. Original datapoints in red.

par(mfrow=c(2,2))

visreg(glm_danger.glmmTMB, “Temperature” scale = “response” rug = FALSE,
	   xlim = c(0,30), ylim = c(0,1),
	   main = “With outlier” xlab = “Temperature (in °C)” ylab = “Scaled level of danger”)
with(beasts_danger, points(Temperature, Level_of_danger.scaled, pch = 16, cex = 0.5, col = “red”))

visreg(glm_danger_no_outlier.glmmTMB, “Temperature” scale = “response” rug = FALSE,
	   xlim = c(0,30), ylim = c(0,1),
	   main = “Without outlier” xlab = “Temperature (in °C)” ylab = “Scaled level of danger”)
with(beasts_danger[-c(33),], points(Temperature, Level_of_danger.scaled, pch = 16, cex = 0.5, col = “red”))

visreg(glm_danger.glmmTMB, “Country_size” scale = “response” xtrans = log2, rug = FALSE,
	   xlim = c(5,25), ylim = c(0,1),
	   xlab = “log2(Country_size)” ylab = “Scaled level of danger”)
with(beasts_danger, points(log2(Country_size), Level_of_danger.scaled, pch = 16, cex = 0.5, col = “red”))

visreg(glm_danger_no_outlier.glmmTMB, “Country_size” scale = “response” xtrans = log2, rug = FALSE,
	   xlim = c(5,25), ylim = c(0,1),
	   xlab = “log2(Country_size)” ylab = “Scaled level of danger”)
with(beasts_danger[-c(33),], points(log2(Country_size), Level_of_danger.scaled, pch = 16, cex = 0.5,col = 
“red”))
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To obtain the pseudo-R2, calculated as the squared  
correlation of linear predictor and link-transformed 

glm_danger.betareg <- betareg(Level_of_danger.scaled ~ Temperature + log2(Country_size),
							            link = “logit” link.phi = “log”
							            data = beasts_danger)
glm_danger.betareg$pseudo.r.squared # the function “summary” would also return a value for pseudo-R2
glm_danger_no_outlier.betareg <- betareg(Level_of_danger.scaled ~ Temperature + log2(Country_size),
							            link = “logit” link.phi = “log”
							            data = beasts_danger[-c(33),])
glm_danger_no_outlier.betareg$pseudo.r.squared

response,52 we can refit the models using the “betareg” 
function:

Interestingly, the results tell us very different things. In both 
cases, temperature does not have a significant relationship with 
danger level; yet, country size has opposite relationships with 
the perceived mean level of danger, depending whether the 
outlier is included or not! When including the outlier, the 
model explained about 22% of the variance, while the explained 
variance was slightly lower (21%) when excluding it. These 
issues are discussed in the next section.

Discussion
The results of this study are somewhat disappointing. For 
example, I hoped that my intuition about the potential relation-
ship between temperature and the country’s likelihood of host-
ing fantastic beasts could be supported by the data. The variation 
in the response variable, however, was explained by a rather 
trivial concept: the larger the country, the more likely the pres-
ence of a native beast. And if we exclude the extremely danger-
ous Quintapeds of the tiny island of Drear, the larger the 
country, the higher the mean perceived level of danger of the 
magical animal community that lives in it. The interpretation of 
results, however, always needs to be treated with caution.

First, although the aforementioned predictions hint at a 
causal relationship between temperature and occurrence/dan-
ger level of beasts, it should be pointed out that, strictly speak-
ing, causal interpretations can be ascertained only through 
controlled experiments. Many, if not most, field studies in ecol-
ogy are observational, and using regression to infer causal 
effects requires caution.2 The regression models presented here 
were descriptive in nature, ie, they simply aimed to find rela-
tionships between variables. Strictly related to this, is the issue 
of “lurking variables,” namely variables that are unknown and 
not controlled for, which might change the relationships 
between explanatory and response variables25; when available, 
variables that can have an important effect on the variables of 
interest should thus be included in the model. In fact, my mod-
els did not explain much of the data variation, suggesting that 
the variation in native presence and in mean perceived level of 
danger may be better described by the inclusion of further vari-
ables. It seems also plausible that the pooling of data might 
have hampered the amount of available information: beast-
specific information, eg, which animals are present in which 

country, as well as their country-specific abundance, might help 
to define better models (for example, weighting the level of 
danger by the number of individuals present in the community, 
to buffer against the disproportionate effect they might have in 
our results) and possibly yield more insightful results. However, 
this was just a preliminary exploration, and other researchers 
should collect data on further explanatory variables that may 
clarify the ecological diversity of fantastic beasts, possibly 
including non-linear relationships.

Perhaps, the most interesting aspect of my investigation was 
the effect of the outlier on the model that explored the varia-
tion in perceived mean level of danger. Since the outlier does 
not seem to be a mistake in data collection, it is difficult to 
decide whether to keep this point or not in the dataset. To sort 
this out, we need some deeper statistical and ecological think-
ing. Outliers are not uncommon in ecology; natural variation is 
the rule, not the exception. So, what should we do? First, since 
we are arguably interested in the “bulk” of the data, it seems fair 
to inspect two models, one with and one without outlier. Next, 
it is worth discussing the difference between the two models, 
and pick either one based on sound theoretical and statistical 
justifications. From the ecological standpoint, for example, I 
argue that the outlier may not be very informative about the 
relationship between level of danger and the associated explan-
atory variable. Based on Scamander’s narration, Quintapeds 
may have originated from the transmutation of wizards into 
terrible creatures; if so, I believe they would hardly be repre-
sentative of the native habitat “choice” of beasts, since this is 
clearly a case of artificial colonization, and the outlier could be 
eliminated (also from the logistic regression, which is nonethe-
less much less affected by the datapoint). Conversely, under a 
hypothetical scenario where the really dangerous beasts truly 
evolved on the little island, it would not be justifiable to exclude 
the point. The model with outlier, however, did not behave 
well, and should we keep the Quintapeds in the dataset, a 
robust modeling approach—which downweighs the impor-
tance of extreme datapoints—may be more appropriate.

Notably, for the perceived mean level of danger, results simi-
lar to those obtained with the Beta models can be obtained by 
fitting simple linear models with the “lm” function (you can try 
to do some modeling yourself!). This is reassuring for our 
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inference, since GLMs are generally data-hungrier than simple 
linear models: unlike GLMs, LMs estimates are generally 
obtained through ordinary least squares and the test statistic 
follows a t-distribution, which is equivalent to the normal dis-
tribution when the number of cases becomes large, but it is 
more appropriate when the population standard deviation is not 
known and the sample size is small (cf. Box 1). But how is it 
possible that similar results are obtained, if our data are not ideal 
for Gaussian models? It turns out that, when excluding the out-
lier, the perceived mean level of danger is linearly related to the 
explanatory variable and most values are far from the extremes 
(ie, zero and one: cf. Figure 10). Therefore, within this realized 
range of values, the conditional distribution of the response 
variable is to some extent unconstrained, roughly symmetrically 
distributed, and with approximately constant variance. It should 
be noted that perceived danger per country is the mean value of 
the danger score per beast inhabiting a country, thus the central 
limit theorem guarantees that this mean value converges to a 
normal distribution. This explains why simple linear models, 
though theoretically not ideal to fit these data, worked fairly 
well in practice. This frequently happens with variables such as 
biometric measurements (eg, height or body mass) which, 
despite having biological boundaries, often show a realized data 
distribution that allows to use simple normal models without 
major violations of assumptions.24 The results of LMs are also 
generally easier to interpret than those of GLMs, since LMs do 
not employ a transformed response. Notably, for the model 
without outlier, the β  regression coefficients of LM using 
scaled data are very similar to the β

4



 regression coefficients of 
the corresponding Beta regression (cf. Box 2)! Irrespective of the 
modeling strategy, however, the results are not really exiting. But 
that was not the point of the paper anyway.

As a behavioral ecologist, and fan of the Harry Potter saga, 
I thought it would have been fun to investigate the ecology of 
the fantastic beasts. While doing that, I realized this was also a 
challenging and instructive task, from both the ecological and 
the statistical standpoints. Therefore, I thought to offer stu-
dents a practical (albeit arguably simplistic) tutorial on regres-
sion modeling. Most importantly, my main take home message 
for them is simple: learning statistics is not only useful; it can 
also be fun!

Acknowledgements
I thank Niccolò Fattorini (University of Siena), Claudia 
Hermes (Birdlife International) and Ranjana Pal (Wildlife 
Institute of India) and an anonymous reviewer for helpful sug-
gestions on earlier drafts of the manuscript.

Author Contributions
Luca Corlatti conceived the idea for this work, did the statisti-
cal analyses and wrote all drafts of the manuscript.

ORCID iD
Luca Corlatti  https://orcid.org/0000-0002-2706-3875

Data Accessibility
Data are available in the supplementary file 1.

References
	 1.	 Scamander N. Fantastic Beasts and Where to Find Them. Hogwarts, UK: Hog-

warts Library Book; 1927.
	 2.	 Gelman A, Hill J, Vehtari A. Regression and Other Stories. Cambridge, UK: Cam-

bridge University Press; 2020.
	 3.	 Mac Nally R. Multiple regression and inference in ecology and conservation 

biology: further comments on identifying important predictor variables. Biodiv-
ers Conserv. 2002;11:1397-1401.

	 4.	 Zuur AF, Ieno EN, Smith GM. Analysing Ecological Data. New York, NY: 
Springer; 2007.

	 5.	 Bolker BM, Brooks ME, Clark CJ, et al. Generalized linear mixed models: a 
practical guide for ecology and evolution. Trends Ecol Evol. 2009;24:127-135.

	 6.	 Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. Mixed Effects Models 
and Extensions in Ecology With R. New York, NY: Springer; 2009.

	 7.	 Harrison XA, Donaldson L, Correa-Cano ME, et al. A brief introduction to 
mixed effects modelling and multi-model inference in ecology. PeerJ. 
2018;6:e4794.

	 8.	 Burnham KP, Anderson DR. Model Selection and Multimodel Inference. 2nd ed. 
New York, NY: Springer; 2002.

	 9.	 Krausman PR. Important considerations when using models. J Wildlife Manage. 
2020;84:1221-1223.

	10.	 McElreath R. Statistical Rethinking: A Bayesian Course With Examples in R and 
Stan. 2nd ed. London, England: Chapman and Hall/CRC Press; 2020.

	11.	 Ellison AM, Dennis B. Paths to statistical fluency for ecologists. Front Ecol 
Environ. 2010;8:362-370.

	12.	 delMas RC. Statistical literacy, reasoning, and learning: a commentary. J Stat 
Educ. 2002;10:3.

	13.	 Cohen J, Cohen P, West SG, Alken LS. Applied Multiple Regression/Correlation 
Analysis for the Behavioral Sciences. 3rd ed. Mahwah, NJ: Lawrence Erlbaum 
Associates; 2003.

	14.	 Korner-Nievergelt F, Roth T, von Felten S, Guélat J, Almasi B, Korner-Niev-
ergelt P. Bayesian Data Analysis in Ecology Using Linear Models With R, BUGS, and 
Stan. 1st ed. London, England: Academic Press; 2015.

	15.	 Zuur AF, Ieno EN. A protocol for conducting and presenting results of regres-
sion-type analyses. Methods Ecol Evol. 2016;7:636-645.

	16.	 Sutherland WJ. Planning a research programme. In: Sutherland WJ, ed. Eco-
logical Census Techniques. Cambridge, UK: Cambridge University Press; 
2006:1-10.

	17.	 Hamilton IM. Habitat selection. In: Breed MD, Moore J, eds. Encyclopedia of 
Animal Behavior. London, England: Academic Press; 2010:38-43.

	18.	 Boyce MS, Vernier PR, Nielsen SE, Schmiegelow FKA. Evaluating resource 
selection functions. Ecol Model. 2002;157:281-300.

	19.	 Murray DL, Sandercock BK. Population Ecology in Practice. New York, NY: 
Wiley; 2020.

	20.	 R Core Team. R: A Language and Environment for Statistical Computing. Vienna, 
Austria: R Foundation for Statistical Computing; 2020. https://www.R-project.
org/

	21.	 R Studio Team. RStudio: Integrated Development for R. Boston, MA: RStudio 
Inc.; 2020.

	22.	 Buckley YM. Generalized linear models. In: Fox GA, Negrete-Yankelevich S, 
Sosa VJ, eds. Ecological Statistics: Contemporary Theory and Application. Oxford, 
UK: Oxford University Press; 2015:131-148.

	23.	 Bolker BM. Ecological Models and Data in R. Princeton, NJ: Princeton University 
Press; 2009.

	24.	 Pekár S, Brabec M. Modern Analysis of Biological Data: Generalized Linear Models 
in R. Brno, Czech Republic: Masaryk University Press; 2016.

	25.	 Fox J. Applied Regression Analysis and Generalized Linear Models. Los Angeles, 
CA: SAGE; 2016.

	26.	 Dunteman GH, Ho M-HR. An Introduction to Generalized Linear Models. Thou-
sand Oaks, CA: SAGE; 2006.

	27.	 Dormann CF, Elith J, Bacher S, et al. Collinearity: a review of methods to deal 
with it and a simulation study evaluating their performance. Ecography. 
2013;36:27-46.

	28.	 Fox J, Weisberg S. An R Companion to Applied Regression. 3rd ed. Thousand Oaks, 
CA: SAGE; 2019.

	29.	 Zuur AF, Ieno EN, Elphick CS. A protocol for data exploration to avoid com-
mon statistical problems. Methods Ecol Evol. 2010;1:3-14.

https://orcid.org/0000-0002-2706-3875
https://www.R-project.org/
https://www.R-project.org/


Corlatti	 19

	30.	 Fox J. Regression Diagnostics: An Introduction. 2nd ed. Los Angeles, CA: SAGE; 
2020.

	31.	 Westfall PH, Arias AL. Understanding Regression Analysis: A Conditional Distri-
bution Approach. Boca Raton, FL: CRC Press; 2020.

	32.	 Faraway JJ. Linear Models With R. 2nd ed. Boca Raton, FL: CRC Press; 2014.
	33.	 Faraway JJ. Extending the Linear Models With R: Generalized Linear, Mixed Effects 

and Nonparametric Regression Models. 2nd ed. Boca Raton, FL: CRC Press; 2016.
	34.	 Halsey LG. The reign of the p-value is over: what alternative analyses could we 

employ to fill the power vacuum? Biol Lett. 2019;15:20190174.
	35.	 Dunn PK, Smyth GK. Generalized Linear Models With Examples in R. New York, 

NY: Springer; 2018.
	36.	 Dunn KP, Smyth GK. Randomized quantile residuals. J Comput Graph Stat. 

1996;5:1-10.
	37.	 Hartig F. DHARMa: residual diagnostics for hierarchical (multi-level / mixed) 

regression models, R package version 0.3.2.0, 2020. https://CRAN.R-project.
org/package=DHARMa

	38.	 Lüdecke D, Ben-Shachar MS, Makowski D. Describe and understand your 
model’s parameters. CRAN, 2020. https://easystats.github.io/parameters

	39.	 Canty A, Ripley B. boot: Bootstrap R (S-Plus) functions, R package version 1.3-
25, 2020. https://cran.r-project.org/web/packages/boot

	40.	 Upton G, Cook I. Oxford Dictionary of Statistics. Oxford, UK: Oxford University 
Press; 2002.

	41.	 Best H, Wolf C. Logistic regression. In: Best H, Wolf C, eds. The Sage Handbook of 
Regression Analysis and Causal Inference. Los Angeles, CA: SAGE; 2015:153-172.

	42.	 Lüdecke D, Makowski D, Waggoner P, Patil I. Assessment of regression models 
performance. CRAN, 2020. https://easystats.github.io/performance

	43.	 Tjur T. Coefficients of determination in logistic regression models—a new pro-
posal: the coefficient of discrimination. Am Stat. 2009;63:366-372.

	44.	 Fawcett T. An introduction to ROC analysis. Pattern Recogn Lett. 
2006;27:861-874.

	45.	 Robin X, Turck N, Hainard A, et al. PROC: an open-source package for R and 
S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.

	46.	 Harrell FE. Regression Modeling Strategies. With Applications to Linear Models, Logis-
tic and Ordinal Regression, and Survival Analysis. New York, NY: Springer; 2015.

	47.	 Firth D. Bias reduction of maximum likelihood estimates. Biometrika. 
1993;80:27-38.

	48.	 Heinze G, Ploner M. logistf: Firth’s bias-reduced logistic regression, R package 
version 1.23.1, 2020. https://CRAN.R-project.org/package=logistf

	49.	 Breheny P, Burchett W. Visualization of regression models using visreg. R J. 
2017;9:56-71.

	50.	 Ferrari S, Cribari-Neto F. Beta regression for modelling rates and proportions. J 
Appl Stat. 2004;31:799-815.

	51.	 Smithson M, Verkuilen J. A better lemon squeezer? Maximum-likelihood 
regression with beta-distributed dependent variables. Psychol Methods. 
2006;11:54-71.

	52.	 Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Softw. 2010;34:1-24.
	53.	 Brooks ME, Kristensen K, van Benthem KJ, et al. GlmmTMB balances speed 

and flexibility among packages for zero-inflated generalized linear mixed model-
ing. R J. 2017;9:378-400.

	54.	 Kruschke JK. Doing Bayesian Data Analysis. London, England: Academic Press; 2015.
	55.	 Bürkner P-C. Brms: an R package for Bayesian multilevel models using Stan. J 

Stat Softw. 2017;80:1-28.
	56.	 Bürkner P-C. Advanced Bayesian multilevel modeling with the R package brms. 

R J. 2018;10:395-411.
	57.	 Gabry J. shinystan: interactive visual and numerical diagnostics and posterior 

analysis for Bayesian models, R package version 2.5.0, 2018. http://CRAN.R-
project.org/package=shinystan

	58.	 van de Schoot R, Miočević M. Small Sample Size Solutions: A Guide for Applied 
Researchers and Practitioners. Abingdon, UK: Routledge; 2020.

	59.	 Goodrich B, Gabry J, Ali I, Brilleman S. rstanarm: Bayesian applied regression 
modeling via Stan, R package version 2.21.1, 2020. https://mc-stan.org/rstanarm

	60.	 Zuur AF, Hilbe JM, Ieno EN. A Beginner’s Guide to GLM and GLMM With R. A 
Frequentist and Bayesian Perspective for Ecologists. Newburgh, UK: Highland Sta-
tistics Ltd.; 2013.

https://CRAN.R-project.org/package=DHARMa
https://CRAN.R-project.org/package=DHARMa
https://easystats.github.io/parameters
https://cran.r-project.org/web/packages/boot
https://easystats.github.io/performance
https://CRAN.R-project.org/package=logistf
http://CRAN.R-project.org/package=shinystan
http://CRAN.R-project.org/package=shinystan
https://mc-stan.org/rstanarm

