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The efficacy of COVID-19 vaccines appears to depend in complex ways on the vaccine
dosage and the interval between the prime and boost doses. Unexpectedly, lower dose
prime and longer prime-boost intervals have yielded higher efficacies in clinical trials. To
elucidate the origins of these effects, we developed a stochastic simulation model of the
germinal center (GC) reaction and predicted the antibody responses elicited by different
vaccination protocols. The simulations predicted that a lower dose prime could increase
the selection stringency in GCs due to reduced antigen availability, resulting in the
selection of GC B cells with higher affinities for the target antigen. The boost could relax
this selection stringency and allow the expansion of the higher affinity GC B cells selected,
improving the overall response. With a longer dosing interval, the decay in the antigen with
time following the prime could further increase the selection stringency, amplifying this
effect. The effect remained in our simulations even when new GCs following the boost had
to be seeded by memory B cells formed following the prime. These predictions offer a
plausible explanation of the observed paradoxical effects of dosage and dosing interval on
vaccine efficacy. Tuning the selection stringency in the GCs using prime-boost dosages
and dosing intervals as handles may help improve vaccine efficacies.

Keywords: SARS-CoV-2, vaccine efficacy, affinity maturation, prime-boost immunization, germinal center (GC)
INTRODUCTION

The COVID-19 pandemic continues to rage and warrants intensifying the ongoing global
vaccination programs (1, 2). With limited vaccine supplies, it becomes critical to identify dosing
protocols that would maximize vaccine efficacy (3, 4). With the Oxford-AstraZeneca vaccine, where
dosing protocols were adjusted during the trials, data has become available of the effects of different
dosages used for the prime and boost doses and of different intervals separating them on vaccine
efficacy (5–8). A recent study has also examined the effects of increasing the interval beyond those
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in the trials (9). Intriguingly, the efficacy in preventing
symptomatic infection was 63.1% when a standard dose
(containing 5×1010 virus particles) was used for both prime
and boost, whereas the efficacy was substantially higher, 80.7%,
when a low dose prime (containing 2.2×1010 virus particles)
followed by the standard dose boost was administered (5).
Furthermore, the efficacy increased with the interval between
the prime and boost, from 55.1% at <6 weeks to 81.3% at ≥12
weeks, when standard doses were used for both (5). Inspired by
these observations, studies are examining the effects of lower
dosages and increased dosing intervals with other vaccines too,
specifically the Pfizer-BioNTech (10–12) and Moderna (13)
vaccines. An understanding of these effects would help identify
optimal dosing protocols and maximize the impact of the
ongoing vaccination programs. The origins of the effects
remain to be elucidated.

While the role of cellular immunity is yet to be fully
elucidated (14), several studies suggest that the efficacy of
currently approved COVID-19 vaccines is attributable to the
neutralizing antibodies they elicit (6, 11, 15–20). The higher
efficacies observed above are thus argued to be due to the
improved quality and quantity of the antibodies produced by
the associated dosing protocols (5, 8, 9, 11, 21). For instance,
higher antibody levels were observed following the boost upon
increasing the dosing interval (9, 10). In some cases, antibody-
dependent cellular functions too appeared to be better with the
longer intervals (21). A question that arises is how the different
dosing protocols elicit antibodies of different amounts and
affinities for their targets.

Antibody production following vaccination (or natural
infection) occurs in germinal centers (GCs) (22, 23). GCs are
temporary anatomical structures assembled in lymphoid organs
where B cells are locally selected based on the ability of their
receptors to bind and internalize antigen presented as immune
complexes on follicular dendritic cell surfaces in the GCs. [GCs
can last anywhere from a few weeks to many months (23–25)].
This process, termed affinity maturation, culminates, typically in
weeks, in the selection of B cells with affinities that can be several
orders of magnitude higher for the target antigen than those at
the start of the GC reaction (26, 27). What determines the final
affinities is an important question in immunology and is yet to be
resolved (28–30). Several studies have identified factors that
influence affinity maturation (26, 31–37). A key factor is
antigen availability within GCs–related here to the vaccine
dosage and antigen half-life–elucidated first by the classic
experiments of Eisen and colleagues (26): B cells compete for
antigen in the GCs. Their survival depends on how much antigen
they acquire, as we explain below. Thus, if antigen is scarce, the
selection is stringent and leads preferentially to the survival of
those B cells that have high affinity for the target antigen. This
phenomenon governing the GC reaction is manifested widely,
including in the effects of passive immunization following HIV
infection, and can be potentially exploited by tuning antigen
availability (34, 35, 38, 39).

Here, we reasoned that one way in which the effects of the
different vaccination protocols could arise was from the influence
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the protocols had on antigen availability and hence selection
stringency within GCs. Specifically, low dose prime is expected to
result in low antigen availability and may lead to the selection of
higher affinity B cells. The standard dose boost could then enable
the expansion of these higher affinity B cells. With a larger dosing
interval, affinity maturation is expected to proceed further before
the boost, yielding higher affinity B cells for expansion post the
boost. The decay of antigen between doses could cause a further
increase in selection stringency, amplifying this effect. To test this
hypothesis, we developed a detailed stochastic simulation model
of the GC reaction. Such simulation models have been shown to
mimic the GC reaction faithfully and have helped resolve
confounding experimental observations and predict optimal
vaccination protocols (34–36, 39–44).
RESULTS

Stochastic Simulation Model of the GC
Reaction Post COVID-19 Vaccination
We present an overview of the model here (Figure 1); details are
in Methods. We considered individuals who were not previously
infected and were administered COVID-19 vaccines. We focused
on the GC reaction in such individuals. The simulation, building
on previous protocols (35, 36, 39, 40, 42), considered and
modelled events within an individual GC. The GC reaction is
initiated by B cells of low affinity for a target, non-mutating
antigen. The target could be a portion of or the entire spike
protein of SARS-CoV-2. We simulated the ensuing affinity
maturation process using a discrete generation, Wright-Fisher-
type, formalism (36, 39, 45). The GC is divided into a light zone
and a dark zone (Figure 1A). The antigen is presented in the
light zone and is represented as a bit-string of L amino acids.
Each B cell is identified by its B cell receptor (BCR), which is also
represented as a bit-string of L amino acids. The affinity of a B
cell for the antigen is determined by the extent of the match
between the BCR and antigen sequences, or ‘match length’,
defined as the length of the longest common continuous
substring (39, 42), defined here using e. e=0 if the two
sequences are completely distinct, whereas e=L if they are
identical. The higher the e, the higher is the affinity. In each
generation, we let each B cell have an average of h attempts to
acquire antigen. h thus serves as a surrogate of antigen
availability in the GC (39). The probability with which a B cell
acquires antigen in each attempt is set proportional to its affinity
for the antigen (39). If a B cell fails to acquire a minimum
amount of antigen, it is assumed to undergo apoptosis (31), and
is eliminated. The surviving B cells then compete for help from T
follicular helper (Tfh) cells. The probability that a B cell receives
such help is set proportional to the amount of antigen it has
acquired relative to that of the other B cells in the generation
(39). B cells that do not succeed in receiving Tfh help are again
assumed to undergo apoptosis (31). Among the surviving B cells,
following previous studies (39), we let 5% exit the GC, become
plasma cells, and produce antibodies; 5% exit and become
memory B cells; and 90% migrate to the dark zone, where they
November 2021 | Volume 12 | Article 776933
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proliferate and mutate their BCR genes and return to the light
zone (39, 43). The latter B cells form the pool for the next
generation of the GC reaction. The antibodies produced by
plasma cells can feedback into the GC and, by displacing lower
affinity antibodies in the immune complexes or by masking
antigen, tend to increase the selection stringency (35, 39, 46).

Following dosing, antigen is trafficked to the lymph nodes,
where its levels rise rapidly and then decline exponentially
Frontiers in Immunology | www.frontiersin.org 3
(34, 47). Accordingly, we let h rise immediately upon dosing
to a pre-determined amount dependent on the vaccine dosage
and then decrease with each generation based on the half-life of
the administered antigen (Figure 1B). With the boost, we
considered two scenarios (34, 48, 49): the first where the boost
enhanced antigen levels in pre-existing GCs, and the second
where it initiated new GCs using memory B cells formed by the
prime. We also examined the baseline, control scenario where
A

B

FIGURE 1 | Schematic of the GC reaction model post vaccination. (A) The GC reaction. The antigen from the vaccine enters the GC complexed to antibodies
and is presented in the light zone on the surfaces of follicular dendritic cells attached to FcgRIIB or CR2 receptors. GC B cells acquire antigen with a probability
proportional to their affinity for the antigen. They then receive help from T follicular helper cells with a probability dependent on the relative amount of antigen they
acquired. Cells that fail to acquire antigen or receive the latter help die. Cells that succeed can exit the GC to become plasma cells and secrete antibodies, become
memory B cells, or migrate to the dark zone, where they proliferate and mutate their antibody genes. The latter cells circulate back to the light zone and become
subjected to the same selection process. Antibodies secreted by plasma cells can feedback into the GC and affect the selection process. (B) Schematic of the
simulations. (Top) Timeline showing dose administration and corresponding antigen levels. (Bottom) GCs are formed following the prime and gradually shrink with
time due to decreasing antigen levels. The prime could be low dose (LD) or standard dose (SD). The boost could restore existing GCs (mechanism I) or lead to new
GCs seeded by memory B cells formed during the prime (mechanism II). The boost is typically SD.
November 2021 | Volume 12 | Article 776933
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the boost initiated GCs de novo, independently of the prime. We
considered vaccination protocols with low and standard dose
prime and a range of prime-boost dosing intervals. We
performed multiple stochastic realizations of the simulations
for each vaccination protocol and predicted the expected
antibody response as an indicator of vaccine efficacy.

Antigen Availability and Its Effect on
Selection Stringency
To elucidate affinity maturation in the GC reaction, we first
performed simulations with a constant h, set here to 7. (We
considered other values of h later.) The GC initially had B cells
with low affinity for the target antigen. As the GC reaction
proceeded, B cells with increasing affinity were selected in our
simulations, marking affinity maturation (Figure 2A).
Eventually, a stationary distribution of B cells of different
Frontiers in Immunology | www.frontiersin.org 4
affinities was achieved, dominated by B cells with the highest
affinities, as observed in previous studies (39) and akin to the
mutation-selection balance observed in other evolutionary
simulations (50, 51). We focussed on the corresponding
evolution of the average affinity of the B cells. As the GC
reaction progressed, the average affinity of the B cells increased
and reached a plateau (Figure 2B). Thus, when h=7, the average
affinity of the B cells, determined by the average match-length
between the antigen and BCR sequences, plateaued at ~6.7
(Figure 2B inset). Note that L=8 in these simulations. We note
that match-length is a proxy for affinity. To draw links between
match-length and affinities measured using the equilibrium
dissociation constant, Kd, we recognize that affinity maturation
typically commences with weakly binding antibodies, with
Kd~10-100 µM, and can culminate with the strongest binding
antibodies, with Kd~1-100 pM (30). In our simulations, these
A B

D E

F G

C

FIGURE 2 | The effect of antigen availability and half-life on the GC reaction. (A) Time-evolution of populations of GC B cells of different affinity, e, for the antigen;
h=7. (B) Time-evolution of the average affinity of GC B cells for different h. Insets in (A, B) The values at day 21 and day 80. (C) Time-evolution of the affinity-
weighted cumulative antibody output for different h. (D) Time-evolution of the average affinity of GC B cells for different initial h, h0, with antigen half-life, t=40 d.
(E) Corresponding cumulative antibody output. (F) Time-evolution of the average affinity for different t, and with h0 = 20. (G) Corresponding cumulative antibody
output. Insets in (C, E, F, G) Corresponding values at day 80.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Garg et al. COVID-19 Vaccination Protocols
extremes span match-lengths 1 to 8, so that a gain of unit match-
length would amount approximately to a 10-fold increase in
binding affinity (or 10-fold lower Kd).

To examine the effect of antigen availability, we next
performed simulations at different values of h. Increasing h
resulted in a lower value of the plateau of the average affinity
(Figure 2B), indicative of weaker selection. Increasing h would
correspond to higher vaccine dosages. B cells with lower affinities
were selected with higher h because more opportunities were
available for antigen acquisition. Thus, the average affinity
plateaued at ~3.4 when h=15 and decreased further with larger
h (Figure 2B inset). This is consistent with the classic
observations of poorer affinity maturation with increasing
antigen levels (26, 39). In terms of the absolute antibody titres,
our simulations predicted that unless the selection stringency
was so large that the GC B cell population began to decline
causing GC collapse (Supplementary Figure 1), the GC B cell
population was maintained, leading to a steady output of Abs
from the GC (Supplementary Figure 2). The lower affinity with
increasing h thus resulted in a corresponding decrease in the
affinity-weighted cumulative antibody output in our simulations
(Figure 2C). The latter output was ~417 when h=7 and ~216
when h=15 at 80 d following dosing (Figure 2C inset). This
affinity-weighted antibody output would serve as a measure of
the humoral response elicited by vaccination; it accounts for the
effects of both the quality and the quantity of the response. We
thus expect it to be proportional to the antibody neutralization
titres (or NT50 values), determined using neutralization assays
and reported experimentally (5, 18, 19). At very high values of h,
beyond ~20 in our simulations, the effect of varying h was
minimal (Figures 2B, C), indicating that at sufficiently high
dosages, the effect of varying dosage on the GC reaction may not
be significant. At lower h, between 7 and 15 in our simulations,
lowering dosage resulted in a substantial gain in the GC
response. When h was too low, however, in our simulations,
GCs collapsed, as not enough antigen was available for sustaining
the B cell population (Supplementary Figure 1).

Following vaccination, antigen levels are expected to decline
exponentially with time. We therefore next performed
simulations with h decreasing with a half-life t; i.e., h=h0exp
(-t×ln2/t), where h0 is the peak antigen level achieved soon after
dosing. Consistently with the above predictions, we found that
the average GC B cell affinity decreased with increasing h0

(Figure 2D). However, with low h0, the GCs were often
unsustainable, resulting in early extinguishing of the GCs (see
h0 < 5 in Figure 2D). This resulted in lower GC output,
highlighting the quality-quantity trade-off. Increasing h0 thus
yielded lower average affinity but larger numbers of the
antibodies produced. The trade-off manifested as a maximum
in the affinity-weighted cumulative antibody output at
intermediate h0 (Figure 2E). For the parameters chosen, the
latter output was minimal for h0<3, rose till it attained a peak at
h0 = 6, and then declined, plateauing as h0 approached 20. These
latter simulations were performed with t=40 d. How antigen
levels quantitatively decay on follicular dendritic cells within GCs
relative to that in plasma is not well understood (34, 52, 53). We
Frontiers in Immunology | www.frontiersin.org 5
therefore examined a range of values of t. We found in our
simulations with h0 = 20, that the average affinity was higher
when t was lower (Figure 2F). Specifically, the average affinity at
day 80 from the start of the GC reaction was ~6.7 for t=40 d and
~3.4 for t=160 d (Figure 2F inset). The faster decay of antigen
thus increased the selection stringency within the GC and led to
higher affinity B cells. The affinity-weighted cumulative antibody
output, accordingly, increased with decreasing t, consistent
with an improved response due to increased selection
stringency (Figure 2G).

Prime-Boost Vaccination:
The Effect of Dosage
We now applied our simulations to mimic the prime-boost
vaccination protocols employed in clinical trials (5).
Specifically, we considered low dose (which we set using h0 =
10) and standard dose (h0 = 20) combinations, administered
with a dosing interval D=28 d mimicking experimental protocols
(5, 6, 21). (Our conclusions are not sensitive to these parameter
settings; see Supplementary Figure 3) An important aspect of
the humoral response associated with multiple antigen dosing
that remains unknown is whether the subsequent doses
modulate GCs formed following the first dose or seed new
GCs. GCs have been observed to persist over extended
durations following COVID-19 vaccination (24). [Such
persistent GCs have been seen following natural infection with
other viruses too (25).] If the interval D is relatively small, one
may expect the boost to modulate ongoing GC reactions, as has
been suggested previously (34, 39). However, if D is large, then
the GCs formed by the prime may collapse due to antigen decay
or other mechanisms before the boost, so that the seeding of new
GCs by the boost is more likely. In the latter scenario, the effect of
the prime must come from the preferential seeding by memory B
cells formed following the prime (48, 49, 54). Recruitment of
memory B cells into GCs has been suggested, especially those B
cells that displayed cross reactivity to other circulating human
betacoronaviruses (24). We therefore simulated two limiting
scenarios (Figure 1B): First, we assumed that the boost
modulated existing GCs and seeded no new GCs. Second, we
let the boost seed GCs using the memory B cells formed from the
prime and not modulate any existing GCs. We also simulated a
control case where the boost established new GCs de novo,
without using memory B cells from the prime, in which case
no advantage from the prime is expected.

With the boost modulating existing GCs, our simulations
predicted an advantage of the low dose prime over the standard
dose prime (blue and red lines in Figures 3A, B). The average
affinity increased with time more steeply with the low dose until
day 28, when the boost was administered (Figure 3A). Just prior
to boost administration, the average affinity was ~4.9 for the low
dose versus ~2.8 for the standard dose prime. Correspondingly,
the affinity-weighted cumulative antibody output was higher
for the low dose than the standard dose (Figure 3B). The
diversity of the GC B cell population as well as the affinity of
the output B cells reflected these predictions (Supplementary
Figures 4, 5). The administration of the boost caused an increase
November 2021 | Volume 12 | Article 776933
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in antigen availability (Figure 3A inset), relieving the selection
stringency. The average affinity thus saw a temporary dip
(Figure 3A). However, as affinity maturation continued, the
higher affinity B cells selected with the low dose prime expanded
substantially, yielding a much higher affinity-weighted antibody
output than with the standard dose prime (Figure 3B). The
average affinity and the affinity-weighted cumulative antibody
output was higher with the low dose prime than the standard
dose prime throughout our simulations.

When we let the boost seed GCs using memory B cells from
the prime, the difference between low dose and standard dose
prime was smaller in our simulations following the boost (green
and orange curves in Figures 3A, B). This is because we assumed
that only B cells above a certain affinity for the antigen (here,
match length ≥ 3; see Methods) could differentiate into memory
B cells following stimulation. The advantage of the low dose
prime in yielding high affinity B cells was thus reduced. The
choice of memory B cells is in keeping with the expectation that
low affinity naïve-like B cells may not receive strong enough
signals to differentiate into switched memory B cells (55). We
recognize that recent studies have suggested that memory B cells
may have lower affinity for antigen than plasma cells (56). Thus,
we performed simulations where lower affinity B cells
differentiated into memory B cells and higher affinity into
plasma cells. Our qualitative inferences were unaffected by this
alteration (Supplementary Figure 6). Even within the memory
pool, the low dose prime yielded higher affinity B cells than the
standard dose prime, explaining the advantage of the low dose
prime in our simulations (Figure 3A). The differences in the
corresponding affinity-weighted cumulative antibody output
(Figure 3B) were as expected but commensurately smaller
than when the boost seeded existing GCs. Both scenarios
yielded better responses than the control case where the boost
seeded GCs de novo (grey lines in Figures 3A, B). We also
examined the scenarios where low dose boost was employed
following low dose or standard dose prime. The low dose boost
did lead to higher GC B cell affinities because of the heightened
selection stringency but yielded poorer overall outputs because of
the associated increased GC collapse than the standard dose
Frontiers in Immunology | www.frontiersin.org 6
boost in our simulations (Supplementary Figure 7). The
standard dose boost thus helped consolidate the advantage
gained by the low dose prime by relaxing the selection
stringency and allowing GC expansion.

Prime-Boost Vaccination: The Effect of
Dosing Interval
To assess the influence of the dosing interval, we compared next
the antibody responses elicited by two dosing intervals, D=28 d
and D=56 d. We let t=80 d here to avoid GC collapse following
low dose prime with shorter antigen half-lives (Supplementary
Figure 8). The average GC B cell affinity was significantly higher
with D=56 d than D=28 d when the GCs were allowed to persist
until the boost (Figures 4A, B). For instance, the average affinity
was ~6.6 and ~4.4, respectively, in the two cases, just before the
administration of the boost following low dose prime, because
affinity maturation continued longer with the longer dosing
interval. Besides, the declining antigen levels further increased
selection stringency in the latter case. This qualitative trend
remained with the standard dose prime. The affinity-weighted
cumulative antibody output was also significantly higher with
D=56 d than D=28 d (Figures 4C, D). For instance, 28 d after the
boost, the output was ~380 and ~174, respectively, in the two
cases, when low dose prime was used and the boost modulated
existing GCs. With standard dose prime too, the difference was
nearly 2-fold. This effect remained whether the boost seeded new
GCs or modulated surviving GCs (Figures 4A–D), indicating a
distinct advantage of the longer interval. The cases all yielded
significantly better responses than the control case where the
boost elicited GCs de novo (Figures 4A–D).

Because the selection stringency depended on antigen half-
life, t, we assessed the effect of varying D for a range of values of t.
Following recent experiments (9, 12), we also considered much
larger values of D, ranging from 28 d to 84 d (Figures 4E, F and
Supplementary Figure 8). To evaluate the effect on affinity
maturation, we compared the maximum value of the average
GC B cell affinity achieved at any time 1 week post the boost (to
eliminate transients). We found that at any t, increasing D
increased the peak affinity, regardless of the use of low dose or
A B

FIGURE 3 | Influence of different prime-boost dosages. (A) Time-evolution of the average affinity of GC B cells for different dosing protocols indicated. Inset: The
associated antigen levels. (B) Time-evolution of the affinity-weighted cumulative antibody output for the cases in (A). Inset: Corresponding values at the final
simulation time point. Parameters used: D=28 d; t=40 d; h0 = 10 for LD and h0 = 20 for SD.
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standard dose prime or whether the boost seeded new GCs or
affected existing GCs (Figure 4E). Thus, a longer duration
yielded a GC response of better quality. Further, the lower
was t, the higher was the peak affinity at any D, consistent
with stronger selection stringency associated with lower antigen
availability (Figure 4E).
Frontiers in Immunology | www.frontiersin.org 7
This latter effect influenced the overall response, combining
quality with quantity, which we assessed using the affinity-
weighted cumulative antibody output 28 d post the boost
(Figure 4F). While the overall trend of improved output with
longer D remained, the trend was more nuanced. The nuances
were due to the complex dynamics of the GC responses following
A B

D

E

F

C

FIGURE 4 | Influence of prime-boost dosing interval. (A, B) Average GC B cell affinities, and (C, D) affinity-weighted Ab outputs, with prime-boost intervals (D) of
either 28 d (A, C) or 56 d (B, D), and with LD/SD or SD/SD dosing. Bottom inset of (A): LD and SD correspond to h0 = 10 and 20, respectively, with t=80 d. Top
insets in (A–D): values at the final time point. Heatmaps of (E) the maximum GC affinity recorded between 1 week post boost administration and the final time point,
and (F) the affinity-weighted cumulative Ab output 28 d post the boost, as a function of t (20, 40 and 80 d) and D (4, 8, and 12 weeks) for the two limiting scenarios
(Mem. reseed and Cont. GC). Trajectories corresponding to the heatmaps are shown in Supplementary Figure 8. Black regions in (E) correspond to collapsed GCs.
A heatmap of the affinity-weighted cumulative Ab output 56 d post the boost is shown in Supplementary Figure 8C.
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multiple dosing. We examined first the effect of low dose prime.
When t was large, the GC reaction was sustained longer,
allowing greater affinity maturation (Supplementary Figure 8).
Thus, delayed dosing interval would lead to better responses.
Indeed, with D=56 d and D=84 d, our simulations predicted that
the cumulative output improved with t (Figure 4F). With D=28
d, the GCs may not have expanded sufficiently before the boost.
With low t, leading to high selection stringency, GCs tended to
collapse after the boost (Supplementary Figure 8). With large t,
the selection stringency was weaker and it therefore took longer
for affinities to rise. Consequently, intermediate t yielded the best
response (Figure 4F).

With standard dose prime, too, the effects were similar. The
GCs were sustained longer as t increased, but weaker selection due
to greater antigen availability led to poorer affinity maturation
(Supplementary Figure 8). The trade-off tended to yield the best
response at intermediate t. In our simulations, when the boost
contributed to existing GCs, it was not efficient in rescuing GCs
that were beginning to collapse. Thus, with low and intermediate
t, GCs tended to collapse (Supplementary Figure 8). When the
boost was assumed to seed new GCs using memory cells from
the prime, because the latter had higher affinities for the antigen,
the GCs not only survived, but also expanded. The benefit was
amplified with delayed dosing as better memory cells became
available for seeding the GCs. Thus, as long as t was not too small,
the cumulative output tended to improve with increasing D (see
t=40 d and 80 d in Figure 4F). (With very small t, the increased
GC collapse compromised the response at high D; see t=20 d in
Figure 4F). These trends were maintained when the output was
considered 56 d post boost (Supplementary Figure 8). We note
that the trends were not a consequence of the GC collapse brought
about by decaying antigen levels. The trends remained even
without GC collapse or when the collapse was due to alternative
mechanisms such as restricted Tfh cell help (57) (Supplementary
Figure 9). That GCs following COVID-19 vaccination can persist
over extended durations (24, 58) suggests that GC shrinkage may
be slow in vivo. Large dosing intervals would then improve
responses, as has been observed in clinical trials (9).
DISCUSSION

Understanding the reasons behind the improved efficacy of
COVID-19 vaccines upon delaying the boost dose or using a
low dose prime would aid optimal deployment of vaccines,
critical to settings with limited supplies. Here, using stochastic
simulations of the GC reaction post vaccination, we elucidated
plausible mechanistic origins of the improved efficacy. To our
knowledge, ours is the first study to employ such simulations to
assess the influence of COVID-19 vaccination protocols. The GC
reaction is constrained by a quality-quantity trade-off (26, 34, 35,
39, 59): Lower antigen availability in the GC leads to more
stringent B cell selection, resulting in the production of higher
affinity antibodies but in smaller amounts. Increasing antigen
availability reverses these effects. The different dosing protocols
used–low versus standard dose prime and different dosing
Frontiers in Immunology | www.frontiersin.org 8
intervals–affect this trade-off. With low dose prime, antigen
availability in the GCs is lowered, resulting in the selection of
high affinity GC B cells. The boost relaxes the selection
stringency and allows the expansion of the selected B cells.
Delaying the boost delays the relaxation, resulting in even
higher affinity B cells getting selected following the prime.
Following the boost, these latter B cells would result in better
overall GC responses, explaining the observed improvements
in efficacy.

Experimental evidence supports the above reasons. Antibody
titres targeting the SARS-CoV-2 spike were measured in
individuals administered the boost 8-12 weeks, 15-25 weeks,
and 44-45 weeks after the prime (9). The titres were consistently
higher in the individuals with the longer dosing intervals.
However, interestingly, the titres just before the boost were
lower in the individuals with the longer intervals. This was
consistent with lower antibody output due to declining antigen
availability with time in the GC and the associated GC shrinkage.
Furthermore, the higher corresponding selection stringency may
have resulted in the selection of GC B cells and memory B cells
with higher affinity, which would be expected to rescue shrinking
GCs or seed new GCs better, explaining the better responses
eventually observed. Improved antibody responses following
delayed boost dosing has now been observed with multiple
vaccines (9–12).

With dosing intervals smaller than 8-12 weeks or with the low
dose prime, the differences in antibody titres have been less
apparent (5, 8, 21). Yet, the improvement in vaccine efficacy is
substantial (5). While we have argued that this improvement may
be due to the improved affinity of the antibodies, direct
measurements of affinity are lacking. In vitro pseudo-typed virus
neutralization efficiency of antibodies isolated 28 d after the boost
were not significantly different between individuals administered
the low dose prime or the standard dose prime or when both
standard doses were administered with a 28 d or 56 d interval (5, 8,
21). It is possible that the improvements in affinity may not be
adequate to be manifested as improved in vitro neutralization
efficiencies, possibly because the stoichiometry of antibody
binding to the viral spike proteins that ensures virus
neutralization (60–62), which is yet to be estimated for SARS-
CoV-2, may be realized in both scenarios. In vitro neutralization
efficiencies tend to be much higher than corresponding in vivo
efficiencies (63–65). Nonetheless, greater affinity maturation with
lower antigen availability has been long recognized as a hallmark
of the GC reaction (26, 34, 35, 39, 45, 59). In independent studies
on HIV vaccination, for instance, protocols that allowed antigen
levels to rise with time, akin to low dose prime followed by
standard dose boost examined here, elicited better antibody
responses than protocols that held the antigen levels constant or
allowed them to decline with time (34), an effect consistent with
the dosing protocols modulating antigen availability and the
associated quality-quantity trade-off in the GCs (39).

Previous modeling studies have examined the role of antigen
dose and/or prime-boost dosing protocols in the response to
vaccination, in the context of other pathogens (34, 36, 39, 45, 66–
68). In several studies, low antigen dose has been observed to
November 2021 | Volume 12 | Article 776933

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Garg et al. COVID-19 Vaccination Protocols
increase the affinity of GC B cells produced (36, 39, 45),
consistently with experimental observations (26, 59). This
observation is also consistent with our present predictions,
where lower antigen dose increases selection stringency and
leads to faster affinity maturation. That low doses lead to
enhanced selection stringency in GCs has been argued by
analysis of the heterogeneity of the antibodies produced (59):
Soon after antigen exposure, antibodies isolated from sera
displayed a range of affinities for the antigen. Interestingly,
with time this range shrank and converged to a nearly
constant affinity when the antigen dose was low but remained
largely intact when the dose was high, indicative of much
stronger Darwinian selection with low dose antigen. An
important finding from previous studies has also been the need
to consolidate the enhanced affinity maturation achieved with
low antigen doses by eventually relaxing the selection stringency
using higher antigen doses. With low antigen dose, GCs can
often collapse due to the lack of antigen required for B cell
survival. Thus, with too low an antigen dose, the GCs may
collapse before substantial affinity maturation can occur.
Consequently, intermediate antigen doses have been argued to
yield the best affinity maturation, striking a balance between
selection stringency and GC survival (45). It is possible that in
some selection scenarios, GC collapse may dominate affinity
maturation at low antigen levels. Whether this explains the lack
of an improved affinity maturation at low doses predicted in
some studies remains to be ascertained (66). In a prime-boost
setting, a minimum gap between the doses has been
recommended for maximizing the response, to allow for
adequate affinity maturation following the prime (67, 69).
Others have suggested that exponentially increasing antigen
doses in a multi-dose setting may be desirable, as they would
not only relax selection stringency with time but also provide
adequate antigen for GC expansion, with the possible additional
advantage of steering the antibody repertoire towards desired
clonotypes (34, 70). These overall findings are consistent with
our present predictions of the advantages of low dose prime and
delayed boost.

Our simulations predicted a role for antigen half-life in the
response to vaccination. With longer half-lives, the response
improved upon increasing the dosing interval. With shorter half-
lives, if associated GC shrinkage was too drastic before the
administration of the boost, the response following the boost
was compromised. Shorter dosing intervals then elicited the best
response. We note here that the antigen half-life in the GC may
be difficult to estimate (34, 52, 53). We therefore examined the
effects of a wide range of antigen half-lives. In our simulations,
GC shrinkage was typically associated with antigen decay, which
we explicitly modeled. In other studies, GC shrinkage has been
allowed to occur naturally, due to antigen uptake by GC B cells
(45) or limitation of Tfh cell help (41, 71). Our results were robust
to these alternative modes of GC shrinkage. The advantage of
low dose prime in our simulations came from lower antigen
levels and hence more stringent selection in the GC. The delayed
boost allowed affinity maturation to proceed further. These
advantages were amplified by decaying antigen levels, which
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enhanced selection stringency and expedited affinity maturation.
Direct measurements of the evolution of individual GCs post
COVID-19 vaccination are not yet available, to our knowledge.
That GC B cells and plasmablasts were detectable in high
frequencies even 12 weeks after the boost suggests that antigen
presented by COVID-19 vaccines may be much longer lasting in
the GCs than expected from their half-life in circulation (24, 58).
Such prolonged GC responses have been observed in other
settings (25). The ranges of antigen decay timescales employed
in our simulations were consistent with these latter observations.
Future studies may yield accurate estimates of the antigen half-
life in GCs, which would not only offer a more direct test of our
predictions but also help identify optimal dosing intervals for the
different COVID-19 vaccines available.

Quantitative comparison of our predictions with experimental
observations is difficult, as has been the case with other modeling
studies of the GC reaction (34–36, 39, 40, 42, 46). This is because a
number of key biological processes associated with the GC
reaction remain to be elucidated, including the link between
dosage and the number of GCs seeded, and between measurable
antigen levels in circulation and those within individual GCs (22,
23, 34, 35, 39). Only recently have these links begun to be
evaluated (37). As a simplification, our simulations have
assumed that increased dosage leads to increased antigen
availability within GCs while keeping the number of GCs seeded
fixed. It is possible that the number of GCs seeded may also
increase with dosage but with a commensurately smaller rise in
the antigen levels per GC. Future studies that elucidate the links
above may help define these quantities better. Nonetheless, the
poorer quality of the antibody response with increasing dosage is a
widely observed and accepted phenomenon (26, 34, 39), giving us
confidence in our findings.

We recognize that other arms of the immune system that
could be triggered by the vaccines, particularly T cells, may affect
the vaccine efficacies realized (5–9, 13, 14). The strength and
timing of the T cell response has been argued to be important in
determining the severity of the infection (72), which in turn may
affect the estimated vaccine efficacy (73). We have focused here
on the antibody response, to which the efficacies have been found
to be strongly correlated (18, 19, 73), and which in our
simulations offered a qualitative explanation of the effects of
the different dosing protocols on vaccine efficacies.

Our simulations have used single, non-mutating antigens as
the target of affinity maturation. Such simulations have
explained many key features of the GC reaction and the
humoral response (39). Simultaneous responses to multiple,
evolving antigens are important in settings involving rapidly
mutating pathogens, such as HIV, where the diversity of the
humoral response may be correlated with viremic control (36,
38, 40, 42, 74). Furthermore, in such settings, it is conceivable
that low selection stringency may allow rare precursor B cells,
such as those leading to broadly neutralizing antibodies, to get
selected (42, 75). With SARS-CoV-2, the spike protein appears
reasonably conserved across variants (76), and has allowed the
design of vaccines that can generate antibodies with pan-
sarbecovirus neutralizing activity (77, 78). Thus, incorporating
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diverse antigens and inter-clonal competition are expected not to
affect our qualitative inferences regarding SARS-CoV-2 vaccines.
Understanding vaccine efficacies quantitatively may require
accurate description of antibody diversity given the multiple
virus entry pathways accessible to SARS-CoV-2 and the
potential synergy associated with blocking the pathways
simultaneously (79, 80).

Other hypotheses have been proposed to explain the effects of
low dose prime and long dosing intervals, the predominant of
which has been the undesirable response to the adenoviral vector
in the case of the Oxford/AstraZeneca vaccine that could blunt
the response to the boost (81, 82). While these hypotheses
remain to be tested, that the effects are now evident with more
than one vaccine, including lipid nanoparticle mRNA vaccines
that do not use the adenoviral vectors (10–13), suggests that the
effects are intrinsic to the responses elicited by the SARS-CoV-2
antigens in the vaccines, supporting our hypothesis. Yet other
hypotheses have been proposed in earlier studies on other
pathogens, which may have a bearing on COVID-19 vaccines.
For instance, low antigen dose, in conjunction with adjuvants,
has been argued to improve helper T cell responses (83).
Conversely, high dose prime could trigger enhanced helper T
cell exhaustion and compromise vaccine responses (84).
Vaccination can alter immunodominance patterns of GC B
cells (85). Finally, vaccination can influence innate immune
responses in complex ways (86). Future studies may examine
the contributions of these effects on the influence of low dose
prime and/or delayed boost on COVID-19 vaccine efficacies.

In summary, our study offers a plausible explanation of
the confounding effects of different dosages and dosing
protocols on COVID-19 vaccine efficacies. The resulting
insights would inform studies aimed at designing optimal
vaccine deployment strategies.
METHODS

Stochastic Simulations of the GC Reaction
We developed the following in silico stochastic simulation model
of the GC reaction (Figure 1A). The model builds on a previous
study which examined the role of passive immunization on the
GC reaction (39). Here, we adapted it describe the effect of
COVID-19 vaccination.

Initialization
We initiated the GC reaction with N=1000 GC B cells of low
affinity for the target antigen in the light zone of the GC. This
follows observations where low affinity seeder B cells initiate the
GC reaction by proliferating rapidly to a steady state size of 1000
cells, following which somatic hypermutation and affinity
maturation commence (36, 39). We considered a non-mutating
antigen, determined by a randomly chosen string of length L and
alphabet of size k=4. The alphabet size represents the broad classes
of amino acids, namely, positively charged, negatively charged,
polar, and hydrophobic (42). The B cell receptor (BCR) paratope
for each cell is then set by randomly mutating the antigen
sequence at L-1 randomly chosen positions. This ensured that
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the cells in the initial pool all had low affinities for the antigen. The
B cells were then allowed to acquire antigen.

Antigen Acquisition
Antigen is presented to B cells as antibody-bound immune
complexes on follicular dendritic cell surfaces. The probability
with which a B cell successfully acquired the antigen was fAg = (ϵ -
w + L)/2L, where e and w are the lengths of the longest common
substrings of the antigen sequence and those of the associated B
cell receptor (BCR) and the presenting antibody, respectively. The
latter expression followed from a mechanistic consideration of
bond dissociation triggered by the competition between the BCR
and the antibody for the antigen (39). Note that antibodies are
secreted versions of the BCRs and hence were similarly
represented as bit-strings of length L too. The presenting
antibodies were produced by plasma cells and re-entered the GC
via antibody feedback, described below. B cells were selected at
random for antigen acquisition, with each B cell selected h times
on average. The amount of antigen acquired by a B cell was set
equal to the number of successful acquisition attempts, denoted as
q. B cells had to acquire a minimum amount of antigen, denoted
qc, for them to survive. Surviving cells were eligible to receive help
from T follicular helper (Tfh) cells. We capped the level of antigen
acquired at q∞, at which point the B cell may have received
saturating levels of stimulatory signals necessary for Tfh cell help.

Tfh Cell Help
We chose surviving B cells randomly and let each cell receive Tfh

cell help with the probability fT = (q–qmin)/(qmax–qmin), where
qmin is the minimum antigen acquired by the surviving B cells
and qmax (=min(h,q ∞)) is the maximum antigen acquired. The
probability follows from the recognition that Tfh cell help
depends on the relative and not absolute amount of antigen
acquired (23, 39). Cells that did not receive help died. We
continued this with every surviving cell and stopped if 250
cells successfully received Tfh help.

Cell Fate Decision
Of the cells selected above, we chose 5% randomly to become
memory B cells; 5% to become plasma cells; and the rest tomigrate
to the dark zone of theGC. Thememory B cells were constrained to
have aminimumaffinity for the antigen (55) (here,match length 3)
and were allowed to survive long-term. The plasma cells exited the
GC, commenced producing antibodies, and died at the rate of 0.015
per generation (Supplementary Table 1). To mimic recent
experimental observations (56), we also performed simulations
where lower affinity B cells differentiated into memory B cells and
higher affinity B cells into plasma cells (Supplementary Figure 6).

Proliferation And Mutation
The cells in the dark zone were allowed to multiply, with each cell
dividing twice. Of the resulting cells, we chose 10% and
introduced single random point mutations in their BCR
sequences. The latter frequency was chosen following estimates
based on the somatic hypermutation frequency suggesting that 1
in 10 GC B cells would be mutated per generation in their
antibody variable region genes (23, 36, 39, 42). The two divisions
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per cell would bring the cell population back to the N~1000 cells.
This completed one generation of B cell evolution in the GC.

Recycling
The resulting cells in the dark zone were all allowed to migrate to
the light zone, offering the next generation of cells on which the
above process would repeat.

Antibody Feedback
Antibodies produced by plasma cells could traffic back to the GC
and influence antigen presentation (35). Accordingly, following
estimated trafficking timescales, we let antibodies produced by
plasma cells in any generation become the antibodies presenting
antigen to B cells two generations later (35, 39). Antibodies were
also systemically cleared at the rate of 0.01165 per generation
(Supplementary Table 1). Ignoring antibody feedback delayed
affinity maturation because of lower selection stringency but did
not affect our inferences regarding low dose prime and delayed
boost (Supplementary Figure 10).

Termination
We repeated the above process typically for up to 250
generations (~18 weeks) or until the cell population declined,
leading to GC collapse.

Dosing Protocol
We implemented the prime-boost dosing protocol by letting h
vary with time as h=h0exp(-t×ln2/t), mimicking antigen rise
immediately upon dosing (to h0) and an exponential decline
subsequently with half-life t (34, 39, 47). The decline is assumed
to subsume any loss of antigen due to acquisition by B cells. We
set h0 based on whether a low or standard dose was employed.
The prime and boost were separated by the duration D. Our
interest is in large values of D and low first dosages, so that at the
time of boost administration, the residual antigen is small.
Whether memory B cells seed GCs post boost is a topic of
active current research (48, 49, 54–56, 87). We therefore
considered all potential scenarios, with the boost 1) feeding
into existing GCs; 2) seeding new GCs using memory B cells;
3) seeding new GCs using naïve B cells. In scenario 2, we let the
memory B cells for seeding the GCs be chosen with a probability
proportional to their affinity for the antigen. In other words, the
distribution of B cells of different affinities in the seeder pool
mimics the distribution of affinity-weighted fractions of memory
B cells formed following the prime. We also examined the effect
of different fractions (5%-100%) of the seeder B cells being drawn
from the memory pool and found no qualitative differences in
our predictions (Supplementary Figure 11).

Parameter Values
The parameter values employed and their sources are listed in
Supplementary Table 1.

Quantification of the GC Response
With each parameter setting, we performed 2500 realizations,
which we divided into 25 ensembles of 100 GC realizations each
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(39). The average GC B cell affinity in the gth generation was
calculated using,

a gð Þ = 〈
o
100

i=1
o
ni(g)

j=1
aij(g)

o
100

i=1
ni(g)

〉25

where aij was the affinity of the j
th B cell among the ni(g) B cells in

the gth generation of the ith realization of an ensemble. The
angular brackets represent averaging across the ensembles. The
affinity-weighted plasma cell output in the gth generation was

w gð Þ = 〈o
100

i=1
o
L

ϵ=1
piϵ(g)

ϵ

L
〉25

where piϵ(g) was the number of plasma cells with affinity e in the
gth generation. If plasma cells died at the per capita rate dp, then
the affinity-weighted cumulative plasma cell output would be

P(g) = o
g

j=1
w(j) exp ( − dp(g − j))

If the antibody production rate of plasma cells was b per
generation (88), the instantaneous affinity-weighted antibody
output would be bP(g), which given the clearance rate, dA, of
circulating antibodies yielded the affinity-weighted cumulative
antibody output as

g (g) = o
g

j=1
bP(j) exp ( − dA(g − j))

We performed the simulations and analysed the results using
programs written in MATLAB.
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