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Abstract: Chiral C2-symmetric diamines have emerged as versatile auxiliaries or ligands 
in numerous asymmetric transformations. Chiral 2,2’-bispyrrolidine-based salan ligands 
were prepared and applied to the asymmetric aryl transfer to aldehydes with arylboronic 
acids as the source of transferable aryl groups. The corresponding diarylmethanols were 
obtained in high yields with moderate to good enantioselectivitives of up to 83% ee. 
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1. Introduction  

Chiral diarylmethanols are important intermediates and precursors for the synthesis of 
pharmacologically and biologically active compounds [1-8]. Therefore, the development of effective 
catalyst systems for the synthesis of these compounds is of significant importance for organic 
chemists. The scientifically important protocols for the synthesis of chiral diarylmethanols commonly 
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involve two strategies: (1) the asymmetric reduction of prochiral diaryl ketones [9-13], (2) the 
enantioselective aryl transfer to aromatic aldehydes [14-16]. The reduction method requires an ortho 
substituent on one of the aryls or electronic different aryl groups for optimum results. The second 
method seems easy to realize chiral induction due to the large steric and electronic differences between 
an aryl group and a hydrogen atom on the aldehyde substrates with diphenylzinc. As reported 
previously, many functionalized diarylzincs used as the transferring nucleophiles are unstable and 
difficult to synthesize, so the method of the aryl transfer to aldehyde is greatly limited. Recently, an 
elegant method that the arylzinc species prepared in situ by transmetalation between organoboron  

[17-19] or organoboronic derivatives [20-26] and diethylzinc has been proposed as an alternative for 
the synthesis of salt-free organozinc reagents. We have also successfully developed an efficient and 
practical method for the synthesis of diarylmethanols by transmetalation using the arylboronic acid in 
the presence of trimethylgallium [27]. These methods allow the exploitation of a broad range of 
substituted aryl transfer reagents since numerous arylboronic acids are commercially available, and a 
lot of excellent ligands were developed and applied to the asymmetric aryl transfer reaction with good 
results [28-41]. For the future, the introduction of the new, effective and more easily available catalysts 
is also a field of continuous interest for the catalytic aryl transfer reaction. 

Chiral C2-symmetric diamines have emerged as versatile auxiliaries or ligands in numerous 
asymmetric transformations [42-44]. (R,R)-2,2’-bispyrrolidine, initially developed by Hirama, was 
synthesized by various routes [45-50], and its derivatives had been successfully employed as chiral 
ligands or organocatalysts in many asymmetric reactions [51-59]. So far, the application of 2,2’-
bispyrrolidine-based salan ligands [60,61] in asymmetric catalysis has not been reported. We describe 
herein our efforts toward the synthesis of optically active diarylmethanols through the asymmetric aryl 
transfer to aldehydes under the catalysis of (R,R)-2,2’-bispyrrolidine-based salan ligands. 

Figure 1. Structures of Ligands L1-L6. 

 

2. Results and Discussion  

A preliminary study was performed to test the catalytic property of the ligands L1-L6 (Figure 1) in 
the asymmetric phenyl transfer reaction to 4-nitrobenzaldehyde at 0 °C. As is evident from Table 1, the 
resulting products could be obtained in moderate yield, but low enantioselectivity when (1R,2R)-
cyclohexane-1,2-diamine-based ligands L1-L4 were tested (Table 1, entries 1-4). Gratifyingly, we 
found that the ligands L5 and L6 were more effective in this reaction (Table 1, entries 5-6). The ee 
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value of the product could be increased to 63% when the reaction was carried out at −25 °C (Table 1, 
entry 7). Increasing catalyst loading had a positive impact on both the yield and enantioselectivity. The 
best result was obtained in 88% yield with 83% ee while using 20 mol% of L6 (Table 1, entry 9). 

Table 1. Asymmetric Phenyl Transfer to 4-nitrobenzaldehyde. a 

 
Entry Ligand Mol% T(°C) Yield(%)b Ee(%)c 
1 L1 10 0 66 6 
2 L2 10 0 73 11 
3 L3 10 0 69 16 
4 L4 10 0 80 3 
5 L5 10 0 74 31 
6 L6 10 0 84 43 
7 L6 10 -25 70 63 
8 L6 15 -25 80 71 
9 L6 20 -25 88 83(S) d 

a All the reactions were carried out on 0.2 mmol scale of substrates with 2 equiv of arylboronic acid 
and 6 equiv of Et2Zn in toluene for 24 h. b Isolated yields. c Determined by HPLC with a Chiralcel 
OB-H column. d The absolute configuration of the products were determined by comparison with 
literature values. 

After having established the optimal protocol for the asymmetric phenyl transfer reaction, we 
further extended the reaction to a series of aldehyde substrates (Table 2). The electronic properties of 
the aromatic rings of the aldehydes have a significant influence on the enantioselectivity in this 
reaction. The aldehydes with electron-withdrawing substituents provided better results than those with 
electron-donating substituents in terms of ee values. 4-Nitrobenzaldehyde gave the corresponding 
diarylmethanol with 83% ee, but 4-methoxybenzaldehyde only with 11% ee (Table 2, entries 1, 2 and 
10). Similar results were obtained when 3-substituted-benzaldehydes (Table 2, entries 3 and 9) or 2-
substituted-benzaldehydes (Table 2, entries 5, 6 and 8) were tested. However, an exception was 
observed for 2-nitrobenzaldehyde (Table 2, entry 4), presumably caused by the chelating effect of the 
NO2 group with the lewis acids [62,63]. The enantioselectivity was also found to be influenced by the 
steric effect with the same exception of 2-nitrobenzaldehyde. ortho-Substituted (-Cl or -Me) 
benzaldehydes gave higher ee values (Table 2, entries 6 vs 2 or 8 vs 9). It should be noted that the 
reaction of 2-naphthaldehyde proceeded well, giving 70% ee and good yield (Table 2, entry 11), and 
α,β-unsaturated cinnamaldehyde gave the corresponding product with only moderate enantioselectivity 
(Table 2, entry 12). 

We also further investigated the asymmetric aryl transfer to aromatic aldehydes with substituted 
phenylboronic acids. As shown in Table 3, when 4-chlorophenylboronic acid was chosen as the aryl 
source and 4-nitrobenzaldehyde as the substrate, 71% ee was obtained (Table 3, entry 1). And 54% ee 
was obtained when 4-methoxylphenylboronic acid was tested (Table 3, entry 3).  
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Table 2. Asymmetric Phenyl Transfer to Aromatic Aldehydes. a 

 
Entry Ar Product Yield (%)b Ee (%)c,d 
1 4-NO2C6H4 3a 88 83(S) 
2 4-ClC6H4 3b 80 41(S) 
3 3-NO2C6H4 3c 91 75(S) 
4 2-NO2C6H4 3d 85 41(R) 
5 2-CF3C6H4 3e 72 80(R) 
6 2-ClC6H4 3f 84 73(S) 
7 3-BrC6H4 3g 85 26(S) 
8 2-MeC6H4 3h 76 60(S) 
9 3-MeC6H4 3i 78 52(S) 
10 4-MeOC6H4 3j 80 11(S) 
11 2-C10H7 3k 80 70(S) 
12 PhCH=CH 3l 76 47(R) 

Table 3. Asymmetric Aryl Transfer to Aldehydes. a 

 
Entry Ar1 Ar2 Product Yield (%)b Ee (%)c 
1 4-Cl C6H4 4-NO2C6H4 4a 75 71 
2 4-Cl C6H4 3-BrC6H4 4b 82 55 
3 4-MeOC6H4 4-NO2C6H4 4c 78 54(S)d 
4 4-MeOC6H4 3-NO2C6H4 4d 70 24 
5 3,5-diMeC6H3 C6H5 4e 70 48 

a All reactions were carried out on 0.15 mmol scale of substrates with 2 equiv of arylboronic acid 
and 6 equiv of Et2Zn in toluene at −25 °C for 24 h in the presence of 20 mol% ligand; b Isolated 
yields; c Enantiomeric excess was determined by HPLC with a Chiralcel OB-H, OD-H or AD-H 
column; d The absolute configuration of the products were determined by comparison with 
literature values. 

3. Experimental  

3.1. General 

All reactions were carried out under an argon atmosphere using standard Schlenk techniques. 
Solvents were dried and distilled prior to use according to standard methods. Unless otherwise 
indicated, all materials were obtained from commercial sources and liquid aldehydes were freshly 
distilled before use. For thin-layer chromatography (TLC), compounds were visualized by irradiation 
with UV light on GF 254 silica gel plates. 1H-NMR and 13C-NMR spectra were recorded in CDCl3 on 
a Bruker ARX-300 spectrometer with chemical shifts being referenced to SiMe4 used as internal 
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standard. The coupling constants J are given in Hz. HPLC analysis were performed on a chiral column 
(Daicel Chiralcel OB-H, OD-H or AD-H column) on a Chromatography Interface 600 Series Link 
instrument and Series 200 pump), with Series 200 UV/VIS detection at 254 nm. The solvent system 
used has hexane (A)-2-propanol (B) in the indicated proportions. Optical rotations were measured on 
Rudolph Research Analytical Autopol III Automatic Polarimeter equipped with a 100 mm cell. Mass 
spectra (EI-MS) were taken using a Shimadzu GCMS-QP2010 mass spectrometer. High Resolution 
Mass Spectra (HRMS) were taken using a LTQ Orbitrap XL ThermoFisher unit. 

3.2. Typical Procedure for the Asymmetric Aryl Transfer Reaction 

In a 20 mL flame-dried Schlenk reaction tube, diethylzinc (0.9 mmol, 6 equiv, 1.5 M in toluene 
solution) was added dropwise to a solution of phenylboronic acid (0.3 mmol, 2 equiv) in toluene  
(3 mL) under an argon atmosphere. After stirring for 12 h at 60 °C, a toluene solution of L6 (20 mol%) 
was introduced. The reaction was stirred for an additional 30 minutes and cooled to −25 °C followed 
by the addition of aldehydes (0.15 mmol). After completion of the reaction (monitored by TLC), the 
reaction solution was quenched with saturated aqueous NH4Cl (3 mL) and further extracted with ethyl 
acetate (3 × 5 mL). The combined organic layer was dried over Na2SO4. Evaporation of the solvent 
gave the crude product, which was further purified by preparative TLC to afford the corresponding 
chiral diarylmethanols.  

 
(S)-4-Nitrophenyl(phenyl)methanol (3a). 1H-NMR: δ 8.19 (d, J = 7.2 Hz, 2H), 7.58 (d, J = 7.2 Hz, 
2H), 7.37–7.33 (m, 5H), 5.92 (s, 1H), 2.25 (brs, 1H). 83% ee determined by HPLC with a Chiralcel 
OB-H column (A/B = 70:30, 0.8 mL/min, uv 230 nm): tR = 21.05 min (minor), tR = 35.74 min (major). 
[α]D

23 = +31.6 (c = 0.50, EtOH). 
 

(S)-4-Chlorophenyl(phenyl)methanol (3b). 1H-NMR: δ 7.38–7.33 (m, 4H), 7.31–7.27 (m, 5H), 5.80 (s, 
1H), 2.20 (brs, 1H). 41% ee determined by HPLC with a Chiralcel OB-H column (A/B = 90:10,  
1.0 mL/min, uv 230 nm): tR = 10.21 min (minor), tR = 18.33 min (major). [α]D

23 = +5.9 (c = 0.64, 
EtOH). 

 
(S)-3-Nitrophenyl(phenyl)methanol (3c). 1H-NMR: δ 8.30 (s, 1H), 8.11 (d, J = 8.1 Hz, 1H), 7.72 (d,  
J = 7.8 Hz, 1H), 7.50 (t, J = 7.8 Hz, 1H), 7.40–7.29 (m, 5H), 5.92 (s, 1H), 2.13 (brs, 1H). 75% ee 
determined by HPLC with a Chiralcel OB-H column (A/B = 80:20, 0.8 mL/min, uv 230 nm):  
tR = 34.19 min (minor), tR = 47.40 min (major). [α]D

23 = +42.5 (c = 0.40, EtOH). 
 
(R)-2-Nitrophenyl(phenyl)methanol (3d). 1H-NMR: δ 7.94 (dd, J = 7.8, 1.5 Hz, 1H), 7.75 (dd, J = 7.8, 
1.5 Hz, 1H), 7.64 (dt, J = 7.5, 1.2 Hz, 1H), 7.46 (t, J = 7.8, 1.5 Hz, 1H), 7.36–7.29 (m, 5H), 6.44 (s, 
1H), 2.02 (brs, 1H). 41% ee determined by HPLC with a Chiralpark AD-H column (A/B = 90:10,  
0.8 mL/min, uv 254 nm): tR = 13.57 min (major), tR = 14.62 min (minor); [α]D

23 = 11.2 (c = 0.32, 
EtOH). 
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(R)-2-Trifluoromethylphenyl(phenyl)methanol (3e). 1H-NMR: δ 7.66 (t, J = 7.8 Hz, 2H), 7.55 (t,  
J = 7.8 Hz, 1H), 7.42–7.32 (m, 5H), 7.30–7.27 (m, 1H), 6.32 (s, 1H), 1.99 (brs, 1H). 80% ee 
determined by HPLC with a Chiralcel OD-H column (A/B = 90:10, 0.5 mL/min, uv 254 nm):  
tR = 9.33 min (major), tR = 11.79 min (minor). [α]D

23 = −37.2 (c = 0.5, EtOH). 
 

(S)-2-Chlorophenyl(phenyl)methanol (3f). 1H-NMR: δ 7.60 (d, J = 7.8 Hz, 1H), 7.42–7.39 (m, 2H), 
7.36–7.28 (m, 5H), 7.25–7.22 (m, 1H), 6.24 (s, 1H), 2.05 (brs, 1H). 73% ee determined by HPLC with 
a Chiralcel OB-H column (A/B = 90:10, 1.0 mL/min, uv 230 nm): tR = 8.97 min (minor),  
tR = 10.00 min (major). [α]D

23 = −20.6 (c = 0.64, EtOH). 
 

(S)-3-Bromophenyl(phenyl)methanol (3g). 1H-NMR: δ 7.57 (s, 1H), 7.42–7.35 (m, 5H), 7.33–7.27 (m, 
2H), 7.20 (t, J = 7.8 Hz, 1H), 5.78 (s, 1H), 2.33 (brs, 1H). 26% ee determined by HPLC with a 
Chiralcel OB-H column (A/B = 90:10, 1.0 mL/min, uv 230 nm): tR = 15.17 min (minor),  
tR = 27.81 min (major). [α]D

23 = +11.4 (c = 0.76, EtOH). 
 

(S)-2-Methylphenyl(phenyl)methanol (3h). 1H-NMR: δ 7.53 (d, J = 9.0 Hz, 1H), 7.34–7.21(m, 7H), 
7.16 (t, J = 8.1 Hz, 1H), 6.02 (s, 1H), 2.26 (s, 3H), 1.95 (s, 1H). 60% ee determined by HPLC with a 
Chiralcel OB-H column (A/B = 90:10, 1.0 mL/min, uv 230 nm): tR = 9.47 min (minor), tR = 10.6 min 
(major). [α]D

23 = −19.3 (c = 0.30, EtOH). 
 

(S)-3-Methylphenyl(phenyl)methanol (3i). 1H-NMR: δ 7.41–7.34 (m, 4H), 7.30–7.27 (m, 2H),  
7.24–7.16 (m, 2H), 7.09 (d, J = 7.5 Hz, 1H), 5.81 (s, 1H), 2.35 (s, 3H), 2.02 (brs, 1H). 52% ee 
determined by HPLC with a Chiralcel OB-H column (A/B = 90:10, 1.0 mL/min, uv 230 nm):  
tR = 12.39 min (minor), tR = 21.34 min (major). [α]D

23 = −15.8 (c = 0.34, EtOH). 
 

(S)-4-Methoxylphenyl(phenyl)methanol (3j). 1H-NMR: δ 7.37–7.34 (m, 3H), 7.30–7.26 (m, 4H), 6.88 
(d, J = 9.0 Hz, 2H), 5.81 (s, 1H), 3.78 (s, 3H), 2.23 (brs, 1H). 11% ee determined by HPLC with a 
Chiralcel OB-H column (A/B = 90:10, 1.0 mL/min, uv 230 nm): tR = 21.79 min (minor),  
tR = 24.03 min (major). [α]D

23 = 8.1 (c = 0.42, EtOH). 
 

(S)-2-Naphathyl(phenyl)methanol (3k). 1H-NMR: δ 7.90 (s, 1H), 7.86–7.79 (m, 3H), 7.50–7.42 (m, 
5H), 7.38–7.28 (m, 3H), 6.01 (s, 1H), 2.06 (brs, 1H). 70% ee determined by HPLC with a Chiralcel 
OD-H column (A/B = 85:15, 0.8 mL/min, uv 230 nm): tR = 12.71 min (major), tR = 15.08 min (minor). 
[α]D

23 = −18.4 (c = 0.46, EtOH). 
 

(R)-1, 3-Diphenylprop-2-en-1-ol (3l). 1H-NMR: δ 7.47–7.33 (m, 5H), 7.32–7.27 (m, 3H), 7.29–7.24 
(m, 2H), 6.70 (d, J = 15.6 Hz, 1H), 6.40 (dd, J = 6.3, 15.6 Hz, 1H), 5.40 (d, J = 6.6 Hz, 1H), 2.15 (brs, 
1H). 47%ee determined by HPLC with a Chiralcel OD-H column (A/B = 80:20, 0.8 mL/min, uv  
254 nm): tR = 9.31 min (minor), tR = 11.14 min (major). [α]D

20 = +13.5 (c = 0.40, EtOH). 
 

4-Chlorophenyl(4-nitrophenyl)methanol (4a). 1H-NMR: δ 8.20 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 8.7 Hz, 
2H), 7.36–7.27 (m, 4H), 5.90 (s, 1H), 2.04 (brs, H). 71% ee determined by HPLC with a Chiralcel OB-
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H column (A/B = 80:20, 0.8 mL/min, uv 230 nm): tR = 22.92 min (minor), tR = 25.07 min (major). 
[α]D

23 = −19.5 (c = 0.64, EtOH). 

4-Chlorophenyl(3-bromophenyl)methanol (4b). 1H-NMR: δ 7.53 (s, 1H), 7.41 (d, J = 7.5 Hz, 1H), 
7.39–7.28 (m, 4H), 7.25–7.24 (m, 2H), 7.20 (t, J = 7.5 Hz, 1H), 5.77 (s, 1H), 2.04 (brs, 2H). 55% ee 
determined by HPLC with a Chiralcel OD-H column (A/B = 85:15, 0.8 mL/min, uv 230 nm):  
tR = 7.80 min (major), tR = 8.58 min (minor). [α]D

23 = +22.8 (c = 0.60, EtOH). 
 

(S)-4-Methoxylphenyl(4-nitrophenyl)methanol (4c). 1H-NMR: δ 8.19 (d, J = 8.7 Hz, 2H), 7.57 (d,  
J = 8.4 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 5.88 (s, 1H), 3.80 (s, 3H), 2.20 (s, 
1H). 54%ee determined by HPLC with a Chiralpark AD-H column (A/B = 85:15, 0.8 mL/min, uv 254 
nm): tR = 15.60 min (minor), tR = 19.25 min (major). [α]D

23 = +27.9 (c = 0.44, EtOH). 
 

4-Methoxylphenyl(3-nitrophenyl)methanol (4d). 1H-NMR: δ 8.28 (s, 1H), 8.10 (d, J = 8.1 Hz, 1H), 
7.71 (d, J = 8.1 Hz, 1H), 7.49 (t, J = 8.1 Hz, 1H), 7.27 (d, J = 6.6 Hz, 2H), 6.89 (d, J = 6.9 Hz, 2H), 
5.88 (s, 1H), 3.80 (s, 3H), 2.28 (brs, 1H). 24% ee determined by HPLC with a Chiralcel OD-H column 
(A/B = 85:15, 0.8 mL/min, uv 230 nm): tR =15.08 min (major), tR =16.23 min (minor). [α]D

23 = +23.8 
(c = 0.50, EtOH). 

 
3, 5-Dimethylphenyl(phenyl)methanol (4e). 1H-NMR: δ 7.42–7.28 (m, 5H), 7.01 (s, 2H), 6.93 (s, 1H), 
5.77 (s, 1H), 2.31 (s, 6H), 2.18 (brs, 1H). 48% ee determined by HPLC with a Chiralcel OD-H column 
(A/B = 90:10, 0.8 mL/min, uv 254 nm): tR = 8.67 min (minor), tR = 9.58 min (major). [α]D

23 = +20.4 (c 
= 0.65, EtOH). 

4. Conclusions  

In summary, we haved reported the asymmetric aryl transfer to aldehydes with arylboronic acids as 
aryl sources in the presence of the chiral 2,2’-bispyrrolidine-based ligand L6. The corresponding 
diarylmethanols could be obtained in high yields with moderate to good enantioselectivities. Further 
work on the asymmetric addition mechanism and the broad application of chiral 2,2’-bispyrrolidine-
based ligands in other asymmetric catalytic reactions are now in progress in our laboratory. 
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