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Abstract: In a group of general geometric primitives, plane-based features are widely used for indoor
localization because of their robustness against noises. However, a lack of linearly independent
planes may lead to a non-trivial estimation. This in return can cause a degenerate state from which
all states cannot be estimated. To solve this problem, this paper first proposed a degeneracy detection
method. A compensation method that could fix orientations by projecting an inertial measurement
unit’s (IMU) information was then explained. Experiments were conducted using an IMU-Kinect
v2 integrated sensor system prone to fall into degenerate cases owing to its narrow field-of-view.
Results showed that the proposed framework could enhance map accuracy by successful detection
and compensation of degenerated orientations.

Keywords: degeneracy; inertial measurement unit (IMU)-Kinect integration; plane feature; pose
estimation; simultaneous localization and mapping (SLAM)

1. Introduction

Plane features have been widely used for simultaneous localization and mapping (SLAM) of indoor
environments due to the following two reasons: (1) there are abundant planes in man-made indoor
spaces; and (2) sensor noise can be sufficiently reduced by conventional plane extraction algorithms.

However, the use of plane features can fall into degenerate cases when the number of linearly
independent information of detected planes is insufficient for pose estimation. In other words, if less
than three independent planes are detected from two consecutive 3D poses, the relative geometric
relationship cannot be fully estimated. For example, for a long and flat corridor, the amount of
translation along the corridor’s direction cannot be detected even with wide field-of-view (FoV)
LiDAR sensors. If one uses narrow FoV sensors such as Kinect (Microsoft), these degeneracies are
frequently encountered, even in sufficiently complex indoor spaces [1].

In this paper, we proposed a way to handle these degeneracy cases using a commercially efficient
sensor combination: a Kinect v2 with an inertial measurement unit (IMU). As is well known, a lot
of research has been conducted regarding the degeneracy problems as in [2–21]. This research
can be categorized in two ways: (1) directly eliminating degeneracy by employing constrained
motion [2,3], sensor fusion [4–7], additional or new types of feature(s) [8–13], online calibration [14],
determining system configurations [15], or probabilistic depth map [16]; and (2) indirectly reducing
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the effect of degeneracy by minimizing null-space components in the direction of the degeneracy.
Pathak et al. [17] have proposed a method that can substitute null-space components by odometry
reading. Our method is complementary to the work of Pathak et al. in that our method considers the
orientation while Pathak et al. handle the translation. Recently, Zhang et al. [18] have suggested a
method that covers degeneracies both in rotation and translation. However, their method is designed
for LiDAR, which has a wider FoV than Kinect v2 used in the present study.

The contribution of this paper consists of two parts. One is detection of degeneracy between
two sets of plane features by evaluating ratios of eigenvalues of a second moment matrix. Here, we
used the fact that degeneracy could induce significant uncertainty. This uncertainty is reflected in the
second moment matrix as a relatively small or infinitesimal eigenvalue. The other is to compensate
orientations that encountered degeneracy by projecting the orientation value of IMU to those of
corresponding plane features. This is possible due to orthogonal properties of the second moment
matrix’s subspaces. This enables projection only to the degenerate direction.

On the basis of the proposed detection and compensation method, we implemented a seamless 3D
SLAM as shown in Figure 1 using a Kinect v2 and IMU. Experiments were conducted in a typical indoor
place where more than 30% of place indices corresponded to the degeneracy case. Results showed
that the proposed framework enhanced map accuracy compared to the method of Pathak et al. [17] by
successfully detecting and compensating degenerated orientations.
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Figure 1. Schematic diagram of our proposed continuous 3D SLAM framework [22–26]. Yellow-colored
boxes are contributions of this paper.

This paper is organized as follows. Details of the algorithm pipeline (as shown in Figure 1),
including two of our contributions, are explained in Section 2. Experimental results and their analyses
are given in Section 3. Conclusions are provided in Section 4.

2. Seamless 3D SLAM Framework

The proposed pipeline in Figure 1 has the conventional Graph SLAM structure with three main
modules: data acquisition, front-end construction, and back-end optimization. In the first block (data
acquisition), raw 3D point cloud data from Kinect v2 and 6-DoF (degrees of freedom) measurements
from the IMU are acquired. Those data are passed to the second block and plane features are extracted
by using algorithms in [23,24]. Here, an i-th plane feature (Πi) consists of unit normal (ni ∈ R3×1),
which is orthogonal to the surface, and a perpendicular distance (di) from the origin to the surface.

At this point, the degeneracy can be induced if less than three independent plane-pairs are
used. As these degeneracies provide clear evidence in the second moment matrix, the degeneracy
detection algorithm (in Section 2.1, our first contribution) can analyze the matrix and pinpoint the
degeneracy direction. Then, the pose compensation algorithm (in Section 2.2, our second contribution)
can compensate for the degeneracy by projecting it to that of the IMU. Remaining procedures are
conventional loop detection and back-end optimization adopted from methods in [25,26], respectively.

2.1. Degeneracy Detection Algorithm

Relative pose estimation with plane features are illustrated in Figure 2, where sets of plane
features are associated with each other. When there are more than three pairs of planes (as in Figure 2a),
all 6-DoF parameters (3-DoF for rotation and 3-DoF for translation) can be estimated. However, when
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one pair of planes with identical normals exist (as in Figure 2d), 1- and 2-DoF degeneracy arises for
rotation and translation, respectively. These two cases are out of the scope of this paper as noise
(from motion as well as sensors) either does not significantly affect pose estimation or does not exist.
However, in the case of 2-pair correspondence, noises can convert a 1-pair correspondence into a false
2-pair correspondence as shown in Figure 2c. The role of this subsection is to propose an algorithm
that can discriminate false 2-pair correspondence from real 2-pair correspondence cases.

For that purpose, we adopted the second moment matrix, in which the rank and ratio of
eigenvalues indicate the number of linearly independent plane correspondences and distinctiveness
among independent correspondences, respectively.

(a) (b)

(c) (d)

Figure 2. l̃eft to r̃ight point clouds for possible situations of plane feature based pose estimation.
(a) 3-pair correspondence; (b) 2-pair correspondence; (c) fake 2-pair correspondence; (d) 1-pair
correspondence with identical normals.

Let us assume that there are corresponding planes (Π1:N) between two consecutive frames
from l̃eft to r̃ight. On the l̃eft coordinate, a stack of unit normals (ln1:N) of Π1:N are defined as
ln1:N,

[
ln1 . . . lnN

]
. Here, the second moment matrix (l

rM ∈ R3×3) is constituted by

l
rM = E

[
ln1:N

ln>1:N

]
=

1
N

ln1:N
ln>1:N. (1)

To detect the rank and ratio of its eigenvalues, let us conduct the eigenvalue decomposition as

l
rM = VΛV>

=

 | | |
v1 v2 v3

| | |


λ1 0 0

0 λ2 0
0 0 λ3

V>,
(2)

where V is the orthonormal square matrix whose columns are eigenvectors vi (i = 1, 2, 3) and Λ is the
diagonal matrix whose elements are associated eigenvalues (λi). For convenient representation,
eigenvectors are sorted according to their eigenvalues in descending order (λ1 ≥ λ2 ≥ λ3).
These eigenvalues are equal to or greater than 0 because l

rM is a positive semi-definite matrix.
Now, let us exploit the ratio of eigenvalues (λ2/λ1). Its purpose is to discriminate the effective

rank. Note that the real and false 2-pair correspondences can be detected by evaluating this ratio as
its value tends to be close to 0 (i.e., λ1 � λ2) for false cases but higher than a certain threshold for
real cases.

Last but not the least, the remaining task is to select a proper threshold considering sensor noise
level. For Kinect v2, it has been shown that its depth distortion yields a fluctuation error within
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±6 mm [27]. With this amount of distortion, rotational covariance between poses is evaluated to be 4◦

for our plane-based method. In accordance with the empirical analysis, let us assume that there are
two unit normals n̂ =

[
1 0 0

]> and n̂∗ =
[
cos 4◦ − sin 4◦ 0

]> of which the included angle is 4◦.
Then, the value of the second moment matrix for n̂ and n̂∗ can be calculated as

Mn̂n̂∗ =
1
2

[
1 + cos2 4◦ − sin 4◦ cos 4◦

− cos 4◦ sin 4◦ sin2 4◦

]

= V

[
9.988× 10−1 0

0 1.2× 10−3

]
V>. (3)

Here, note that the dimensionality of the second moment matrix is reduced from 3 to 2 because the
number of the sample (n̂, n̂∗) is smaller than the dimension of vector space (R3×1). Thus, using these
eigenvalues in Equation (3), we set the threshold of the ratio to be 1.2× 10−3 (; 1.2× 10−3/9.988× 10−1).

2.2. Compensation Method for Degenerate Rotation

In the 1-pair correspondence case, as shown in Figure 3, the amount of rotation (γ) normal
to the plane (v) cannot be estimated, where v corresponds to the one effective eigenvector of the
second moment matrix in Equation (2). Here, IMU measurements are only used for compensating an
ill-conditioned component regarding γ of the state that cannot be estimated by the features. For other
well-conditioned components of which value can be estimated from the feature, measurements of IMU
are not utilized due to their inaccuracy compared to those of features.

Figure 3. Illustration of rotational singularity under the constraint of 1-pair correspondence.

Before looking deep into mathematical details, let us show some quaternion definitions. A unit
quaternion (q ∈ R4) for the relative rotation is represented by

q , q0 + qxi + qy j + qzk = 〈q0,~q〉, (4)

where q0 and~q are scalar and vector parts, respectively. The conjugate of q is

q∗ = 〈q0,−~q〉 . (5)

The product of two quaternions p and q is

p⊗ q , 〈p0q0 − ~p ·~q, p0~q + q0~p + ~p×~q〉, (6)

where · is the dot product and × is the cross product.
The main idea of this subsection is to set γ by projecting the IMU’s estimation in a way that

it becomes parallel to the plane. In other words, this idea is a hybrid of two different estimations.
One prediction is derived from the plane-based estimation. It keeps the plane constraint. However,
it has an uncertain γ value. The other is derived from the IMU estimation. It does not necessarily keep
the plane constraint. However, it has accurate γ value (at least for the given short time interval).

Now, let us denote the IMU prediction to be qimu and the amount of rotation that projects qimu

parallel to the plane to be ∆q. Here, ∆q can be derived from two normal vectors, vimu and vreg.
They are updated normal vectors by IMU (qimu) and plane information (qreg), respectively:
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〈0, vimu〉 = qimu ⊗ 〈0, v〉 ⊗ q∗imu, (7)〈
0, vreg

〉
= qreg ⊗ 〈0, v〉 ⊗ q∗reg. (8)

Now, ∆q can be calculated by projecting vimu parallel to vreg in the shortest arc length as

∆q =

〈
vimu · vreg + ‖vimu‖

∥∥vreg
∥∥ , vimu × vreg

〉∥∥〈vimu · vreg + ‖vimu‖
∥∥vreg

∥∥ , vimu × vreg
〉∥∥ . (9)

2.3. Further Processes

Although the orientation in the degeneracy direction is compensated for by Equation (9), a
translation in that direction is still in degeneracy. Pathak et al. [17] have proposed a method that
corrects uncertain translation by using IMU’s acceleration measurements. We also adopted this method
for translation.

For loop-closure, we used a 3D Gestalt descriptor based method proposed in [25]. Finally,
for back-end optimization, we implemented IRLS (iteratively reweighted least squares) that excluded
less accurate outliers as in [26].

3. Experiments

For performance validation, SLAM experiments were conducted with two different sensor systems
as shown in Figure 4. One (Figure 4a) is a low-cost sensor system with a Kinect v2 and cheap IMU
(CH-UM7: ±4◦ for dynamic pitch/roll accuracy, ±8◦ for dynamic yaw accuracy). The other (Figure 4b)
is a high-cost sensor system [28] with Velodyne LiDAR (HDL-32E) and MicroStrain IMU (3DM-GX3-45:
±2◦ for dynamic pitch/roll/yaw accuracy). The purpose of the high-cost system is to extract the
ground truth.

(a) (b)

Figure 4. Two different sensor systems used in the experiment. (a) a hand-held low-cost sensor system;
(b) a backpack high-cost sensor system. The high-cost system is rigidly equipped with the low-cost
system for rigorous validation.

For data acquisition, an operator carried the system (as shown in Figure 5) through a small-sized
building with narrow pathways. The operator navigated 62 m. A total of 410 place indices were
generated. As a result, a graph was built where 255, 145, and nine edges were in 3-pair, 2-pair, and
1-pair plane correspondences, respectively.

Given the information, two methods were applied. One was a plane-IMU integrated (pl-IMU)
method, which was an extension of the plane-based method [17] in a way that IMU information could
be embedded. The other was our proposed method, which was identical to the previous method
except that 1-pair corresponding degeneracy was detected and compensated for.
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Figure 5. The sensor system used to acquire several datasets.

As shown in Figure 6, the accuracy of all components was increased except for the two components
z and yaw (of which median values are similar, respectively, in both methods). Figure 7 shows error
distances of the two methods relative to the ground truth for 3D pose states. Error averages were
significantly reduced using the proposed method as shown in Table 1.
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Figure 6. Graphs and box-plots for local pose error compared to the ground truth for each compensation
method (pl-IMU and our proposed method). (a) local errors of translational components; (b) local
errors of rotational components; (c) box-plot of translation error; (d) box-plot of rotation error.
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Figure 7. Local error distances compared to the ground truth for each compensation method.

Here, note that compensating rotation decreased both translation and rotation errors. This is a
natural consequence as graph optimization increases the overall map accuracy due to rotational updates.

The performance can also be verified by 3D mapping. The map created by the proposed method
showed high-quality consistency (Figure 8a,b), similar to that shown by the ground truth (Figure 8c,d).
Figure 8e shows a top view where two trajectories, corresponding to the ground truth (green line)
and the estimation of the proposed method (red dot), are superimposed. In Figure 8f, it can be
verified that the loop closure is successfully conducted where accumulated errors in Figure 8e are
significantly redeemed.

(a)

(b)

(c)

(d)

9m

(e)

1.5m

starting 
position

(f)

Figure 8. Trajectories and mapping results with truncated ceiling. (a) optimized map top view;
(b) optimized map bird’s-eye view; (c) ground truth map top view; (d) ground truth map bird’s-eye
view; (e) superimposed map top view; (f) superimposed map close-up view. (a,b) display RGB-D map
optimized by the proposed method using low-cost sensor system. (c,d) show ground truth acquired
using high-cost sensor system. (e,f) show superimposed map between the optimized map and the
ground truth, where green-colored point cloud and trajectory are the ground truth. To improve depth
visualization, an eye-dome lighting shader is applied to (e,f) where the point cloud of ground truth is
randomly subsampled by 10%.
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Table 1. Average errors of 3D poses for two different methods.

Translation Error Avg. (m) Rotation Error Avg. (rad)

X Y Z Roll Pitch Yaw

pl-IMU 0.5773 0.3466 0.1004 0.0445 0.0468 0.0241
proposed 0.3714 0.2164 0.1266 0.0347 0.0338 0.0286

4. Conclusions

This paper proposed a degeneracy detection and compensation method for orientations that could
arise when 3D SLAM algorithms used plane features. This degeneracy is induced when less than three
plane-pairs are detected for two consecutive poses. It has significant correlation with the narrowness of
a sensor’s field of view or the target environment. Our experiment showed that, when a 550 m2 indoor
space was mapped with a Kinect v2, 37.7% of data acquisition poses were in a degeneracy situation.

The proposed method detected degeneracy by using the rank of the second moment
matrix constituted by plane normals. To compensate orientations encountered by the degeneracy,
IMU orientations were projected in a direction that was orthogonal to non-degenerate orientations.
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