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Abstract
Background  Multiple circulatory factors are increased in heart failure (HF). Many have been linked to cardiac and/or skel-
etal muscle tissue processes, which in turn might influence physical activity and/or capacity during HF. This study aimed to 
provide a better understanding of the mechanisms linking HF with the loss of peripheral function.
Methods and results  Physical capacity measured by maximum oxygen uptake, myocardial function (measured by echocar-
diography), physical activity (measured by accelerometry), and mortality data was collected for patients with severe sympto-
matic heart failure an ejection fraction < 35% (n = 66) and controls (n = 28). Plasma circulatory factors were quantified using 
a multiplex immunoassay. Multivariate (orthogonal projections to latent structures discriminant analysis) and univariate 
analyses identified many factors that differed significantly between HF and control subjects, mainly involving biological 
functions related to cell growth and cell adhesion, extracellular matrix organization, angiogenesis, and inflammation. Then, 
using principal component analysis, links between circulatory factors and physical capacity, daily physical activity, and myo-
cardial function were identified. A subset of ten biomarkers differentially expressed in patients with HF vs controls covaried 
with physical capacity, daily physical activity, and myocardial function; eight of these also carried prognostic value. These 
included established plasma biomarkers of HF, such as NT-proBNP and ST2 along with recently identified factors such as 
GDF15, IGFBP7, and TfR, as well as a new factor, galectin-4.
Conclusions  These findings reinforce the importance of systemic circulatory factors linked to hemodynamic stress responses 
and inflammation in the pathogenesis and progress of HF disease. They also support established biomarkers for HF and 
suggest new plausible markers.
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Introduction

Heart failure (HF) is manifested by an inability of the heart 
to supply the peripheral tissues with the necessary volume 
of blood to meet their metabolic demands [73]. Limitation 
of exercise capacity because of dyspnea and fatigue is one of 
the cardinal manifestations of HF, increasing in parallel with 
the severity of the disease [16, 57, 72]. Indeed, symptoms 
linked to physical fatigue are among the most important fac-
tors underlying the progressive deterioration of quality of 
life in patients with HF [61], and decreased maximal exer-
cise capacity is strongly associated with reduced patient 
survival [23, 54]. Thus, although HF is usually diagnosed 
by echocardiography assessment of systolic and diastolic 
cardiac function [65, 85], the prognostic value of this meas-
urement is considerably smaller than peak oxygen uptake 
(VO2peak) [5, 23]. VO2peak is a measure that provides an indi-
rect assessment of a patient’s ability to increase both cardiac 
output and skeletal muscle oxygen uptake and represents the 
physical capacity of an individual.

One strategy to gain more information about the prog-
nosis of HF consists in the generation of models that con-
sider multiple clinically relevant variables. Thus, the com-
bination of physical capacity (VO2peak), systolic function 
expressed as the left ventricular ejection fraction (LVEF), 
blood pressure, and heart rate has repeatedly shown the 
ability to identify patients with a poor prognosis [1, 48, 
64]. Currently, these variables constitute the cornerstone 
of several well-established prognostic models for patients 
with HF. Nevertheless, there is a constant need for the 
refinement of such prognostic models, and the inclusion 
of new variables may help to increase their validity. Thus, 

the assessment of daily physical activity has gained atten-
tion in recent years [22, 25, 43]. For example, we showed 
that the amount of physical activity (measured by accel-
erometry) and the quality of such activity (i.e., intensity) 
were independent predictors of mortality in patients with 
chronic HF [56]. The rationale behind the belief that mod-
els for predicting HF will benefit from the inclusion of 
daily physical activity lies in the progression of the disease 
per se; thus, as cardiac contractile and chronotropic func-
tions deteriorate, the patient’s capacity for daily physical 
activity also decreases.

To counteract failing cardiac function, numerous pro-
cesses are activated aiming to maintain central hemody-
namics [34]. In particular, the sympathetic nervous and 
renin–angiotensin systems have received considerable 
attention in terms of the pathophysiology and progression 
of the disease. However, a large number of other circula-
tory factors such as natriuretic peptides and cytokines have 
also been shown to increase in cases of HF [14]. Many 
of these factors are related to physical capacity, and dis-
play biological function(s) that might impact on cardiac 
and/or skeletal muscle tissues [4, 18, 25, 29, 38, 41, 42, 
47, 60, 71]. Thus, physical activity, synergistically with 
increases in neuroendocrine factors, is critical to con-
nect the reduced myocardial function of patients with HF 
with the alterations in peripheral tissues (e.g., kidney and 
skeletal muscle) associated with this disease. With this in 
mind, expanding our knowledge of circulatory factors in 
relation to HF could provide new information about the 
pathophysiology of the disease, allowing for analysis of 
the cross-talk that takes place between multiple organs of 
the body that are affected (e.g., heart, kidney, and skeletal 
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muscle). In addition, exploring the relationship between 
such circulatory factors and the functional alterations 
triggered by HF (e.g., physical capacity, physical activity, 
myocardial function, and mortality) could offer new paths 
for clinical interventions targeting the disease at multiple 
levels/organs simultaneously.

Here, we explored the relationships between myocardial 
function (assessed by echocardiography, heart rate, and 
blood pressure measurements), physical capacity (VO2peak), 
daily physical activity (assessed by accelerometry), circula-
tory biomarkers, and cardiovascular mortality over 5 years in 
patients with severe heart failure with reduced ejection frac-
tion. The general aim of this study was to provide a better 
understanding of the mechanisms that link the failing heart 
with the loss of peripheral function. More specifically, we 
aimed to identify circulatory factors that differed between 
patients with HF and controls and, using a principal compo-
nent analysis (PCA) approach, were associated with estab-
lished physiological prognostics variables (i.e., myocardial 
function, physical capacity, and/or daily physical activity) 
and mortality.

Methods

Patient population and study design

Patients were enrolled prospectively from the outpatient 
clinic at Karolinska University Hospital (Stockholm, Swe-
den). Patients with moderate to severe and stable chronic HF, 
defined as functional New York Heart Association (NYHA) 
class III disease, with no acute hospital admission within 
the last 8 weeks and with a left ventricular ejection fraction 
(LVEF) < 35% were eligible for inclusion. NYHA III was 
defined as a self-reported maximum continuous walking 
distance of no more than 200 m with dyspnea as a limiting 
factor. Patients fulfilling the inclusion criteria were invited to 
participate during scheduled visits to the attending cardiolo-
gist. After receiving written and verbal information about the 
study design, objectives, and potential risks, all participants 
signed a written informed consent form. Sixty-six patients 
were recruited between May 2009 and June 2013. To access 
a group of control subjects as closely matched as possible to 
patients with HF in terms of age, comorbidities, and physi-
cal activity, control subjects were enrolled among patients 
admitted to the outpatient clinic with symptoms suggestive 
of HF, but where the presence of HF was ruled out based 
on LVEF > 50% and a level of N-terminal pro-brain natriu-
retic peptide (NT-proBNP) < 300 ng/L. Echocardiographic 
signs of diastolic dysfunction were not an exclusion criterion 
in the control group, as long as the NT-proBNP level was 
within the normal range. The validity of the study group was 
checked by comparing baseline characteristics of the study 

group with the underlying cohort of outpatients enlisted at 
the hospital. The study was approved by the Regional Ethical 
Review Board in Stockholm, Sweden (no. 2007/1410-31/3) 
and carried out in accordance with the International Code of 
Medical Ethics of the World Medical Association (Declara-
tion of Helsinki, 5th revision).

Clinical examination

All participants (patients and controls) underwent echocardi-
ography, and measurements of mean arterial pressure (MAP) 
and heart rate (HR) at rest (Table 1). Blood samples were 
collected with the subject in a fasting state in the morning 
in EDTA-coated tubes, and then centrifuged; plasma was 
aliquoted and stored at − 70 °C until analysis (Table 1). All 
subjects performed a symptom-limited cardiopulmonary 
exercise test (CPX) to assess VO2peak (Table 1). The CPX 
consisted of maximum symptom-limited exercise either 
on a cycle ergometer (increments of 10 W every 60 s) or 
on a treadmill (1 m/s with a stepwise increase in the angle 
of 0.5°/min). In every CPX performed, continuous assess-
ment of gas-exchange data (Vmax, SensorMedics, Anaheim, 
CA, USA) was performed. The exercise was terminated 
due to volitional exhaustion and/or the patient’s inability 
to maintain the speed of 1 m/s (treadmill) or a cadence of 
60 rpm (cycle ergometer) despite strong verbal encourage-
ment. Echocardiographic measurements were carried out in 
accordance with clinical guidelines (Vivid 7, General Elec-
trics Healthcare, Little Chalfont, United Kingdom) and was 
analyzed by an echocardiographer blinded to the specific 
clinical history of the patient. Left ventricular end-dias-
tolic diameter (LVEDD) was measured and left ventricular 
ejection fraction (LVEF) was calculated using the biplane 
Simpson’s rule. Diastolic function was estimated based 
on mitral inflow deceleration time (DT) and for patients 
with sinus-rhythm mitral in flow E/A-wave. Daily activity 
was assessed in all participants by accelerometers (GT3X; 
Actigraph, Pensacola, FL, USA), which were mailed to all 
patients within 6 weeks of the CPX measurements. The 
patients were instructed to attach the accelerometer to their 
waist belt upon rising in the morning and to remove it only 
for showering, bathing, and sleeping. The monitors were set 
to begin collecting data 1 day before the delivery date, as 
estimated by the postal service, and to continue recording 
data until they were downloaded. The patients were asked 
to return the monitor by mail using a prepaid return enve-
lope after having worn it for seven consecutive days. Raw 
data collected by the accelerometer were integrated into 60-s 
epochs using ActiLife software with the normal filter option 
and expressed as counts per minutes (cpm). Wear time was 
estimated using the algorithm described by Troiano et al. 
[78]. Nonwear time was defined as 60 consecutive minutes 
of 0 cpm, with allowance for 1–2 min of 0–99 cpm during 
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this time. Patients with an estimated wear time of < 3 days 
were eliminated from further analysis (n = 3). In addition to 
analysis of time spent active, skewness was analyzed as a 
potentially important prognostic measure of variance in the 

level of physical activity [56]. Data on mortality and cause 
of death were obtained from the Swedish national cause-of-
death registry in June 2015.

Table 1   Continuous variables 
are presented as median and 
lower and upper quartiles (Q1; 
Q3) and categorical variables as 
numbers (n) and percentages

Continuous variables were tested using t test and frequencies using Chi-square test
ACEi angiotensin converting enzyme inhibitor, ARB angiotensin receptor blocker, β-blockers beta blockers, 
BMI body mass index, COPD chronic obstructive pulmonary disease, CRT​ cardiac resynchronization ther-
apy, DM diabetes mellitus, ICD implantable cardioverter defibrillator, IHD ischemic heart disease, LVEF 
left ventricle ejection fraction, MRA mineralreceptorantagonist, n.s. non-significant, NT-proBNP NT-pro-
brain natriuretic peptide, NYHA New York Heart Association

Baseline characteristics Heart failure (n = 66) Controls (n = 28) p value

Demographics
 Age, years 70 (63; 74) 70.5 (65; 72.2) n.s.
 Female 13 (20) 20 (71) < 0.0001
 BMI 27.5 (25; 30.2) 25.5 (23; 29.8) n.s.
 SBP, mmHg 117.5 (108.8; 135) 150 (140; 160) < 0.0001
 DBP, mmHg 75 (60; 80) 85 (80; 90) < 0.0001

NYHA functional class
 III 63 (95) –
 IV 3 (5) –
 Heart rate, bpm 72.5 (64.8; 80) 72 (67; 76) n.s.
 Peak VO2, ml/(kg min) 13.4 (12; 16.1) 23.8 (17.7; 25.4) < 0.0001

Comorbidities
 Diabetes mellitus 29 (44) 3 (11) < 0.005
 COPD 11 (17) 7 (25) < 0.05
 Hypertension 38 (58) 18 (64) n.s.
 Atrial fibrillation 36 (55) 1 (4) < 0.0001

Clinical chemistry
 NT-proBNP, ng/l 2210 (1070; 5410) 107 (61; 273.5) < 0.0001
 Creatinine clearance, ml/min 58 (44; 86) 75 (59.5; 84.5) n.s.
 Hemoglobin, g/dl 141 (127; 154) 135.5 (131; 142.5) n.s.

Medication
 ACEi 43 (65) 5 (18) < 0.0001
 ARB 22 (33) 7 (25) n.s.
 β-Blockers 63 (95) 8 (7) < 0.0001
 MRA 38 (58) 0 (0) < 0.0001
 Diuretic agents 62 (94) 8 (29) < 0.0001

Echocardiographic measurements
 LVEF, % 25 (20; 32) 57.75 (55; 60) < 0.0001
 LVEDD, mm 64 (59; 71.2) 46 (42; 52) < 0.0001
 PSV, cm/s 0.04 (0.03; 0.05) 0.07 (0.06; 0.08) < 0.0001
 LVOT, m/s 0.7 (0.6; 0.9) 0.9 (0.9; 1) < 0.0001
 Septal É, cm/s 0.04 (0.04; 0.05) 0.07 (0.06; 0.08) < 0.0001
 Lateral É, cm/s 0.05 (0.04; 0.08) 0.08 (0.07; 0.11) < 0.0001
 E/É 16.4 (12.7; 24) 9.5 (7.6; 11.8) < 0.0001
 LA-area, cm2 31 (26; 36) 19 (15.2; 20.8) < 0.0001
 PA-pressure, mmHg 47 (40; 52.9) 30 (30; 40) < 0.0001
 TAPSE, mm 15 (11.5; 18) 23 (18; 25) < 0.0001

Daily physical activity
 Time spent active, % 22 (17;30) 38 (31;44) < 0.0001
 Time spent inactive, % 78 (70; 83) 62 (56;69) < 0.0001
 Skewness, cpm 1.6 (0.8;2.5) 1.0 (0.8;1.5) < 0.05
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Measurement of circulating factors

Factors were quantified from single samples using a mul-
tiplex immunoassay (Proseek Multiplex 96 × 96 CVD III; 
Olink Bioscience, Uppsala, Sweden), which is a 92-plex 
immunoassay based on a proximity ligation extension assay. 
Proximity extension assays use target-specific antibody pairs 
that are linked to DNA strands that, upon simultaneous bind-
ing to the target analyte, create a real-time polymerase chain 
reaction amplicon in a proximity-dependent manner enabled 
by the action of a DNA polymerase. The intra-assay coef-
ficient of variation (CV) ranges between 5 and 11% (mean 
6%), and the inter-assay CV ranges between 9 and 39% 
(mean 15%) [8]. All factors in the assay have been validated 
and relevant spike-in experiments have been performed to 
ensure that there is no cross-reactivity between the different 
biomarkers [51]. Further information about reproducibility 
and validation can be found at https​://www.olink​.com. NT-
proBNP levels were analyzed by electrochemiluminescence 
immunoassay using cobase immunoassay analyzers (Roche 
Diagnostics, Rotkreuz, Switzerland). Creatinine clearance 
was calculated according to the Cockcroft–Gault formula.

Data analysis

Descriptive data are expressed as medians and quartiles 
(Q1–Q3), or as numbers and (%). The concentrations of 
the biomarkers are expressed in arbitrary units. Univariate 
groupwise comparisons were carried out by two-sided Stu-
dent’s t, Chi-squared, and Fisher’s exact tests as appropriate. 
As an additional control for our measurements, Bland–Alt-
man analysis was used to compare values of NT-proBNP 
measured by the Proseek platform and an immunofluores-
cence assay.

Principal components analysis (PCA)

Given the large set of variables, the reduction of the dimen-
sion of our covariate list was performed through variable 
clustering and dimensionality reduction through PCA Bi 
plots was used to characterize the variance of the individual 
variables and to identify collinearities. Variables derived 
from echocardiographic assessment [LVEF, left ventricu-
lar end-diastolic diameter (LVEDD), peak systolic velocity, 
septal, and lateral E′ values, LA-area, estimated PA-pressure, 
and tricuspid annular plane systolic excursion (TAPSE)], 
clinical examination and exercise test (MAP, heart rate, and 
VO2peak), and daily physical activity (time spent active, time 
spent inactive, and skewness) were analyzed. All variables 
were scaled to unit variance and mean-centered. The con-
centrations of the Proseek biomarkers are expressed as arbi-
trary units and were mean-centered prior to analysis because 
of the lack of specific calibrators for the assays. Principal 

components were calculated using the ‘prcomp’ function in 
the R statistics package (R Foundation for Statistical Com-
puting, Vienna, Austria), and biplots were generated using 
the ‘factominer’ and ‘ggplot2’ libraries. Ontological enrich-
ment analysis was performed using the web-based Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID).

Orthogonal projections to latent structures 
discriminant analysis (OPLS‑DA)

For the case–control analysis, we used OPLS, which is 
similar to PCA, but was developed to handle classification 
rather than correlation. OPLS regression is particularly 
suited when the matrix of predictors has more variables than 
observations and when there is multicollinearity among X 
values [77]. An OPLS-DA classification model was con-
structed using the rOPLS-library in R [74], in which the con-
tribution of each variable is represented by a loading value 
compared with what is predicted, in this case, patient or 
control. An OPLS model finds the multidimensional direc-
tion in the X space that explains the maximal variance in the 
Y space. The validity of the model (Q2 value) was assessed 
by bootstrapped cross validation, yielding 95% confidence 
intervals for the contribution of each of the variables in the 
group classification.

Network inference

Given the high covariance of the physiological measures, 
the dimensions of our covariate list were reduced utilizing 
summarized measures of each category derived from the 
principal components [79]. This approach retains variance/
information that is shared between several of the variables 
and discards less systematic variance that is more likely 
to contain noise [84]. This process results in a summary 
score for each category, as a linear combination of vari-
ables within the category summarized for each patient. 
The two first principal components were kept from each 
of the categories, physical capacity, daily physical activity, 
and myocardial function. To develop networks represent-
ing the interaction between plasma factors and HF patho-
physiology, a global interaction network was constructed 
using ARACNE, an algorithm for the reconstruction of 
gene regulatory networks in a mammalian cellular context. 
This is a validated network inference technique that infers 
the interaction between pairs of variables using a measure 
of correlation called mutual information (MI) [45]. MI 
between each pair of variables was tested using a per-
mutation-based statistical test. ARACNE offers numerous 
advantages over more traditional measures of correlation, 
including the ability to spot nonlinear correlations, which 
are very effective in identifying biologically relevant 

https://www.olink.com
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connections [26]. Significant connections were identified 
by applying a P value threshold for significant MI values 
corresponding to a false discovery rate of 5%. To avoid 
potential overfitting in the ARACNE network, a corre-
lation matrix was constructed, with confidence intervals 
estimated for each pairwise correlation through bootstrap-
ping. Only pairwise correlations with an absolute correla-
tion of > 0.2 and a false discovery rate (FDR) of < 5% were 
retained. The resulting network was visualized using the 
software application Cytoscape v. 3.5 (https​://www.cytos​
cape.org) [70].

Cox regression analysis of mortality

Associations with the outcome were determined with Cox 
proportional hazards models and presented as hazard ratios 
(HRs) and 95% confidence intervals and with two-sided P 
values. In the final multivariable Cox regression model, three 
clinically significant covariates, age, sex, and NT-proBNP 
concentrations, were included together with each biomarker. 
All biomarkers were analyzed in log2-transformed format 
using the survival package on the statistical platform R ver-
sion 3.5.0.

Results

Clinical data and mortality rates

Sixty-six patients with HF and 28 controls were enrolled 
in the study over a period of 3 years. The demographic and 
clinical characteristics of the subjects included are pre-
sented in Table 1. Within the HF patient cohort, VO2peak 
was on average 13.4 mL/kg (range 6.1–22.5 mL/kg), and 
23.8 mL/kg/min (17.7–25.4 mL/kg) for controls. Among 
the patients, time spent physically active (>100 counts/
min) was 950 (IQR 541–1366) min/week, and 2182 (IQR 
1592–2790) min/week for controls. The follow-up time for 
surviving patients with HF was 3 years (range 1–5). Of the 
66 monitored patients, 42 died during follow-up (median 
time 1.8 years). All mortality events were categorized as car-
diovascular in nature. To confirm validity of the study group, 
baseline characteristics of the patients were compared with 
data on all patients enlisted as heart failure outpatients at the 
hospital at the time of enrollment (n = 1467). The patients 
enrolled in the study where similar to the average patient 
with regards to age, body composition, comorbidities, and 
underlying conditions but hade worse cardiac function and 
functional status, fewer females and had more aggressive 
medical treatment than the average patient (Supplemental 
Table).

Characteristics of plasma factors

There was a high overall correlation across the differ-
ent factors with a mean Pearson correlation coefficient of 
R2 = 0.25. For these, PCA captured ~ 48% of the total vari-
ance explained by the first three principal components. Many 
of the factors assessed in the Proseek assay belong to the 
same family (e.g., tumor necrosis factor [TNF]-alpha, leuko-
cyte adhesion molecules) or share similar functions. Indeed, 
ontological enrichment analysis showed that the assay as 
a whole is highly enriched for the cellular factors inflam-
mation, cellular adhesion, and migration (Fig. 1). Despite 
this innate bias, clusters of highly correlated factors were 
tested for functional enrichment. A correlation matrix was 
constructed, and cluster analysis was performed based on 
pairwise correlations between variables. This revealed that 
the measured factors formed clearly distinguishable clusters 
with a high degree of correlation across observations, in 
which factors with similar biological functions cluster more 
closely together. That factors correlate according to their 
biological functions serves as a biological quality control; 
if data contained mainly noise or were caused by methodo-
logical bias, the correlations would have been random and/
or unrelated to biological functions. Ontological enrichment 
analysis using DAVID identified three distinguishable clus-
ters with different biological functions (Fig. 1). The first 
cluster was highly overrepresented by factors with described 
biological functions related to the regulation of cell growth 
and cell adhesion. The second cluster was most enriched for 
extracellular matrix organization factors and angiogenesis. 
The third cluster was enriched for inflammatory response 
markers. As an additional control for our measurements, NT-
proBNP was analyzed using an immunofluorescence assay, 
in addition to the measurements performed using the Pro-
seek platform. The agreement between the two methods was 
“very good”, with an R2 correlation coefficient of 0.91, and a 
difference within 0.5 standard deviations for all observations 
shown by Bland–Altman analysis.

Case–control analysis

Based on the high covariance among the investigated cir-
culatory factors, the differences in the concentrations ana-
lyzed in plasma between patients with HF and controls 
were explored through a multivariate approach. The OPLS 
model differentiating patients from controls correctly clas-
sified 84% (R2Y = 0.84) of the observations in the data set, 
with a predictive (Q2 value) of 0.71 after cross validation 
(Fig. 2). The model identified 39 factors that contributed 
significantly to the model (18 were higher and 21 were lower 
in patients vs controls, respectively). The results are summa-
rized in Table 2, together with the corresponding parametri-
cally tested FDRs. As implied in the original methodology 

https://www.cytoscape.org
https://www.cytoscape.org
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paper [74], there was a strong correlation between Variable 
Importance in Projection from the OPLS-DA classifier and 
P values based on parametric testing. A VIP threshold from 
the OPLS-DA of 0.8 corresponds to a parametric FDR of 
6% (Table 2).

Characteristics of physiological variables

The variables derived from the clinical characterization 
of the patients were investigated with a similar approach 
to that described above for factors measured in the serum. 
The mean Pearson correlation coefficient across variables 
was 0.25, and PCA on all physiological variables combined 
showed high overall correlation between all measured vari-
ables; 75% of the overall variance could be captured with the 
first three principal components. Thus, while keeping most 
of the information intact, it was possible to summarize the 
clinical examination data into three principal components. 
This scaled down the number of dimensions and consid-
erably reduced the background noise. The variables with 
the highest loading on principal component 1 were VO2peak, 
MAP, heart rate, and daily physical activity; on principal 
component 2, the measures of both systolic (LVEF and peak 
systolic velocity) and diastolic dysfunction (E′, estimated 
PA-pressure, E-max and LA-area) had the highest loading. 
Physical capacity and heart rate contributed to both princi-
pal components 1 and 2, illustrating that they share some 
variance with both daily physical activity and measures of 

systolic function (Fig. 3). To validate and visualize prog-
nostic information, a bi-plot was constructed in which data 
on mortality and time to mortality events were added to the 
PCA (Fig. 3) and analyzed with a Cox regression model. As 
expected, the prognostic utility of the investigated physi-
ological variables was retained when summarized on PCA.

Associations between plasma factors 
and pathophysiological changes

To identify associations between plasma factors and patho-
physiological changes in HF, the circulating factors in the 
patients with HF were associated with the measured physi-
ological variables with MI network inference, and covari-
ance was calculated; that is, how large a portion of the vari-
ance in one variable can be accounted for from the variance 
of a second variable. The resulting network contained 76 
unique factors with 141 significant edges relating the inves-
tigated physiological categories of variables (Fig. 4a). Of the 
physiological categories, physical capacity and daily physi-
cal activity were the most centrally placed hubs, and 48 of 
the 76 factors were connected to both physical capacity and 
daily physical activity. Apart from having the largest number 
of significant connections, physical capacity also had the 
highest number of connections to unique factors (Fig. 4b). 
The components derived from echocardiography, such as 
myocardial function, had fewer connections to factors, with 
only 20 significant edges, and these were shared with the 

Fig. 1   Correlation matrix illustrating mutual correlation amongst all 
biomarkers. Red and blue denote statistically significant positive and 
negative correlations, respectively. A large number of biomarkers are 

highly positively correlated and visual inspection indicates that there 
are clusters of variables with very high degree of correlation appar-
ent, shown as bright red squares on the correlation matrix
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other physiological categories (Fig. 4b). Of these 20 fac-
tors, 10 were among the 39 factors that differed significantly 
between patients and controls (Tables 2, 3). Some of these 
factors are considered to reflect cardiac stretching (ST2 
and NT-proBNP), and others are linked to inflammatory 
responses (members of the TNF-alpha family; TNF-R2 and 
TNF-R1). The network analysis also identified some rela-
tively or completely novel factors in the field of HF: growth 
differentiation factor 15 (GDF15), insulin-like growth factor-
binding protein 7 (IGFBP7), transferrin receptor protein 1 
(TfR1), and galactin-4. However, GDF15 and IGFBP7 have 
already been reported as potentially important markers of 
disease severity in HF, and are induced by hemodynamic 
and inflammatory stress [6, 30].

The ten factors that were expressed differently between 
patients with HF and controls were analyzed further to 
test whether they were linked with HF prognosis. This 
was tested by both a multivariate approach and through 
Cox regression. The PCA connecting physiological 

components to prognosis were recalculated substituting 
the physiological variables with the ten factors (Fig. 5a, 
b). As expected, because the factors were selected based 
on covariance and MI with prognostically important 
clinical variables, the combined factors reflected this 
prognostic value. The central network factors displayed a 
similar distribution of the variance as did the physiologi-
cal variables (65% of variance retained within the first 
two components), and the HR of mortality events was 
4.2 (P < 0.001; first component) and 1.2 [not significant 
(NS); second component]. In addition to this multivariate 
approach, the TEN network factors were also tested for 
prognostic value one-by-one in a Cox regression analy-
sis, both as single independent variables and controlling 
for important confounders (age, estimated glomerular 
filtration rate [eGFR], VO2peak, and LVEF; Table  3). 
All of the network factors except for PON3 and TR-AP 
were significantly associated with all-cause mortality 
(FDR < 5%) in univariate analysis (Table 3). Controlling 

Fig. 2   For the case–control analysis, we used OPLS which is simi-
lar to PCA, but developed to handle classification rather than correla-
tion: an OPLS model will try to find the multidimensional direction 
in the X space that explains the maximum multidimensional vari-
ance direction in the Y space. OPLS regression is particularly suited 

when the matrix of predictors has more variables than observations 
and when there is multicolinearity among X values. The OPLS model 
differentiating patients form controls class correctly classified 84% 
(R2Y = 0.84) of the observations in the data set, with a predictive (Q2 
value) of 0.71 after cross validation
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for established clinical risk factors, TfR1, GDF15, and 
galectin remained significantly associated with all-cause 
mortality at FDR < 5% (Table 3).

Discussion

Using a systems biology approach, we examined potential 
links between circulatory factors, physical capacity, physi-
cal activity, myocardial function, and mortality in patients 
with HF. Thirty-nine circulatory factors differed signifi-
cantly between patients with HF and controls. Established 

Table 2   Factors significantly different between patients and controls

Uniprot uniprot accession, Ratio The ration between patients vs controls. FDR false discovery rate for parametric groupwise comparison. VIP 
variable importance in projection from OPLA-DA classification

Name Uniprot Ratio FDR VIP

EGFR Epidermal growth factor receptor P00533 0.3 < 0.001 2.6
NT pro-BNP N-terminal prohormone brain natriuretic peptide 569 < 0.001 2.5
PON3 Paraoxonase (PON3) Q15166 0.1 < 0.001 2.6
TLT-2 Trem-like transcript 2 protein Q5T2D2 0.2 < 0.001 1.9
TFPI Tissue factor pathway inhibitor P10646 0.3 < 0.001 1.9
GDF-15 Growth/differentiation factor 15 Q99988 10.3 < 0.001 2.0
PAI Plasminogen activator inhibitor 1 P05121 0.1 < 0.001 1.2
U-PAR Urokinase plasminogen activator surface receptor Q03405 3.2 < 0.001 1.5
MMP-3 Matrix metalloproteinase-3 P08254 4 0.001 1.5
SELP P-selectin P16109 0.2 0.001 1.2
FABP4 Fatty acid-binding protein, adipocyte P15090 10.2 0.001 1.5
CNTN1 Contactin-1 Q12860 0.5 0.001 1.5
TR-AP Tartrate-resistant acid phosphatase type 5 P13686 0.4 0.002 1.7
PDGF subunit-A Platelet-derived growth factor subunit A P04085 0.1 0.002 1.2
SPON1 Spondin-1 Q9HCB6 2.6 0.002 1.3
DLK-1 Protein delta homolog 1 P80370 0.3 0.003 1.4
ITGB2 Integrin beta-2 P05107 0.4 0.003 1.2
PI3 Elafin P19957 4.2 0.003 1.2
LDL-receptor Low-density lipoprotein receptor P01130 0.3 0.003 1.3
Gal-4 Galectin-4 P56470 2.5 0.004 1.6
ST2 ST2 protein Q01638 3.3 0.005 1.4
COL1A1 Collagen alpha-1(I) chain P02452 0.4 0.005 1.4
CASP-3 Caspase-3 P42574 0.1 0.006 0.9
OPN Osteopontin P10451 2.9 0.007 1.2
BLM hydrolase Bleomycin hydrolase Q13867 0.5 0.008 1.1
TFF3 Trefoil factor 3 Q07654 3.1 0.008 1.1
TR Transferrin receptor protein 1 P02786 3.3 0.008 1.3
PLC Perlecan P98160 2.1 0.009 1.2
CSTB Cystatin-B P04080 3.2 0.010 1.1
IGFBP-7 Insulin-like growth factor-binding protein 7 Q16270 3.2 0.011 1.2
TNF-R1 Tumor necrosis factor receptor 1 P19438 2.7 0.012 1.1
PECAM-1 Platelet endothelial cell adhesion molecule P16284 0.3 0.019 0.7
TNF-R2 Tumor necrosis factor receptor 2 P20333 2.4 0.020 0.9
FAS Tumor necrosis factor receptor superfamily member 6 P25445 0.6 0.021 1.0
MPO Myeloperoxidase P05164 0.5 0.026 0.9
PSP-D Pulmonary surfactant-associated protein D P35247 2.8 0.026 1.0
Ep-CAM Epithelial cell adhesion molecule P16422 0.3 0.030 0.9
CCL24 C–C motif chemokine 24 O00175 0.3 0.037 1.0
RARRES2 Retinoic acid receptor responder protein 2 Q99969 0.6 0.037 0.9
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prognostic markers (VO2max and LVEF) in the patients with 
HF were validated with respect to their prognostic capacity 
in the current cohort. Of the 39 differently expressed circu-
lating factors in the patients with HF, 34 were associated 
with at least one of the physiological variables measured 
also when analyzed in the patient group only. A subset 
of 17 factors covaried with myocardial function, physical 
capacity, and daily physical activity, of which 10 differed 
between patients with HF and controls. Eight of these 
factors ultimately contained prognostic information. This 
group included well-established (e.g., NT-proBNP) and 
more recently recognized (e.g., ST2) plasma biomarkers 
of HF, together with factors recently associated with this 

disease (e.g., GDF15, IGFBP7, TfR) and one factor that 
was only just now linked to HF (galectin-4) [13].

The overall aim of this study was to identify plausible 
circulatory factors linking reduced myocardial function to 
changes in peripheral tissue functions. The mutual relation-
ships between echocardiographic measurements of myocar-
dial function, VO2peak, heart rate, MAP, and daily physical 
activity confirmed their correlations with prognosis, sup-
porting the clinical measurements as valid, as well as this 
HF cohort as a valid representation of the general HF with 
reduced ejection fraction population. The multi- (OPLS-DA) 
and univariate analyses identified a substantial number of 
factors that differed significantly between the two groups. 

Fig. 3   PCA and biplot on physiological variables and individual 
observations, where red dots denote patients suffering an event and 
the size of the dot is proportional to the event, larger dots denote ear-
lier events. There was a high overall correlation between all variables 
and 40% of the overall variance could be captured with the first two 
principal components. Variables related to daily physical activity had 
highest loading on the 1st component and echocardiographic vari-
ables on the second. Exercise capacity and heart rate contributed to 

both PC1 and PC2. The biplot indicates, as expected, the prognostic 
utility of the investigated physiological variables: Cox proportional 
hazard-ratio calculated on high vs low loading on PC1 and PC2 
showed an HR of 1.8 and 2.8, respectively. With both components 
combined the hazard ratio (HR) for patients in lower left quadrant of 
the PCA was 4.0 (highest risk) compared with patients in upper right 
quadrant (lowest risk)
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This finding confirmed earlier hypothesis-driven ‘single-
factor’ studies reporting increased circulatory levels of NT-
proBNP [68, 76], ST2 [3, 7, 10, 55], GDF15 [20, 28, 32, 69, 
80], and IGFBP7 [21, 30, 31, 58] in patients with HF, which 
have been suggested to participate in the pathogenesis and 
progress of HF [14]. After deconstruction of the clinical 

variables into three components (myocardial function, phys-
ical capacity, and physical activity), MI network analysis 
identified 17 circulatory factors that covaried significantly 
with all three components. It should be noted that such rela-
tionships do not define a direct biological connection; to 
identify plausible factors related to peripheral remodeling 

Fig. 4   Network inference edges a denote significant correlations and 
the length of each edge is inversely proportional to the strength of 
the correlation. Thus, nodes appearing closely together share higher 
number of significant edges, and large nodes indicate key markers 
with many significant connections. The network analysis identified 17 

biomarkers, b relating to the majority of the clinical components and 
one, GDF15 had significant connections to all components. These key 
markers contained both classical biomarkers considered to reflect car-
diac stretch (ST2 and BNP) but also a large number of inflammatory 
components and factors related to metabolism such as IGFBP7

Table 3   Hazard ratio (HR) 
per quartile increase in each 
protein, raw p values (p) and 
false discovery rate (FDR) 
from univariate cox-regression 
(left) and multiple regression 
controlling for age, estimated 
Glomerular Filtration Rate 
(eGFR), peakVO2, and left 
ventricular ejection fraction 
(LVEF)

Biomarker Univariate cox-regression 
crude analysis

Cox-regression con-
trolled for age, eGFR, 
peakVO2 and LVEF

HR p FDR HR p FDR

Transferrin receptor protein 1 2.2 0.000 0.001 2.1 0.000 0.001
Growth/differentiation factor 15 2.1 0.000 0.002 2.0 0.001 0.004
Galectin-4 2.7 0.001 0.007 2.6 0.002 0.005
Insulin-like growth factor-binding protein 7 1.9 0.001 0.011 1.7 0.010 0.016
ST2 protein 2.1 0.002 0.012 2.0 0.007 0.014
Tumor necrosis factor receptor 1 2.1 0.002 0.012 1.9 0.028 0.037
N-terminal prohormone brain natriuretic peptide 1.4 0.004 0.014 1.3 0.054 0.062
Tumor necrosis factor receptor 2 2.0 0.006 0.021 1.7 0.073 0.073
Paraoxonase (PON3) 0.8 0.233 0.306
Tartrate-resistant acid phosphatase type 5 0.7 0.353 0.427
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Fig. 5   Biplot (a) and kaplan–meier curve (b) on the 16 key-network 
hubs vs mortality and individual observations, where red dots denote 
patients suffering an event and the size of the dot is proportional to 
the event, larger dots denote earlier event. There was a high overall 
correlation between all variables, and 61% of the overall variance 

could be captured with the first two principal components. The prog-
nostic utility of the investigated physiological variables: Cox propor-
tional hazard ratio calculated on high vs low loading on PC1 showed 
a HR of 3.5 (p < 0.001)
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induced by the negative alterations triggered by HF, infor-
mation about the biological role and the regulating stimuli 
for each individual factor is needed. By identifying factors 
linked to all the physiological categories, the outcome is 
also less likely to be related to noise or other confounders, 
because the variance between the components is shared. 
Thus, it is clear that the analysis strategy used here differed 
from proteomic explorative studies, in which proteomic hits 
are prioritized for validation based on differences between 
patients and controls, direct correlation with prognosis, or a 
combination of the two. A similar analytical strategy, utiliz-
ing factor–factor mutual information to construct networks 
of circulating biomarkers, was recently used to explore dif-
ferences between heart failure with reduced (HFrEF) and 
preserved ejection fraction (HFpEF) [75]. Interestingly, 
several members of the HFrEF network were also identified 
as key network members in the present study. The fact the 
key network members are identified in several independent 
cohorts strengthen their validity. The current study goes one 
step forward by showing their relation to clinically derived 
prognostic variables and prognosis.

Of the 17 factors connected to all three physiological 
categories, 10 were distinctly higher in patients with HF 
than controls, and of these, eight carried prognostic infor-
mation. NT-proBNP was among these. NT-proBNP has a 
well-documented, strong prognostic value [37], and a close 
relationship to cardiac function [53, 82]. Although there are 
reports on peripheral effects of NT-proBNP on, e.g., adipo-
cyte lipid metabolism or peripheral fluid balance [46, 83], 
information about any direct effect of this factor on skeletal 
muscle is scarce. The association between NT-proBNP and 
myocardial function, and physical capacity and activity, may 
relate to impaired myocardial function and reduced oxygen 
delivery on physical activity. Yet, the potential negative 
effect of this factor on peripheral tissue should be addressed 
in more detail in future studies. ST2 is a more recently dis-
covered, yet validated biomarker shown to have a strong link 
with biochemical and clinical variables in cases of HF [66]. 
Changes in ST2 plasma concentration have been attributed 
to increased cardiac stretching or filling pressures [15]. The 
association found here between ST2 levels, and physical 
capacity and physical activity, is supported by the associa-
tion between ST2 and NYHA classification reported else-
where [44]. In addition, evidence indicates that ST2 plays 
an important role during skeletal muscle remodeling after 
injury [11]. However, a distinction between ST2, and the 
soluble circulating form (sST2) needs to be recognize, since 
sST2 acts as a decoy receptor and thereby presumably with 
a negative impact on skeletal muscle remodeling processes 
[11, 33]. Two members of the TNF-alpha family (TNF-R1 
and TNF-R2) were also among the circulatory factors that 
covaried with all three components, and these were dis-
tinctly elevated in patients with HF. The TNF-alpha family 

is known to correlate with functional status in cases of HF, 
and single-factor studies have suggested the possible con-
nection between increased levels of TNF-alpha, and physical 
capacity and prognosis in such patients [38]. High levels of 
TNF-alpha are known to have direct negative consequences 
in multiple peripheral tissues. For example, in skeletal mus-
cle, this factor hampers differentiation processes in satel-
lite cells, and has deleterious effects on muscle metabolism, 
contractile function, and apoptosis [27, 49, 67].

GDF15, IGFBP7, and TfR1 are three more recently iden-
tified factors showing covariance with all three components 
of analysis that carry prognostic information, and were 
distinctly elevated in patients with HF vs controls. GDF15 
appears to increase with the severity of HF disease [32], and 
has been suggested as a potential prognostic marker of both 
HFpEF and HFrEF [20, 24, 28, 32, 69]. The multivariate 
approach we used here not only demonstrated that GDF15 
levels are elevated in patients with HF, but also underlined 
its covariation with a substantial number of other factors 
and relevant prognostic (physical) variables. GDF15 is most 
abundant in the liver, with lower levels in most other tis-
sues [50]. However, GDF15 is upregulated in response to 
disease in multiple tissues apart from the liver, such as the 
myocardium [2, 36, 86], and it is also linked to inflammation 
and neurohormonal activation [6, 40]. Thus, taking together 
previous observations and our current data indicating an 
association of GDF15 with myocardial function, physical 
capacity, and activity in patients with HF, we hypothesize 
that GDF15 is linked to hemodynamic system stress in such 
patients. Especially intriguing is that many of the biological 
functions of GDF15 fit with the HF phenotype, from activa-
tion of hypothalamic neurons [39] leading to anorexia with 
drastic weight loss and cachexia [63], to direct catabolic 
effects on skeletal muscle [12] and a negative impact on 
Growth hormone-Insulin like Growth Factor-1 axis (GH-
IGF1 axis) [81]. IGFBP7 is a recent discovery in the context 
of HF biomarkers [21], and unlike the majority of biomark-
ers, its discovery was based on a proteomic assay rather than 
a hypothesis-driven approach [14]. Previous observations 
indicating a relationship between IGFBP7 and diastolic 
function and exercise capacity [30] are in line with our find-
ings. However, the mechanistic role for IGFBP7 in the pro-
gression of HF remains elusive. IGFBP7 is not a ligand, but 
an indirect regulator of IGF-1 bioavailability. Therefore, we 
speculate that its role in HF disease progression, adding to 
the deleterious effects of GDF15, might be linked to poten-
tial influence over the GH-IGF1 axis. The main function of 
serum TfR1 is iron uptake, but it can also control sensitiv-
ity to erythropoietin in erythroid cells [59]. The only study 
to date linking TfR1 and HF indicated that the expression 
of this factor (mRNA levels from myocardial tissue) was 
reduced in subjects with HF compared with healthy controls 
[52]. In addition, the same study described how TfR1 was 
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downregulated by both catecholamines and aldosterone in 
isolated cardiomyocytes. Together with our findings con-
necting TfR1 and peripheral and central components related 
to the failing heart, such data highlight the need for future 
research to determine the role and prognostic validity of this 
factor in patients with HF.

Galectin-4 (Gal-4) levels were higher in patients with 
HF vs controls, they covaried with the three components 
of analysis employed, and carried prognostic value. To 
our knowledge, only one previous study has put forward a 
potential link between circulating Gal-4 and HF [13] and the 
present study is the first to report it in relation to measures 
of physical capacity and activity. Gal-4 has been studied in 
relation to cancer and intestinal inflammation [19]. Serum 
levels of Gal-4 are higher in patients with cancer vs controls, 
and this difference seems to be greater in those with metas-
tasis [9, 17]. In addition, conflicting roles of Gal-4 (pro- vs 
anti-inflammatory activity) have been described in different 
models of inflammatory bowel disease [35, 62]. While it is 
premature to speculate about the role of circulating Gal-4 
in HF, this factor might be linked to some kind of general 
stress-like stimulus that could be shared across several dis-
eases. However, the specific role of Gal-4 in each disease 
should be investigated further.

Study limitations

Despite the effort made to design and conduct an integra-
tive investigation analyzing factors related to function and 
prognosis of HF, this study had some limitations that need 
to be acknowledged. In contrast to other studies with nontar-
geted approaches, the analytical strategy used here did not 
identify possible pathophysiological and prognostic markers 
that are unrelated to physical capacity, physical activity, and 
echocardiographic estimates of disease severity. Moreover, 
the samples analyzed in this study originated from a homo-
geneous cohort of elderly patients of European origin with 
severe HF from a single center, which might limit the exter-
nal validity of the results. In addition, several potentially 
confounding features differed between the patient and the 
control group. Because the proximity extension assay used 
here to quantify the biomarkers does not allow an absolute 
quantification of the target proteins, translation into clini-
cally relevant cutoff values is not possible. In addition, 
mainly because of the availability and quality of antibodies, 
there are several biomarkers associated with cardiovascu-
lar disease or inflammation that are not incorporated in the 
current multiplex PEA chip. Because the PEA is a form of 
widespan-targeted analysis, consisting of a curated panel of 
factors selected for potential relevance in the context of car-
diovascular disease, bias is introduced into the analysis, in 
which inflammatory factors and markers known to be sensi-
tive to cardiac stretch are highly enriched. Therefore, the 

networks generated could be biased toward these biological 
functions. Notwithstanding these limitations, we believe 
that our investigation contributes new understanding of the 
molecular networks linking the failing heart and the loss of 
peripheral function in patients with HF.

Conclusions

This study adds novel and important information about cir-
culatory factors that might link the failing myocardium to 
the loss of peripheral function. We were able to identify 
several factors that likely participate in the central–periph-
eral pathogenesis of HF disease, using a systems biology 
approach relating echocardiographic assessment of myocar-
dial function, physical capacity, and daily physical activity 
with the concentrations of circulatory factors that differed in 
patients with HF vs controls, and Cox regression analysis of 
mortality. Some of these factors are well-known, validated 
biomarkers for HF (NT-proBNP, TNF-alpha, and ST2), 
while others are either relatively or completely new in this 
field (GDF15, TfR1, and Gal-4). Overall, these findings sup-
port the importance of systemic circulatory factors linked to 
hemodynamic systemic stress and inflammatory responses 
in the pathogenesis and progress of HF disease.
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