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Abstract

MicroRNAs (miRNAs) are short, non-coding RNAs that negatively regulate post-

transcriptional mRNA levels. Recent data from cross-linking and immunoprecipitation

technologies confirmed the combinatorial nature of the miRNA regulation. We present

the miRror-Suite platform, developed to yield a robust and concise explanation for

miRNA regulation from a large collection of differentially expressed transcripts and

miRNAs. The miRror-Suite platform includes the miRror2.0 and Probability Supported

Iterative miRror (PSI-miRror) tools. Researchers who performed large-scale transcrip-

tomics or miRNA profiling experiments from cells and tissues will benefit from miRror-

Suite. Our platform provides a concise, plausible explanation for the regulation of

miRNAs in such complex settings. The input for miRror2.0 may include hundreds of dif-

ferentially expressed genes or miRNAs. In the case of miRNAs as input, the algorithm

seeks the statistically most likely set of genes regulated by this input. Alternatively, for a

set of genes, the miRror algorithm seeks a collection of miRNAs that best explains their

regulation. The miRror-Suite algorithm designates statistical criteria that were uniformly

applied to a dozen miRNA-target prediction databases. Users select the preferred data-

bases for predictions and numerous optional filters/parameters that restrict the search to

the desired tissues, cell lines, level of expression and predictor scores. PSI-miRror is

an advanced application for refining the input set by gradually enhancing the degree of

pairing of the sets of miRNAs with the sets of targets. The iterations of PSI-miRror probe

the interlinked nature of miRNAs and targets within cells. miRror-Suite serves experi-

mentalists in facilitating the understanding of miRNA regulation through combinatorial–

cooperative activity. The platform applies to human, mouse, rat, fly, worm and zebrafish.
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Introduction

MicroRNAs (miRNAs) are short non-coding RNAs that

act through base-pairing to regulate the expression of their

cognate mRNAs post-transcriptionally. The RNA-induced

silencing complex (RISC) complex mediates the binding of

miRNAs to mRNAs. The bound miRNA-mRNA either de-

stabilizes the mRNA or attenuates its effectiveness in trans-

lation. The outcome is monitored by mass spectrometry

proteomics and by negatively regulated gene expression (1).

A change in the expression of miRNAs is not confined to

embryogenesis, development or cell differentiation. Instead,

miRNAs govern cellular homeostasis and their expression is

a hallmark of cells’ status (2). Specifically, miRNAs act in

stem cell differentiation, cell division, immunological cell

function, organogenesis and cell identity. Moreover,

miRNAs are involved in numerous pathogens, including

cancer, neurodegenerative diseases and viral infection (3–5).

Currently, mirBase is the most exhaustive and compre-

hensive collection of miRNAs with �30 000 mature

miRNA sequences from �200 organisms (6). The >2600

mature miRNAs from human and �1900 from mouse are

estimated to target about half of the genes in humans and

rodents (7). A growing number of tools and algorithms have

been developed for predicting miRNA-target pairs. Over a

dozen miRNA target-predicting databases have also been

developed (8, 9). These tools combine features derived dir-

ectly from the sequence. The most informative features are

derived from the miRNA seed sequences (10). A ‘canonical’

seed has been defined as a string of seven nucleotides on the

miRNA (at position 2–8). Most miRNA-targets have full

base-pairing complementarity with the seed sequences.

However, the different resources incorporate additional

features to different extents. These features include the

binding energy, thermodynamics of the miRNA-target du-

plex, taxonomical conservation and the statistical context

of the binding sites. More sophisticated miRNA-target pre-

dictions provide results that seek a consensus and minimal

agreement from different resources. The consistency

among major miRNA-target predictors is poor, reflecting

the large fraction of false-positives associated with each re-

source (11, 12). An additional source for inconsistency

among the different miRNA-target predictors originates

from using Ensembl or UCSD as a source for gene lists

(13). To overcome such pitfalls and to provide a functional

relevance to miRNA regulation, several tools replace the

pairing of miRNAs with their targets, with information on

the association of miRNAs with diseases and pathways

(14–16). Quantitative measures for the expression of

miRNAs and mRNAs are used to filter out for a particular

experiment many of the unsupported miRNA-gene pre-

dicted pairs (17).

There are a variety of algorithms that attempt to assign

scores to miRNA-target pairs. Unfortunately, the reliability

of the scores in view of experimental data is rather

poor (12). Furthermore, substantial discrepancies remain

when comparing the experimental technologies and the

computational ones (18). TarBase is a reliable resource for

experimentally validated miRNA-target pairs (19).

miRecords is a literature-based archive (20) that extracts

validated results from publications. Both resources report

mostly about in vitro miRNA experiments.

The data collected from the cross-linking and immuno-

precipitation (CLIP) (21, 22) and the cross-linking, ligation

and sequencing of hybrids (CLASH) (23) technologies sug-

gest that some of the assumptions of the miRNA-target

pairing need to be revisited (24). Specifically, in addition to

the canonical seed-pairing rule that dominated the current

miRNA-target predictions, non-canonical sites (referred

to as ‘nucleation bulges’) were widespread and their func-

tionality was validated. Furthermore, the sequences of

miRNA-protected regions (from CLIP and CLASH) are

not limited to the 30-UTR, but a large fraction of them

were associated with the mRNA’s coding region (23).

However, the combinatorial nature of the 75

miRNA–mRNA interactions has been unequivocally con-

firmed (25). Specifically, it was shown that multiple

miRNA-binding sites occupy the same transcript and con-

sequently augment its regulation level. However, only

10% of the genes were regulated by a single miRNA (26).

Small-scale experiments have confirmed the synergistic

effect on the transcriptional level of candidate genes by

overexpressing a small number of miRNAs into cells (27).

Similarly, the parallel overexpression of few miRNAs had

an enhanced effect on targeted pathways (28) when com-

pared with the effects achieved by each miRNA separately.

Our goal is to provide predictions that reflect the

in vivo combinatorial nature of miRNAs. The predictions

from miRror2.0 and Probability Supported Iterative

miRror (PSI-miRror) are ranked according to the internal

score (henceforth, miRIS) (29). From a set of genes that are

downregulated under some experimental conditions, a co-

ordinate action of miRNAs that regulate their expression

can be anticipated. In this article, we present the rationale

behind miRror-Suite and illustrate the components of this

flexible platform. The miRror-Suite is composed of two

application tools: miRror2.0 and PSI-miRror. The plat-

form transforms noisy miRNA predictions from the many

miRNA-target prediction databases (MDBs) into a statis-

tically sound interpretation. PSI-miRror is an iterative

protocol that aims to refine the input sets by increasing its

coherence to their candidate targets at each of the iter-

ations. The tools presented in miRror-Suite are designed to
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support experimentalists seeking a guideline for under-

standing the posttranscription regulation by miRNAs. The

tools are useful for a rational design of miRNA perturb-

ation experiments and for the elucidation of cooperative

networks among miRNAs.

Databases for mirna-Target Predictions

Database files that are included in miRror are the collec-

tion of the most stable miRNA-target prediction tools.

(i) TargetScan database (30) is operated in two modes:

(a) Sites that are conserved across most vertebrates and

(b) site that are only conserved across mammals. All the

other predictions are poorly conserved; (ii) microCosm—

based on the miRanda algorithm (31); (iii) microRNA.org,

which allows analysis on multiple miRNA acting on the

same gene-target based on miRanda algorithm (32) (two

selections for conservation is based on TargetScan family

definition); (iv) PicTar (two selections for a conservation

among mammals or among mammals and chicken, called

4-ways and 5-ways, respectively) (33); (v) DIANA–MicroT

(34); (vi) PITA (35). PITA-Top refers to the higher confi-

dence miRNA-target pairs in which a seed must be of a

size of 7–8 nucleotides (no mismatches) with a minimal

conservation. A relaxed version of all potential sites is

called PITA-All (i.e. 6-mer seeds, no conservation filter);

(vii) MirZ (36); (viii) miRDB resource (37); (ix)

TargetRank (two selections for species’ conservation) (38)

and somewhat smaller resources of (x) miRNAMap2 (39),

(xi) RNA22 (40) and (xii) the meta-predictor MAMI

(http://mami.med.harvard.edu/).

A total of 18 MDBs are associated with humans. Several

of these resources (PITA, TargetScan, microRNA.org,

TargetRank and PicTar) provide separated lists for their pre-

dictions. Each list is associated with its level of confidence,

coverage and specificity. MirZ (36), microRNA.org (32)

and miRBase (6) also provide information related to

miRNA expression profiles for a large number of tissues

and cell lines. The validated targets from TarBase (19) are

not incorporated to miRror-Suite as an independent MDB

but are indicated on the result output (when relevant).

The definition of miRNA family according to miRBASE

is based on conservation. We set out to compress miRNAs

to families solely according to the identity in the canonical

seed (positions 2–8). Table 1 summarizes the list of MDBs

and the number of miRNAs, genes and miRNA-families

that are supported. Mapping miRNA to families led to an

average compaction of 2.4 (Table 1, the ratio of the

miRNAs to the number of families in each MDB). The

representation of miRNAs according to their seed family

reduces the redundancy in the miRNA identifiers. For

example, MDBs often use different naming to the same

sequence (e.g. hsa-miR-20b, hsa-miR-20* and hsa-miR-

20-5p). By assigning all of these sequences under a unified

‘seed’ family, we gain a substantial consistency among the

predictions. In miRror2.0, we allow mapping of miRNAs

to their families. We encourage the user to explore this

possibility in case that the size of the input is large (>100

miRNAs or genes). The miRNA family assignment reduces

the number of predictions without sacrificing the signifi-

cance (as determined by miRIS).

Mapping and Identifiers’ Unification

The capacity of miRror to combine many MDBs and

resources is based on converting the miRNAs and gene-

targets identifiers. miRror uses the RefSeq identifier as a

central entry. miRror supports UniProtKB accession and

IDs, official gene symbol, Enterez ID, Flybase accession

and Ensembl ID. Conversion was performed using

BioMart (www.ensembl.org/biomart), ID converter

(idconverter.bioinfo.cnio.es) and UniProtKB ID mapping

(http://www.uniprot.org/mapping). Collectively, 15 identi-

fiers are supported for the identifiers’ exchange among

MDBs. The match of RefSeq to the original accessions of

the MDBs reaches 98% for human and mouse and is lower

for the other supported organisms. Currently, gene iso-

forms are not explicitly supported. However, most MDBs

are not updated on a regular basis. Thus, the inconsistency

Table 1. miRNA-target prediction databases from miRror-

Suite

MDB Genes miRNAs miRNA

families

Compact

ratio

MAMI 11 914 317 150 2.11

PITA all 17 216 677 348 1.95

PITA top 8292 677 348 1.95

PicTar 4way 7817 178 98 1.82

PicTar 5way 2972 129 70 1.84

RNA22 11 641 313 148 2.11

TargetRank all 14 874 555 261 2.13

TargetRank conserved 10652 127 75 1.69

TargetScan conserved 25 186 1536 406 3.78

TargetScan nonconserved 30 802 1538 407 3.78

miRDB 28 890 1918 303 6.33

miRNAMap2 6040 470 260 1.81

microCosm 16 933 711 261 2.72

microRNA.org 15 400 677 348 1.95

microRNA.org conserved 31 526 248 125 1.98

microRNA.org nonconserved 32 601 850 276 3.08

microT 16 882 555 261 2.13

mirZ 31 302 1205 396 3.04
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in nomenclature remains a major challenge and a source of

confusion. The collection of miRNAs and genes from all

the supported MDBs that are analyzed by miRror-Suite is

about 40 000 genes and 2500 miRNAs.

Principles and Statistical Basis

The miRror platform is used to propose a minimal gene

list, which is tightly regulated by a set of miRNAs.

Conversely, it suggests a collection of miRNAs matching

an input set of regulated genes (e.g. as resulting from a

functional genomics experiment). The core of the statistical

basis of miRror is the miRtegrate algorithm. The probabil-

ity of the miRNAs’ interaction with the input gene set

yields a calculated P-value threshold for all probabilities

that are more significant than the indicated threshold (41).

Formally, the probability of the miRNA interaction with

the input gene set, as opposed to the rest of the genes in

that MDB, is calculated. We applied a statistical threshold

to ensure that the contribution of any MDB that covers

only a small number of miRNAs with high specificity

remains significant.

In brief, miRtegrate calculates the probability of

matches between the user gene list and the genes reported

to be miRNA-targets by a set of predicting MDBs. The

probability of interaction between the input gene set and

every possible miRNA yields a calculated P-value for all

probabilities that achieve a user-indicated significance

threshold. A correction for multiple testing was included

using the FDR procedure. Formally, the probability of the

miRNA matching the input gene set is calculated. The total

number of miRNA (N) and the number of paired-gene tar-

gets (m) are calculated for each gene. Figure 1A illustrates

the hypergeometric calculation of the P-value threshold for

each of the results. For each of the MDBs, the number of

miRNAs and the number of gene-targets are reported

(Table 1). The miRror-Suite database collects the informa-

tion from all 18 MDBs (for humans) after removing any

overlap among them.

Design and Implementations

The user must select one of the six supported organisms

covering human, mouse, rat, worm, fly and zebrafish.

These are the most extensively studied model organisms

with respect to miRNAs’ regulation. The input for miRror

is a set of genes or a set of mature miRNAs. The user can

activate miRror2.0 in one of the two operational modes:

miR2Gene or Gene2miR. In the Gene2miR mode, a set of

genes is loaded as input and all miRNAs significantly asso-

ciated with the input gene list are reported; significance is

based on a user-defined threshold P-value (the default

Figure 1. miRror2.0 statistical model and a workflow. (A) A schematic illustration for the hypergeometric statistic that underlies miRror is shown. For

each gene, we took into account the list of miRNAs that were associated with it. We calculated the probability of the gene’s interaction with the collec-

tion of miRNAs in the user set as opposed to the rest of the miRNAs in that MDB. (B) A workflow of Gene2miR operational mode. The filters and par-

ameters that can be selected by the user are shown. The number of optional values for each of the parameters and filters are indicated (right) and an

example for a specific value is shown (left). For a preselected set of MDBs, statistical threshold (P<0.05) and a minimal requirement of two MDBs

and two hits from the query are used as the default parameters. The input for the mode of miR2Gene is the set of miRNAs that follows the same

scheme.
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P-value is <0.05). Additional constraints include the re-

quirement to match at least two of the input genes and two

MDBs as the minimal requirement for supporting each

miRNA–gene interaction. A minimal agreement of MDBs

and a minimal coverage were adopted to remove predic-

tions that are based on insufficient support. The same logic

applies in the miR2Gene mode.

Figure 1B illustrates the workflow for miRror2.0 applica-

tion in the Gene2miR mode while emphasizing the optional

filters and parameters that can be selected by the user. The

operation mode is determined according to the input (i.e. set

of miRNAs or genes). The range of optional values, as well

as examples of valid selections are illustrated (Figure 1B).

Some of the filters address the selection in view of the cellular

context. Such selection is based on the precalculated collec-

tion of 79 and 94 tissues and cell lines of interest, respectively

(42). Note that the statistical analysis that is performed by

the miRror2.0 algorithm takes into account the actual num-

ber of genes that express in each tissue and cell line.

Therefore, activating the selection for a tissue or a cell line

will impact the output. An additional useful parameter allows

limiting the analysis to the subset of genes whose expression

is maximal. Such highly expressed subsets are selected from

the absolute level of expression beyond a predetermined value

(30% of top expressed genes). The selection of highly ex-

pressed genes reduces the original list of the candidate genes

substantially. An additional parameter addresses the fraction

of the top binding sites according to the internal scores pro-

vided by each MDB. This accounts for the top 10, 25, 50 and

100% of the genes. However, not all MDBs provide a confi-

dence score. The user selects the relevant MDBs (18 in the

case of humans but only a few for zebrafish).

While any combination of MDBs that supports the

selected organism is accepted, preselected set of MDBs

called ‘recommended’ or ‘minimal’ are available. Such

default selections are proposed for reducing the depend-

ency among specific MDBs (e.g. only one is selected from

TargetScan_all and TargetScan_conserved). Furthermore,

before or after activation the miRror2.0 search, the user

may change several of the default parameters:

i. The P-value threshold (default value is P-value <0.05).

ii. The minimal number of supporting MDBs (default

value is 2).

iii. The minimal number of input hits (default value is 2).

iv. The minimal value of the miRror Internal Score (i.e.

miRIS).

By changing these free parameters, the user can activate

a relaxed or a strict search protocol. Balancing between an

increased size of the output predictions and the high

specificity of predictions is achieved by altering these op-

tional parameters.

Performance Tests

Assessment tests were applied for inputs of genes and

miRNAs. These tests include 12 and 15 MDBs for mouse

and human, respectively. The performance tests were de-

signed to recover the experimentally validated results.

Specifically, for the Gene2miR mode, we used >30 large-

scale differentially expressed gene profiles that originated

from miRNA overexpression experiments. We tested its

success in identifying subject miRNA from the unfiltered

collection of the downregulated genes. We show that

miRror2.0 outperformed all tested MDBs (29).

The task for the miR2Gene mode was to recover among

the top miRror predictions a specific target gene. For this

test, CLIP data from starBase were used (26). Analysis of all

CLIP data (i.e. the assigned reads from deep sequencing tech-

nology) showed that �50% of the targeted genes are associ-

ated with up to eight miRNAs and 90% of the genes are

targeted by up to 35 miRNAs. For each specific gene, the col-

lection of miRNAs that were bound was used as input for

miRror2.0. We repeated the test for all the miRNA collec-

tions. We conclude that in the miR2Gene and Gene2miR

modes, the ‘correct’ answer was recovered at a high success

rate with respect to any of the 15 tested MDBs (29).

Comparing MiRror and Selected MDBs
Performance

A coordinated change in miRNAs expression is often a re-

sult of exposing cells to extreme environmental conditions

(e.g. viral infection, oxidative stress and hypoxia). We il-

lustrate the impact on the entire cell transcriptome by a

simplified example in which the expression of only a few

miRNAs is discussed. Figure 2A shows the difference in

the mapping of the four selected mouse miRNAs (mmu-

miR-124, mmu-miR-153, mmu-miR-361 and mmu-

miR-98; only four miRNAs were selected for simplicity).

We tested most routinely used MDBs (limited to six MDBs

for simplicity). Although miRanda (microRNA.org) maps

each miRNA to 5000–8000 targets, for the same set,

TargetRank mapping is limited to 500–800 genes. We

focus on all possible combinations among the four

miRNAs for two representatives of the MDBs. There are

670 predicted targets in the intersection of all the four

miRNAs according to Miranda (microRNA.org).

However, there are only nine predicted targets in the inter-

section of these four miRNAs in TargetScan. Importantly,

there are another 10 possible combinations (a combin-

ation must have at least two miRNAs). Miranda

(microRNA.org) gives 1500–3000 predictions for the com-

binations of miRNA pairs and �1000 predictions for the

combinations of any triple. The amount of targets for
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TargetScan is much lower (20–200 predictions for the

miRNA-pairs and 10–30 for the miRNA-triplets, Figure

2B). This level of variability is considerably higher when

all 15 MDBs are discussed. This analysis suggests that a

naive application for combining the results from MDBs is

unlikely to result in a useful outcome.

The output of activating miRror2.0 with the same set of

miRNAs is shown in Figure 3. Performing the analysis by

the default parameters for the six MDBs that are demon-

strated in Figure 2A (PITA, TargetScan, TargetRank,

microRNA.org, microT and MirZ) resulted in 239

predicted genes (Figure 3A); only 25% of them actually

intersect with all four miRNAs (Figure 3D). Increasing the

significance of the statistical threshold (P-value, Figure 1B)

reduced the number of predictions substantially (for 79

and 27 predictions, respectively, Figure 3B and C).

The degree of overlap among the predictions is high

(Figure 3E), an indication for the stability of the approach

and the validity of changing the parameters by the user.

The prediction score of miRror is called miRIS (miRror

internal score). The miRIS balances between the consist-

ency of prediction among the selected MDBs and the

Figure 2. Target prediction according to six MDBs. (A) The number of target predicted for mmu-miR-98, mmu-miR-124, mmu-miR-153 and mmu-

miR361 is shown for each of the selected MDBs: PITA, TargetScan, TargetRank, microT, miRanda (microRNA.org) and MirZ. Note the large difference

in the number of targets that are reported by each MDBs. (B) Schematic of all possible combinations of miRNAs is shown (left). The combinations are

separated to all four miRNA (one combination), three miRNAs (four combinations) and two miRNAs (six combinations). The number of predicted tar-

gets for microRNA.org is significantly higher with respect to the predictions of TargetScan.
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fraction of hits from the total size of the input, with an

equal contribution of these two components:

miRIS ¼ ½ðMDBhits=SelectedMDBsÞ
þ ðINPUThits=SizeofINPUTÞ� � 0:5

The fit between the number of MDBs that support the

predictions and the ratio of the input hits from the input

size is moderate (R2¼ 0.305). Thus, the combination of

these individual measures boosts the significance of the

score. Owing to the demand for a minimal number of

MDBs in supporting the prediction (default¼ 2), miRIS is

always >0. For example, in a search for 10 MDBs the min-

imal miRIS value is at least 0.1 (for hits that are supported

by only two MDBs). Although the P-value is an additional

quantitative estimate for each prediction, we had not

included it in the miRIS score. The correlation of the pre-

dicted P-value {i.e. the minimal P-value that was reported

from any of the MDBs that support such prediction, trans-

formed to [1-log(P-value)]} with the fraction of MDBs

or the input hits is quite significant (R2¼0.496 and

R2¼0.419, respectively). The user can use the P-value to

filter the results.

We consider miRIS as a sensitive scoring method.

A steep drop in miRIS (Figure 3A and C) suggests that fil-

tration of the results by miRIS is likely to further remove

noisy predictions. Indeed, when the set of predictions were

limited to miRIS> 0.6, a perfect overlap in the predictions

was achieved at varying statistical thresholds. The robust

of the miRror2.0 application is further confirmed as using

11 instead of the six MDBs; while the miRIS value

had been slightly changed, the top list of predicted genes

remained identical (as shown in Figure 3F). Using

miRror at a relatively restricted setting (P-value 0.02,

miRIS >0.6, Figure 3F), result is a concise list of robust

predictions that are the prime candidates for further

investigation.

Refining the MiRror Results By an Iterative
Approach

The PSI-miRror is an application of miRror-Suite that pro-

vides a further refinement of the input. The principle of

PSI-miRror is to iteratively search for the most likely set of

miRNAs that regulates a set of genes and vice versa.

Intuitively, the iterative protocol seeks a gradual improve-

ment in the connectivity of the network that represents the

miRNAs and their targeted genes.

The intuition and the usability of PSI-miRror are

described below. PSI-miRror captures the concept of coor-

dinated effect of a set of miRNAs over a gene set (as

Figure 3. miRror2.0 prediction for a set of miRNAs. The results of miRror2.0 for the input of mmu miR-98, mmu miR-124, mmu miR-153 and mmu

miR-361 are shown. The predictions are based on six MDBs (PITA, TargetScan, TargetRank, microT, microRNA.org and MirZ). The results are ranked

by the values of miRIS. (A) Default parameters using P-value¼ 0.05. (B) P-value¼0.02. (C) P-value¼ 0.01. (D) Partition of the miRror-predicted targets

according to their combination of all four, any three or any two miRNAs. The results cover the 238 predicted genes (as in A). (E) The stability of the re-

sults in view of changing parameters is illustrated by a Venn diagram for the three sets of results from A–C. (F) Venn diagram for the subset of genes

shown in E, with miRIS> 0.6.
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oppose to a set of miRNAs to one gene that is implemented

in miRror2.0). To achieve this goal, we defined the ‘Edge-

Value’ ratio (EV-ratio) that serves as an additional scoring

system to the P-value threshold that was described for

miRror. We will illustrate it for the case of miRNA as in-

put (define as a miR2miR mode, i.e. the user starts with a

miRNA set and the output is also a miRNA set). Given a

graph of genes (G), miRNAs (M) and the edge, which rep-

resents a match between a specific miRNA and a specific

gene (E), we define the EV score as the ratio between the

actual number of matches divided by the maximal edges

possible. EV¼ E
G�M.

We then combined the EV score with the miRror system

through iterations. A predefined parameter determines the

minimal fraction of the input (in %) that will be stable in

each of the iterations. A suggested parameter for the users

is 90% (and no less than 75%). The basic operation of the

algorithm is greedily choose the minimal percent of M in-

put using the EV-ratio scoring method by removing each

miRNA that decreases the score. The same protocol is

applied for adding an M that was not in the original input

list and that improves the score. The greedy procedure was

appropriate as the discussed graph of M,G is described as a

bipartite graph of miRNAs and targets (i.e. no edges exists

among the M or among the G). The implementation of

PSI-miRror is for each MDB separately. Once the proced-

ure was completed for all the selected MDBs and for each

molecule, the output reports only the molecules that agree

with the default parameter of ‘how many MDBs agree

with the prediction’ (as implemented in miRror2.0).

In PSI-miRror, the user must select one out of four

operational modes. The ‘full iteration’ (Gene2Gene and

miR2miR) starts with a set of molecules (Genes or

miRNAs, respectively) and ends with a refined list of the

same type of molecules as the input (Figure 4). The other

two modes include the Gene2miR and miR2Gene. These

are based on activating a partial iterative cycle (see scheme

for Gene2miR, Figure 4). In most tested examples, the

process is converged after three to four iterations.

Figure 4 illustrates full and partial cycles of the PSI-

miRror application. In addition to the parameters that

are used by miRror2.0, the user can select parameters that

specify the iterations:

i. The number of iteration (the default is set for two com-

plete cycles).

ii. The relaxation level for each of the iterations (e.g. the

maximal fraction of the molecules that can be removed

or added per iteration).

The advantage of activating PSI-miRror is in exploring

the power of ‘Set versus Set’ and to improve the connectiv-

ity of miRNA and targeted genes gradually using iter-

ations. It is especially useful when in an miRNA screening

experiment not all miRNAs were analyzed. In this case, the

Figure 4. Major steps in executing the PSI-miRror application for the Gene2Gene and Gene2miR modes. The PSI-miRror input may be a list of genes

from the miRror2.0 input or output. It is an iterative application that is activated in two full cycle modes (left) or in an incomplete cycle (right). The

Venn diagram for the input and the output molecules is presented. The shared section represents the gene list that was unchanged during the PSI-

miRror iterations. The removed genes from the input set and the added genes to the output set are listed. PSI-miRror also supports miR2Gene and

miR2miR modes.
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user may ask: ‘Are there additional miRNAs that could have

contributed to the observed set of downregulated genes’. In

a symmetrical scenario, when only partial transcriptome

was measured. the user may still be interested in genes that

are most likely be regulated by miRNAs. Removal of genes

(or miRNAs) from the original input list signifies the genes

whose connectivity to the predicted miRNA set is rather

low and thus, may represent a contaminant (or a gene that

is not directly regulated by miRNAs).

Importantly, the maximal fraction of the miRNAs that

can be replaced in each of the iterations is predefined.

Therefore, for a mode of miR2miR (input is a set of

miRNAs), the resulted list of miRNAs includes, in addition

to the input some miRNAs that were added (namely, were

not in the input) and others that are suggested to be

removed from the input. The differences between the input

and the output of PSI-miRror are reported as three lists:

the input, the output and the overlap list that is shared by

the input and output sets (Venn diagram, Figure 4).

Results and Visualization

The results from miR2Gene or Gene2miR in miRror2.0

and PSI-miRror are shown in Figure 5. Panels 1–3 illustrate

the results from the miR2Gene operational mode: (i) A

table that summarizes the user selections and the param-

eters that were applied in the search (Figure 5A, panel 1).

In addition, the actual number of analyzed molecules (that

may be somewhat different from the input) is reported.

(ii) A main table of results in which the rows are the pre-

dicted genes. Such a table includes the genes that are asso-

ciated with the maximal number of miRNA hits and the

maximal number of MDBs that support the pairing of the

miRNA in the input. The table is colored according to the

Figure 5. miRror2.0 and PSI-miRror results. The outputs of miRror2.0 and PSI-miRror are shown in panels 1–3 and 4–6, respectively. (1) A summary

table for the miR2Gene mode. The chosen parameters and the number of analyzed molecules are listed. (2) The P-value thresholds are colored. The

cases in which the MDB provides no prediction or a prediction that is below the selected threshold are color-coded. The table is sorted according to

miRIS. (3) Zoomed table for each of the resulted gene is shown. The supported MDBs and the number of binding sites reported for each are marked.

(4) PSI-miRror results in the miR2miR operational mode. (5) The Venn diagram that shows the number of genes that was included in the query as

well as the number of molecules following the PSI-miRror iterations. (6) A summary table ranked by miRIS. The MDBs that contributed to the recover-

ing of the selected genes are indicated in red.
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P-value that is derived from the minimal value from any of

the MDBs that support the predicted gene. The genes that

are validated according to TarBase are highlighted (if they

exist). In the main table we present the miRIS. (iii) A

zoomed table (Figure 5, panel 3). For each of the resulted

genes, a table is presented to indicate the actual MDBs

that support the prediction. In addition, the numbers of the

binding sites that are reported by each of the supported

MDBs are indicated. In the current version of miRror2.0,

the number of binding sites is not factored in calculating

miRIS.

PSI-miRror is an operational mode that is activated

on the miRror 2.0 results. The user can directly forward

the miRror2.0 results to PSI-miRror. The results are pre-

sented as:

i. A summarized table that shows the parameters used,

the selected operational mode (i.e. any of the four

modes, Figure 5, panel 4).

ii. A detailed table of the results, sorted by the miRIS.

The supporting MDBs and number of input hits are

reported.

iii. The PSI-miRror when activated in the Gene2Gene and

miR2miR provides a Venn diagram (Figure 5, panel 5)

that specifies the overlap genes (or miRNAs) that re-

mained unchanged throughout the iterations. This

sub-list should be considered as a refined list for fur-

ther analysis. The molecules that were added to the

input list are those that increased the overall match of

the input as a set and the output as a set.

Network View of the Results

miRror-Suite provides rich options for downloading and

forwarding the results for detailed (biological) analysis.

The genes’ list is forwarded to different external resources

for functional annotations and pathway integration. We

support the annotation enrichment schemes of DAVID

(43), PANDORA (44), STRING (45) and Reactome (46).

These tools allow for an investigation of the list of genes in

terms of protein–protein interaction (STRING), regulatory

pathways and processes (Reactome and DAVID) and asso-

ciation with rich functional annotations (DAVID and

PANDORA). Often, the interpretation of a list of predic-

tions is possible only at the system levels. Returning to the

example described in Figures 2 and 3, and analyzing the re-

sults of miRror2.0 by a network view showed the enrich-

ment of several functions and cell compartments. For

example, by including the miRror 2.0 results (P-value 0.02

and the default parameters) to DAVID for annotation en-

richment, several annotations stood out. The most domin-

ant annotations are related to ‘ER, endoplasmic reticulum’

(3–6-fold change) and ‘gated channel activity’ (4–10-fold

change with respect to the background of all genes).

A similar enrichment was shown from the PANDORA

analyses. The enriched pathways from Reactome include

Calcium signaling pathway. We conclude that the tested

four miRNAs from mouse (as in Figure 3) affect the

ER, the ion channel activities and the calcium cell

homeostasis.

Conclusions/Future development

miRror-Suite is a platform that empowers the experi-

mental biologists gain insights from a broad range of

experimental protocols. Input for miRror2.0 and PSI-

miRror can encompass miRNA profiling, global signature

of proteins from mass spectrometry proteomics and lists of

regulated genes from expression arrays and RNA-Seq

technologies.

miRror 2.0 is based on a ‘many-to-one’ approach in

which a set of miRNAs used as input is optimized for the

minimal set of gene-targets that are maximally regulated

by this set. Similarly, this applies to a set of genes as input.

As such it is different from meta-predictors that seek con-

sensus among alternative MDBs. miRror-Suite provides an

integrative, statistically based analysis platform and pre-

sents the miRIS as a combined scoring scheme for a suc-

cessful prediction of miRNA combinatorial regulations.

The ‘many-to-many’ optimization is performed by the PSI-

miRror approach. The user can decide on the degree of re-

finement relative to the original set. Activating the iterative

cycles can improve the accuracy of the predictions.

Varying the optional filters and parameters allows tuning

the robustness and sensitivity of the results. The user may

select interactively strict or relaxed parameters, and conse-

quently control the extent of the predictions.

Currently, the platform supports six model organisms:

human, mouse, rat, fly, worm and zebrafish and 18 of the

largest, most stable miRNAs-target predictors. In the fu-

ture, MDB predictions that consider non-canonical paring

of miRNA and their targets will be included (24).

Furthermore, with the increased quality and coverage of

miRNAs expression, we will add a filter according to the

level of miRNA expression in tissues and cell lines (17).
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