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Introduction

IDPs are abundant in all eukaryotic proteomes.1 Short ID 
regions mediate some 40% of all protein-protein interactions, for 
instance in regulatory tails of proteins.2,3 Large ID regions occur 
in essential scaffolds and molecular chaperones.4-7

What makes IDPs special? IDPs don’t form rigid hydrophobic 
cores due to lower fractions of hydrophobic and aromatic residues 
(W, I, Y, F, L, H, V).8 They are often more elongated due to a 
predominant self-repulsive charge (E or K) or disorder-promoting 
hydrophilic (S) or structure-breaking residues (P, G).8,9 Enlarged 
accessible surfaces of IDPs can facilitate multiple types of 
interactions including phosphorylation by protein kinases.10,11 
The ~500 human kinases regulate crucial cellular processes 
including cell cycle and cell differentiation by phosphorylation 
at thousands of sites, which are typically part of short linear 
motifs.12

Whereas X-ray crystallography has transformed our 
structural understanding of folded proteins, still relatively little 
is known about conformational ensembles of IDPs. Unique 
formidable challenges in IDP research start at the stage of soluble 
overproduction and subsequent protein purification.13 High 
susceptibility to proteolysis or a high aggregation-propensity 

of many IDPs has slowed down progress in the IDP research 
field.14,15 Improvements in solubilizing IDPs, facilitating their 
purification and efficient prevention of their aggregation, have 
the potential to catalyze future progress in the IDP research field, 
which is already growing exponentially.16

Protein tags of various sizes and shapes have helped 
solubilizing, purifying and characterizing proteins (Table 1).17,18 
Fusing a folded tag may solubilize proteins during production 
and purification.19 Multiple small tags mediate reversible to 
tight or even covalent binding during protein purification and 
subsequent characterization and applications of the purified 
proteins.20,21 Here we review these commonly used folded and ID 
tags with an emphasis on contrasting their known structure vs 
known or predicted ID propensity and applications. Finally, we 
aim to highlight recently emerging applications of large designed 
ID tags. Large ID tags have the potential to transform protein 
production and purification, protein-based medicine and to 
make medicine more patient-specific.22-25

Folded Tags Facilitate Production, Purification,  
and Rapid Labeling In Vivo

Folded fusion tags, ranging in size from ~5 kDa to 70 kDa, are 
versatile tools that serve to increase folding and solubility during 
recombinant protein production or to enable fluorescent tracing 
of single proteins.

Commercially available examples of solubility-enhancing 
folded protein fusion tags include MBP, NusA and GST.26,27 These 
tags significantly improved the soluble overproduction of a range 
of target proteins on a proteomic scale.19 Similar effects have been 
described more recently for the smaller ySUMO, Lipoyl, and Trx 
fusions, which seem to be of particular use for the overproduction 
of peptides and small IDPs.28,29 Fusion of molecular chaperones, 
chiefly of the Hsp70 class, helped solubilizing aggregation-prone 
IDPs. For instance, the highly aggregation-prone prion protein 
could be solubilized during overproduction by fusing it to DnaK, 
the E. Coli homolog of Hsp70.30

In addition to their role in protein production, well-folded 
proteins can mediate a large number of specific functions, 
including fluorescence. Green fluorescent protein (GFP) and 
its variants are popular genetically encoded fluorescent labels, 
which generally do not interfere with the function of their fusion 
partner.31 An elegant application of folded tags is the so-called 
split-FP assay, used in protein-protein interaction studies, where 
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Protein tags of various sizes and shapes catalyze 
progress in biosciences. Well-folded tags can serve to 
solubilize proteins. Small, unfolded, peptide-like tags have 
become invaluable tools for protein purification as well as 
protein-protein interaction studies. Intrinsically Disordered 
Proteins (IDPs), which lack unique 3D structures, received 
exponentially increasing attention during the last decade. 
Recently, large ID tags have been developed to solubilize 
proteins and to engineer the pharmacological properties of 
protein and peptide pharmaceuticals. Here, we contrast the 
complementary benefits and applications of both folded and 
ID tags based on predictions of ID. Less structure often means 
more function in a shorter tag.
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2 halves of GFP are appended to putatively interacting proteins 
to map their interactions in space and time in living cells. Only 
upon close encounter of 2 proteins, both fused GFP halves 
complement each other to form the mature fluorophore. A recent 

application of split-GFP to trace direct molecular contacts of 
proteins involved in peroxisome-biogenesis demonstrated that 
this approach yields super-resolved insights on the low nm scale 
using a conventional wide-field fluorescence setup.32,33

Figure 1. Structural representation of tag order and disorder. (A) Cartoon representation of selected protein fusion tags as indicated in the text and 
Table 1. His6 tag is shown in stick representation. All tags are shown at the same scale. Numbers between brackets indicate the PDB ID from which the 
represented structures were derived. The fusion tags are colored by secondary structure: cyan indicates an α-helix, red indicates a β-sheet, and purple 
indicates a loop or turn. (B) Overlay of the different conformations of lipoyl NMR structures (PDB ID: 1QJO), showing limited flexibility.
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Other examples of popular folded tags include enzymes that 
catalyze the formation of specific covalent bonds. Inteins, for 
instance, catalyze bond-formation and self-excision.34 Two halves 
of self-excising split-intein tags can be appended to both ends of 
a target peptide to cyclize peptides in vivo for rapid generation 
of stabilized libraries of small peptides.35-37 Two recently 
established enzyme tags called SnapTag and HaloTag facilitate 
rapid fluorescent labeling.38 Fluorescent tracing of low-abundant 
receptors using a rapid but non-denaturing SnapTag coupling 
protocol was recently demonstrated.39,40 HaloTag coupling was 
used to site-specifically couple single protein molecules for 
optical tweezers studies of protein folding.41,42

Small ID Tags Are Popular Multi-Talents

Many of the most commonly used tags are small and predicted 
to lack structure (Table 1). Despite being around 20 residues at 
maximum, they mediate highly specific and diverse functions, 
from tunable affinity probes to covalent coupling points.

Scientists can now choose from a large range of small tags, 
which ensure that the protein fused to it can be highly selectively 
detected and enriched by specific binders. Frequently used 
examples for applications in pull-downs and chromatographic 
purifications include Hexahistidine (short: His6) tags and 
the 8 amino acids short Strep-tag II.20,21,43,44 His

6
 tags mediate 

reversible and tunable affinity under a wide range of conditions 
from near physiological to protein denaturing conditions, have 
been used successfully in thousands of protein purifications, 
and are an integral part of most structural biology pipelines. 

Many small His
6
 tagged proteins are sufficiently overproduced 

in E. coli to achieve greater than 95% purity in one immobilised 
metal affinity chromatography (IMAC) purification step. In 
purifications from mammalian hosts, histidine-rich metal-
binding intracellular proteins might interfere with IMAC. 
The more selective Strep-tag II can be a valuable alternative or 
additional purification step along with His

6
 tags. Its specificity 

was further increased by repeats allowing immobilisation of 
single molecules under applied force (up to 65 pN) for hours and 
purification of low abundant mammalian proteins.45-47

Popular epitope tags for immunoblots, pulldowns, or 
immunoprecipitations include FLAG tag, Myc tag, V5 tag, and 
HA tag.18,48 Since their sequence composition and hydrophobicity 
varies significantly, screening several variants in parallel helps 
optimising the results. Repeats often help to increase the effective 
binding strength or apparent specificity of binding of the epitope 
tag to its cognate antibody.49,50 The recently described NSS tag 
was suggested to be comparable to multi-Myc tags and might be 
an interesting alternative for future co-immunoprecipitation and 
protein interaction studies.51

The AviTag, or biotin acceptor peptide (BAP), allows for 
in vivo biotinylation.38 Biotin has an ultra-high affinity for 
Streptavidin (K

D
 of ~10-14 M) and forms an unusually stable 

complex that is still 50% folded at 112°C.52,53 Many sensitive 
detection assays, immobilization strategies and nano-patterning 
strategies exploit the strength of this interaction.54-56 Recently, 
“Traptavidin,” an engineered variant of streptavidin, further 
improved the thermostability of the complex and decreased the 
off-rate by an order of magnitude.57

Several small tags have been developed to allow site-specific 
covalent coupling, either spontaneously or upon addition of 
a highly specific enzyme. Sortase-mediated protein ligation 
(SMPL), for instance, is a method to couple polypeptide chains 
to a wide variety of (bio)molecules including nucleotides, 
sugars, lipids, organic and inorganic particles, or to circularise 
peptides efficiently.58,59 Polypeptides with a C-terminal 
Sortag (LPXTG motif) can be specifically recognized by 
Sortase A and transferred to either the natural nucleophile  
(GGGGG) or triple-Glycine-modified target molecules. 
Most applications use Staphylococcus aureus Sortase A.60,61 
Complementary semi-orthogonal calcium-independent Sortases 
allow incorporation of a second coupling point using the LPXTA 
motif in the same polypeptide chain or enable transpeptidations 
in vivo in specific cellular compartments.62-64 The small size 
of the Sortag, combined with good expression of the Sortase 
A enzyme as well as the flexibility of Sortase A as “molecular 
stapler” for a large range of bio-conjugation challenges made this 
system popular.65,66

A major limitation of the Sortase A coupling chemistry is the 
low efficiency of the reaction at nanomolar or lower concentrations 
of reactants.60 Directed evolution of rate-enhanced variants 
of Sortase A and immobilization of the Sortase A to a flexible 
solid helped to increase yields and speed of reaction.67-69 The 6 
residues longer ybbR tag can be specifically recognized by the 
Sfp enzyme.70 This tag was successfully applied to attach single 
stalled ribosomes to beads to assess ribosome-associated folding 

Figure  2. ID tags complement and expand the use of folded tags. 
Several functions are unique to folded tags or unfolded ID tags. Auto-
fluorescence, enzymatic activity and rigidity in 3D are known features of 
folded proteins. ID tags permit tuning of size enlargement (super-sizing), 
metal affinity or aggregation-propensity. ID tags and ordered tags (O 
tags) overlap in many applications including protein purification, protein 
binding and enzyme-substrate interactions.
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Table 1. Overview of protein fusion tags and their PONDR-FIT predicted ID propensity

ID [%] Name Application Obeserved effect Composition Residues References

6 MBP protein solubility 65% > His6 tag X 396 22,26

6 NusA protein solubility solubility X 495 122

6 Halo Tag coupling covalent coupling X 297 123

7 GroEL solubility aggregation prevention X (- W) 548 30

9 DsbA peptide stabilization high peptide yield X 208 124

11 GST affinity dimer/affinity X 200 125

11 IN split-intein induced folding X(- M) 123 35

15 Fc tag ProtA/G affinity high affinity (10 nM) X 232 126

16 Lipoyl solubility solubility X (- RM) 80 127

18 GFP fluorescence tunable fluorescence X (- CW) 238 128,129

18 SNAP-tag coupling in vivo labeling X 182 39,130

18 GFP11 split-GFP in vivo complementation X (- NCQPSWY) 17 129

21 Trx protein solubility peptide stabilization X (- HR) 103 18

21 DnaK solubility aggregation prevention X 638 30

22 CBD chitin affinity high capacity 51 131

24 mtHsp70 solubility high yields X(- C) 625 132

40 Sortag coupling covalent coupling LPXTG 5 58,59,62

41 IC split-intein coupled folding/binding X (- CWMTWY) 34 35

46 ySUMO protein solubility peptide stabilization X (- CW) 100 85,133

47 GB1 solubility solubility X(- PHCR) 64 134

50 His6 tag affinity specific binding H 6 20

100 XTEN half life tunable increase PESTAG 36–1008 25

100 HAP half life 3-fold increase SG 100, 200 23

100 PAS half life tunable increase PAS 100–600 24

100 EB60A solubility 75% > His6 tag PESQ 60 22

100 EB60B solubility 75% > His6 tag PEGQ 60 22

100 EB144 solubility 95% > His6 tag PESDGQ 144 22

100 EB250 solubility 100% > His6 tag PESDGQMVILF 250 22

100 Antigen 13 rep. half-life 2-fold increase PESAK 280 135

100 SAPA repeats half life 5-fold increase PASTDH 156 135

100 HRM half life 4.5–6-fold increase PASTD 105 136

100 poly(E) drug solubility tumors reduced E 277 137,138

100 ELP drug efficacy enhanced efficacy PVGX 160- 750 139
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in optical tweezer studies.71 The recently engineered Isopeptag 
and Spytag permit enzyme-free, efficient site-specific covalent 
coupling to the spontaneously bond-forming proteins Spy0128 
and SpyCatcher and might become a valuable new addition to 
the protein engineering toolbox.72,73

The Better Tag Remains Unseen

Folded tags typically need to be removed after protein 
purification to prevent structural or functional interference 
during biophysical or structural characterization of the target 
protein. Crystallographic structure determination usually even 

requires removal of short disordered tags as their flexibility may 
hamper crystallization, although a few cases have been reported 
in which the presence of the Arg-6, His-3, His-6, FLAG, or 
c-Myc tag did not preclude structural studies.74-77 Several highly 
site-specific enzymes cleave at short but rather rare sequence 
motifs, which lack 3D structure propensity, and are inserted 
between the tag and protein of interest: ENLYFQ*G/S for TEV 
protease, DDDK* for Enterokinase, IE/DGR* for Factor Xa, 
LEVLFQ* GP for HRV 3C, LPXT*G for Sortase A, LVPR* 
GS for Thrombin (cleavage occurs at *).78-81 Sortase A uses the 
same motif for both specific cleavage and subsequent protein 
ligation. Thus, tag removal can be simultaneously combined with 

Table 1. Overview of protein fusion tags and their PONDR-FIT predicted ID propensity (continued)

ID [%] Name Application Obeserved effect Composition Residues References

100 ELP half life 8.7h half-life PVGX 450–600 140

100 Random coil length tunable gel PEGQAN 100–800 141

100 NNT/NNS drug properties tuned glycosylation NTS 60–750 142

100 ELP purification phase cycling possible PVGX 50–900 114

100 ELP solubility of Ig improved solubility PESTAGX(- HY) 22–61 143

100 ELP cost reduction tailored transition PVGX 450 144

100 ELP simple purification effective as His tag PVGX ? 145

100 His3 immunoaffinity co-crystallization H 3 74

100 c-MYC Detection highly specific ELDQIKS 10 18

100 NSS Detection highly specific FINQHMKT 9 51

100 Strep-tag II streptactin affinity highly specific WSHPQFEK 8 43,44

100 V5 tag detection highly specific PSTKLINDG 14 146

100 HA tag detection highly specific YPDAV 9 147

100 FLAG tag detection highly specific DKY 8 18

100 Avi/BAP tag biotin binding biotinylation by BirA EIANDQGHLKF 15 38

100 Ybbr tag coupling covalent coupling ALSDEIKF 11 70

100 SpyTag coupling covalent coupling KAVDIHPTYM 13 72,73

100 Zn hook dimerization fM dimer CGKRADELPTV 14 148

100 Leucine Zipper dimerization nM hetero-dimer KELQANW 30+30 149,150

100 Arg tag purification surface adhesion R 5 75,151

100 tetracystein tag FlAsH binding FlAsH dequench CPG 6 152

100 CBP calmodulin affinity high affinity KASRNIFGLWV 26 83,153

 n.a. Cysteine specific reactivity chemical coupling  C 1 154

Composition is indicated by single-letter representation of amino acids with X denoting any of the 20 amino acids; amino acids in brackets are not occur-
ring in the respective tag. For calculation of the indicated ID fractions in percent of the total number of residues, we counted residues with a PONDR-FIT 
predicted disorder propensity > 0.5 as disordered and residues with lower predicted disorder propensity as ordered.
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attachment of other tags using Sortase A or inteins, for instance 
to include NMR-invisible solubility tags.82,83

Although the above-mentioned cleavage motifs are relatively 
rare in proteomes, it is not excluded that they are present in 
some natural or engineered target proteins. Hence selecting 
a unique cleavage site to specifically remove a fusion protein 
from the protein of interest requires caution. Enhanced cleavage 
specificity can be attained if cleavage depends on recognition 
of a unique 3D structure as in the case of Ubiquitin, SUMO, 
or Intein proteins.84-87 Briefly, “visible,” folded tags can be 
efficiently removed using unstructured motifs and “invisible,” 
either unlabelled or unstructured tags are often compatible 
with or even required for downstream applications.

ID Tags Are Not Limited  
by the Need to Fold During Purification

Structured tags are often structurally well-characterized 
by high-resolution methods like X-ray crystallography and 
NMR spectroscopy (Fig. 1). Because of their defined, compact 
structure, they are less likely to be degraded by proteases, and 
amenable to rational design and engineering of their thermal 
stability.88-91 However, if the conditions are not ideal for folding, 
for instance upon exposure to physicochemical stresses or when 
folding intermediates of the target protein engage in non-native 
interactions, irreversible aggregation and loss or unpredictable 
alteration of tag function could occur.92 Even though folded 
tags are well-established, their relatively large size and their 
need to fold can thus be limiting for many applications.

IDP tags and short ID tags are structurally less characterized, 
newer, and therefore less established for some applications. Their 
larger solvent-exposed surface and lack of rigid structure might 
make them more susceptible to proteolysis. Several variants 
of large ID tags have, however, been described, which can be 
expressed at high yields for biophysical characterization.24,93 
Up to 4000 mg/L of large ID tag fusions have been obtained 
in a recent example.94 ID tags do not need to fold, therefore 
the stability of ID tags in denaturing conditions is frequently 
exploited in denaturing affinity purifications.20

ID and Its Flavors Can be Predicted  
With High Accuracy

Propensity for ID is encoded in the sequence of amino acids 
and can be efficiently predicted for all sequenced proteomes.1 
Most prediction algorithms combine physico-chemical 
properties of amino acids and empirical knowledge of structure 
propensities as derived from large experimental data sets.95 One 
of the most widely used algorithm is PONDR. Its accuracy is, 
like similar methods, around 80% for water-soluble proteins; 
these estimates might be biased by the limited availability 
of data for large disordered regions above 40 residues, which 
rarely crystallize.4,96-98 Thousands of sequenced genomes have 
been analyzed with this algorithm. These PONDR predictions 
indicate that some 40% of all eukaryotic protein residues are 

located in ID regions.1 More recent methods of ID prediction 
combine several predictors into 1 meta-prediction, which 
significantly improved the accuracy of predictions in several 
cases.99 Disorder predictions are increasingly accurate and 
fast.98 Future progress in algorithm development will benefit 
from novel large-scale experimental data sets on ID propensity 
in larger fractions of complete proteomes including yet 
understudied membrane proteins.14,90,100,101

A good experimental proxy for the average apparent size and 
extension of an IDP is the hydrodynamic radius.102-104 Both 
hydrodynamic experiments (such as SEC or more recently 
SEC-MALLS) as well as scattering experiments (DLS, SAXS, 
SANS) can give insights into hydration radii.103,104 Drawbacks 
of these experimental approaches are that they require either 
substantial amounts of highly purified protein or access to 
expensive equipment. Computational approaches to model 
global features of IDPs are not limited by these restraints. An 
empirically optimised formula to predict hydration radii has 
been proposed based on a large set of experimentally solved 
radii and statistical correlation with sequence features of these 
proteins.105 Mainly based on proline content and net charges, 
this predictor achieves high accuracy for many small disordered 
proteins suggesting broad applicability.105 An alternative 
approach approximates IDPs as polyampholytes because of 
their enrichment in both positive and negative charges. While 
weak polyampholytes collapse to globule-like shapes, stronger 
polyampholytes are more extended and their shape depends on 
local distribution of positive and negative charges within the 
primary sequence. Their predicted ensemble properties can be 
efficiently modeled computationally using implicit salvation in 
the Absinth force-field.106 Interactions of small ID regions with 
folded proteins often involve coupled folding and binding.107-109 
Combining initial rigid-body docking and subsequent  
f lexible adjustment appears to be a computationally efficient 
solution to this problem.110 Several novel computational 
approaches expand the scope of prediction of ensemble 
properties of IDPs.

Can we also predict aggregation propensity of ID regions from 
their amino acid sequence? Irreversible aggregation is a well-known 
disease-associated feature of multiple naturally occurring IDPs.111 
Several ID regions are, however, highly soluble or aggregate 
reversibly. Sequence composition, particularly the relative 
fractions of proline and glycine, strongly affect amyloidogenicity 
of unfolded polypeptides.112 Also a large percentage of charges, 
especially glutamate, can help preventing aggregation in a broad 
range of conditions. Several net negatively charged proteins 
like tau or the engineered PESTAG sequences remain soluble 
after heating to 95°C.93,113 Precise control of reversible thermal 
aggregation has been demonstrated using engineered elastin-like 
polymers (ELPs).114 ELPs that contain large fractions of proline, 
glycine, valine enable cycles of thermally controlled reversible 
aggregation and solubilisation around an engineered transition 
temperature between 40°C and 80°C.114 Thus, multiple strategies 
help predicting and controlling the aggregation-propensity of 
IDPs.
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Designed, Large ID Tags:  
Applications from Biotechnology  

to Next Generation Protein Pharmaceuticals

Increased understanding of naturally occurring IDPs and 
improved predictability of their features enabled the design of 
several ID tags for overcoming protein aggregation, facilitating 
non-chromatographic purification and tuning pharmaco-kinetic 
profiles of protein drugs.

Inspired by the amino acid composition of plant dehydrins, 
which efficiently cope with extremes of dessication stress and 
prevent aggregation upon rehydration,115 and aided by predictions 
of ID and solubility, the Keith Dunker lab recently developed 
several large, negatively charged, fully disordered “entropic 
bristle” (EB) tags to solubilize difficult-to-produce proteins. 
EB fusions successfully solubilized target proteins from several 
protein classes including kinases, transcription factors, proteases, 
and neurodegeneration-related proteins.22 The EB tags did not 
interfere with GST enzyme function and structural stability and 
therefore did not have to be removed after production in this 
particular case.22 If tag removal is, however, required and the 
target protein is stably folded and proteolytically resistant, rapid 
thermally accelerated proteolysis of the unstructured tags could 
be performed using the inexpensive, commercially available 
enzyme thermolysin.90

Many proteins have been purified using short affinity tags 
and chromatography.20 Scaling up chromatography-based 
purifications can be very costly as most chromatography 
materials are costly. Chromatography-free purification methods 
that yield highly purified proteins are therefore desirable for 
many applications. One possible solution to this problem exploits 
repeated cycles of reversible aggregation and solubilisation of 
designed elastin-like sequences, which have a defined transition 
temperature point.116 A recent extension of this concept by 
simultaneous genetic fusion of both an elastin-like peptide 
(ELP) sequence and a Sortase A fusion tag achieved one-step 
purification of large amounts of soluble target proteins without 
the need of chromatography for several tested proteins.117 This 
method yielded, for instance, 28 mg/L pure, sortagged GFP 
and 35 mg/L pure, sortagged Trx without chromatography.117

Protein and peptide pharmaceuticals have long been suggested 
as possible complementation for traditional small-molecule drugs 
and inspire hopes for reduced side-effects and more targeted 
therapies. Current limitations for their broader application 
include large production costs, less convenient administration by 
injection and a short half-life. The plasma half-lives of peptide 
pharmaceuticals can be as short as 10 min.93 Increasing the half-
life could help overcoming both cost problems and simplify drug 
dosage and application. Several groups have recently described 
complementary, effective strategies to use designed ID tags for 
extending the half-life of protein pharmaceuticals. The Pim 
Stemmer lab developed super-sized, unfolded PESTAG sequences, 
which increased the half-time of peptides and hormones up to 

125-fold by mimicking attachments of globular molecules in the 
Megadalton range.118 Curiously, this supercharged fusion also 
completely prevented the thermal aggregation of human growth 
hormone and might be beneficial in transport and storage of 
protein drugs. The Arne Skerra lab more recently presented the 
PASylation technology,24 which uses an uncharged but stably 
unfolded and conformationally extended polymer consisting 
of proline, alanine, and serine. This hydrophilic polypeptide 
shows remarkably similar biophysical behavior to polyethylene 
glycol (PEG) while offering biodegradability. PASylation 
mediates tunable large increase in plasma half-life of protein 
pharmaceuticals and its fusions can be functionally expressed 
at very high levels (4000 mg/L E.coli fermentation culture 
volume).94 Thus, these novel, large ID fusion tags might become 
invaluable alternatives for organic polymer extensions using 
polyethylene glycol that turned out to be more immunogenic 
than previously anticipated.119

Conclusions

Folded and ID tags can have overlapping as well as different 
features, resulting in complementarity and synergisms of their 
applications (Fig. 2):

Folded tags excel in the following features: (1) Rigidity in 3D 
(2) Specific enzymatic functions (3) Auto-fluorescence

ID tags, on the other hand, permit tuning: (1) enlargement 
(“super-sizing”) compared with compact globular proteins (2) 
metal affinity from rapidly reversible binding (His

6
 tag) up to 

femtomolar affinity (Zn hook) (3) thermal aggregation behavior
ID tags and folded/ordered tags overlap in: (1) Protein 

solubilization (2) Protein binding (reversible to covalent) (3) 
Enzyme-substrate interactions

In a nutshell, ID tags are invaluable additions to the toolbox of 
protein sciences. Future applications of ID tags will be catalyzed 
by the rapid growth of IDP research.16,102,103 In nature, ID tails 
have evolutionary diverged into multifarious roles.120,121 We can 
learn from nature’s great example and create novel ID tails to 
harness their unique features for new purposes.
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