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Noradrenaline, one of the main brain monoamines, has powerful central influences on fore-
brain neurobiological processes which support the mental activities occurring during the
sleep–waking cycle. Noradrenergic neurons are activated during waking, decrease their
firing rate during slow wave sleep, and become silent during rapid eye movement (REM)
sleep. Although a low level of noradrenaline is still maintained during REM sleep because
of diffuse extrasynaptic release without rapid withdrawal, the decrease observed during
REM sleep contributes to the mentation disturbances that occur during dreaming, which
principally resemble symptoms of schizophrenia but seemingly also of attention deficit
hyperactivity disorder.
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The nature of human mind activity varies greatly during the sleep–
waking cycle. During waking, mental activity is reflective, logically
organized, and involves learning processes that lead to memories.
During slow wave sleep (SWS), mentation most often comprises
“thought-like” content that is seldom visual and that has “a higher
degree of correspondence with reality” (p 23; Foulkes, 1962; for
ref. see Gottesmann, 2001). This mental content seems to corre-
spond to the secondary process of Freud (1911), which follows the
reality principle. As previously underlined by Rechtschaffen et al.
(1963), during SWS these“secondary process characteristics. . . are
assigned to pre-conscious mentation” (p 546). Recent studies have
shown that SWS mental activity reproduces or is the continuation
of waking cognitive processes (Nielsen, 2003; Euston et al., 2007;
Ji and Wilson, 2007). At the same time, it was shown early on that
some dreams occur during SWS (Foulkes, 1962; Tracy and Tracy,
1974; Cavallero et al., 1992; Bosinelli, 1995; Cavallero, 2003), even
though it has been emphasized that dreaming can only occur in
the presence of certain neurobiological features of the rapid eye
movement (REM) dreaming sleep stage (Takeuchi et al., 1999,
2001; Nielsen, 2003).

The mental activity of REM sleep has been “defined as an
experience that involves vivid and complex multi-modal imagery,
a progression of events and sense of reality” (p 180; Dement,
1965; for ref. see Gottesmann, 2005b); this is once again con-
trary to SWS mentation, which comprises “background thoughts
that occur during the day” (p 180). Today, in fact, it is neces-
sary to distinguish between the mental activity of REM sleep
that occurs at sleep onset descending stage I (Sleep Onset REM
Sleep: SOREM) and REM sleep occurring after ascending stage
II, in more advanced night sleep stages. Even further, within the
latter, some authors have distinguished between “active” dreams
occurring during the REM bursts and “passive” ones occurring
outside of these periods (Dement and Wolpert, 1958; Berger and
Oswald, 1962); these studies, however, have not been followed

up. It has been underlined by several authors, with the seeming
exception of one recent study (Malcolm-Smith et al., 2007), that
REM sleep dreaming is most often characterized by threatening
content (Manacéine, 1897; Revonsuo, 2003). This is less often
the case in SOREM, during which dreams are roughly equiva-
lent in positive and negative content (Foulkes and Vogel, 1965;
see Gottesmann, 2005b). Finally, with respect to the psycholog-
ical quality of REM sleep mentation, it has been long noted by
philosophers such as Kant and Schopenhauer, writers such as
Alfred Maury, neurophysiopathologists such as Hughlings Jack-
son, and neuropsychiatrists such as Henri Ey, that numerous
similarities exist between dreaming and madness (Gottesmann,
2010b). Today, the properties of dreams, with their hallucinatory
perceptions, bizarre imagery, diminished self-reflective awareness,
orientational instability, intensification of emotion, and instinc-
tual behaviors (Hobson et al., 2000), are strongly reminiscent
of the symptoms of schizophrenia (Gottesmann, 2005a, 2006;
Gottesmann and Gottesman, 2007).

While various neurotransmitters [glutamate, gamma aminobu-
tyric acid (GABA), and neuromodulators (acetylcholine,
dopamine, serotonin, histamine. . .] also contribute to forebrain
functioning, here I will attempt to provide a beginning of an expla-
nation of how noradrenaline (NA) influences the mental activity
occurring during REM sleep.

CORTICAL NORADRENERGIC FUNCTION
Noradrenergic neurons of the locus coeruleus (LC), the primary
source of NA to the forebrain, fire maximally, although at a slow
rate, during waking. Their discharges decrease during SWS and
then become silent during REM sleep (Hobson et al., 1975; Aston-
Jones and Bloom, 1981a; Rasmussen et al., 1986; Takahashi et al.,
2010). As a consequence of this progression, both pontine (Shouse
et al., 2000) and prefrontal cortex (Léna et al., 2005) release of
NA is highest during waking and lowest during REM sleep. This
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neuromodulator plays important roles in the control of forebrain
function. In certain rare cases of noradrenergic neuron stimu-
lation in the LC, patients described “well being (and) improved
clarity of. . . thinking” (p 179; Libet and Gleason, 1994). Moreover,
numerous results have shown that NA depletion increases error
responses to irrelevant stimuli and decreases responses in atten-
tional tasks (Selden et al., 1990; Milstein et al., 2007); also, increased
NA release is concomitant to cognitive improvement through the
collection and processing of salient sensory information (Berridge
and Waterhouse, 2003). The positive effect of NA on cognitive
processes is further evidenced by the observation that attentional
processes can be impaired by lesions of the dorsal NA bundle
(Leconte and Hennevin, 1981; Tait et al., 2007) or by prefrontal
neurotoxic inhibition of dopamine-β-hydroxylase (Milstein et al.,
2007; McGaughy et al., 2008), the enzyme that catalyzes the con-
version of dopamine to noradrenaline. As described by Arnsten
and Pliszka (2011) “in humans, lower activity of dopamine-β-
hydroxylase. . . is associated with poor sustained attention (Greene
et al., 2009), poor executive function (Kieling et al., 2008), and
impulsiveness (Hess et al., 2009).”

There are two modalities of LC neuron activity. First, there is
a basic tonic firing pattern, and second, a phasic firing pattern is
superimposed onto the tonic firing. The tonic firing increases with
vigilance, and its function is presumably to prevent unimportant
sensory events from disturbing the perception of threshold and
above-threshold stimuli (Berridge and Waterhouse, 2003; John-
son, 2003). In contrast, the phasic discharges are sensitive to novel
sensory modifications of sub-threshold intensity, and increases in
such discharges precede behavioral changes that can take place
during tasks (Bouret and Sara, 2005). “Phasic NA activity serves to
interrupt ongoing neural processes when a significant new event
is experienced” (p 689; Johnson, 2003; see also Waterhouse et al.,
1998). All LC neurons fire together, and only 10% of the neurons
are sufficient to maintain normal cortical function (Berridge et al.,
1993), because of compensatory NA neuron processes (Chiodo
et al., 1983).

Noradrenaline was first shown to primarily inhibit cortical neu-
rons (Krnjevic and Phillis, 1963; Frederickson et al., 1971; Nelson
et al., 1973; Foote et al., 1975; Reader et al., 1979; Manunta and
Edeline, 1999; Wang et al., 2010), specifically through α2 receptors.
Noradrenaline has an important function in cortex efficiency, as it
increases the fidelity of signal detection and transmission in neu-
rons and synapses; it does this by increasing the signal-to-noise
ratio of incoming information (Foote et al., 1975; Aston-Jones and
Bloom, 1981b; Waterhouse et al., 1990; Warren and Dykes, 1996;
Berlucchi, 1997), thereby reducing synaptic noise resulting from
parasitic afferents relative to the informative stimulus (Berlucchi,
1997; Berridge and Waterhouse, 2003; for ref. see Gottesmann,
2008).

Noradrenaline acts through the α1, α2, and β receptors. Pre-
frontal α1 receptor activation impairs cognitive processes, as
shown through the administration of agonists to rats (Arnsten
et al., 1999) and monkeys (Arnsten and Jentsch, 1997; Mao et al.,
1999). In contrast, postsynaptic α2 receptor activation improves
these processes (Steere and Arnsten, 1997; Mao et al., 1999), acting
specifically in the prefrontal cortex (Ramos and Arnsten, 2007).
This activation is restricted to the NA level (Arnsten and Li,

2005), in the maximal zone of an inverted U-curve (Arnsten and
Dudley, 2005). It should be underlined that it is particularly the
postsynaptic α2a receptors, whose activation threshold is much
lower than that of the α1 receptors, which are responsible for this
improvement in cognitive processes. Indeed, mice with mutations
in the α2a subtype show an unusual absence of improved work-
ing memory following administration of the α2a receptor-specific
agonist guanfacine (Franowicz et al., 1998). At the postsynaptic
level, the activation of these receptors reinforces the prefrontal
connections between pyramidal cells by blocking potassium chan-
nels through the inhibition of cyclic adenosine monophosphate
(cAMP), thereby “increasing the efficacy of network inputs, and
facilitating prefrontal cortex function”(Arnsten and Pliszka,2011).
Beta receptors, which have the lowest affinity to NA and which acti-
vate pyramidal neurons (McCormick et al., 1991), have restricted
influence on cognitive processes. Nevertheless, β1 antagonists
infused into the prefrontal cortex or administered systemically
improve working memory in rats and monkeys, while β1–β2

receptor blocking compounds have no effect. Thus, prefrontal β1

receptor activation appears to impair cognitive functions (Ramos
et al., 2005).

Due to the silencing of the noradrenergic LC neurons dur-
ing REM sleep, the level of NA in the prefrontal cortex drops from
20.9 × 10−10 M during waking to 9.98 × 10−10 M during this sleep
period (Léna et al., 2005). A low level of NA is still maintained
because it is diffusely released at the varicosity level (Fuxe et al.,
1968; Descarries et al., 1977; Seguela et al., 1990), without rapid
enzymatic destruction at the synapse by catecholamine-O-methyl
transferase (COMT), or reuptake by transporters. However, this
low level is insufficient to support normal cortical function.
From a neurophysiological standpoint, NA is now well known
to induce regular spiking activity in the cortex instead of burst
firing (McCormick et al., 1993). However, it has long been estab-
lished that the pyramidal neurons fire in bursts that are separated
by silences of spiking during REM sleep, demonstrating a decrease
in inhibitory influences controlling the frequency-limiting process
(Evarts, 1964). Thus, the level of NA available during REM sleep is
clearly insufficient to regularize pyramidal neuron firing. Since the
affinity of NA is highest for the α2a receptors, these are likely the
only ones activated during REM sleep to sustain normal prefrontal
function. However, because of dorsolateral deactivation (Maquet
et al., 1996; Braun et al., 1997; in spite of phasic activation during
the eye movement bursts,particularly on the right side (Hong et al.,
1995; Kubota et al., 2011 – but interestingly not related to LC phasic
discharges; Takahashi et al., 2010, and K. Sakai, Personal Commu-
nication 2011) – and the lower levels of dopamine, serotonin, and
acetylcholine (see Gottesmann, 2006, 2010a), NA is not sufficient
to support normal prefrontal function by itself. In addition, there
are reciprocal relations between the LC and the prefrontal cortex,
with the latter promoting LC function (Jodo et al., 1998). It can be
assumed that, in humans, the prefrontal dorsolateral deactivation
that occurs during REM participates in the silencing of the LC,
which in turn contributes to the impairment of cortical function.
The strong decrease in cortical noradrenaline during REM sleep
(Léna et al., 2005) probably also contributes to the abnormalities
observed in synchronized gamma rhythms. Indeed, it has been
shown that NA, but not serotonergic, reuptake inhibitors favor
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gamma rhythms in the septo-hippocampal system (Hajos et al.,
2003) and that their intracortical and hippocampal synchroniza-
tion is impaired during REM sleep (Perez-Garci et al., 2001; Can-
tero et al., 2004; Massimini et al., 2005; Montgomery et al., 2008),
when cortical NA is at its lowest level. Thus, the cortex, and par-
ticularly the prefrontal cortex (which is the most phylogenetically
recent structure to appear, responsible for the highest integrated
processes), is impaired during REM sleep, as evidenced by its deac-
tivation in the dorsolateral area and partly by the decrease in NA
release. Simultaneously, the availabilities of dopamine (Léna et al.,
2005), serotonin (Cespuglio et al., 1992), and acetylcholine (Mar-
rosu et al., 1995) are also reduced, while the level of glutamate
remains unchanged (Gottesmann, 2005a; Léna et al., 2005).

Another property of REM sleep is the inhibition of sensory
afferents (Williams et al., 1962, 1964), which was first shown
through an increased arousal threshold by peripheral stimula-
tion (Dement and Kleitman, 1957; Dement, 1958; for ref. see
Gottesmann, 2001). The notion of an involvement of cortical deac-
tivation of primary sensory cortices (Braun et al., 1998) in the
inhibition of afferents has been strongly challenged (Hong et al.,
2009; Miyauchi et al., 2009). The thalamic transmission process is
under the positive influence of postsynaptic α1 receptors, while α2

and β receptors mediate inhibition; the facilitating influences fol-
low an inverted U-curve (Devilbiss et al., 2006). During REM sleep,
the decrease in noradrenaline levels possibly shifts the curve to the
best functional level (Alsene et al., 2011), favoring postsynaptic
activation (Sakakura and Iwama,1965; Iwama et al., 1966; Dagnino
et al., 1969; Ghelarducci et al., 1970; Gandolfo et al., 1980). In addi-
tion, the decreased NA level observed during REM sleep has both
ascending and descending postsynaptic influences on thalamocor-
tical neurons, since in addition to the above described ascending
processes, corticothalamic glutamatergic influences (McCormick
and Krosigk, 1992; Bonjean et al., 2011) are also disinhibited
through NA silencing (Castro-Alamancos and Calcagnotto, 2001).
In contrast,vestibular influences (Morrison and Pompeiano,1966)
and the (GABAergic) activation (or disinhibition) of the thala-
mic reticular nucleus (Hong et al., 2009) inhibit thalamic inputs.
Indeed, it has been consistently shown that, particularly during the
REM bursts occurring during REM sleep, there is a presynaptic
inhibition of thalamic input (Sakakura and Iwama, 1965; Iwama
et al., 1966; Dagnino et al., 1969; Ghelarducci et al., 1970; Gandolfo
et al., 1980). This presynaptic inhibition can explain the increased
sensory and arousal threshold that is present during REM sleep.
Moreover, the absence of gamma rhythm resetting by peripheral
stimulation during REM sleep (Llinas and Ribary, 1993) is pre-
sumably also related to sensory deafferentation. Finally, REM sleep
is also characterized by an unexpected shortening of the cortical
recovery cycle of responsiveness in both animals (Rossi et al., 1965;
Allison, 1968) and humans, as shown by deficits in prepulse inhi-
bition (Kisley et al., 2003). This failure of gate-control processes is
certainly at least partly related to cortical NA disinhibition.

To conclude, although some results have supported the notion
that the above described waking learning processes are replicated
during REM sleep (Smith and Lapp, 1991; Hennevin et al., 1995,
2007; Smith, 1995; Peigneux et al., 2003) despite a strong NA
deficit, these conclusions have been strongly disputed (Siegel, 2001;
Vertes, 2004; Vertes and Siegel, 2005). Finally, and surprisingly, the

rapid evanescence of dreams at arousal could be related to both the
precocious recovery of waking NA processes (Gottesmann, 2008)
and to the re-establishment associated with the late recovery of
dorsolateral prefrontal cortex function (Balkin et al., 2002); both
of these processes induce the withdrawal of insufficiently recorded
memory traces.

Although the cortex and principally the “prefrontal circuits
have the unique ability. . . to guide behavior, thought, and affect”
(Ramos and Arnsten, 2007), other forebrain structures are also
strongly involved in determining the mental activity associated
with REM sleep.

THE FIRST NEXT MAJOR STRUCTURE INVOLVED IN
MENTATION IS THE NUCLEUS ACCUMBENS
Dysfunction of this limbic structure is responsible for mental dis-
turbances such as hallucinations and delusion. For decades, the
main neuromodulator involved in its function was thought to be
dopamine (MacKay et al., 1982). However, it is now known that the
nucleus accumbens is subjected to strong glutamatergic influences
originating from the prefrontal cortex (Brake et al., 2000; Jackson
et al., 2001), hippocampus (Lipska et al., 1993), and amygdala
(Floresco et al., 1998). This structure also has NA afferents mainly
originating in the medulla oblongata A1 and A2 nuclei, and sec-
ondarily from the LC (Delfs et al., 1998). These influences are now
considered to be important, since the NA concentration in the
nucleus accumbens is as high as that of dopamine (Tong et al.,
2006) and varies in parallel with the level of glutamate (Swanson
and Schoepp, 2003; Léna et al., 2005).

Accumbal NA release is controlled by presynaptic α2 autorecep-
tors, the sensitivity of which varies with the NA concentration at
the synapse (Aono et al., 2007; Verhelj and Cools, 2009a). Alpha-
2 receptor agonists promote dopamine release by inhibiting NA
release (Pothos et al., 1991), and postsynaptic α2 receptors (het-
eroreceptors) inhibit dopamine release (Verhelj and Cools, 2009b).
In some cases, β receptor activation favors dopamine release (Mis-
oguchi et al., 2008; Verhelj and Cools, 2009b). However, the activa-
tion thresholds of the different NA receptors (again, α2 < α1 < β

favor NA-mediated inhibition of dopamine release; as evidence of
this, dopamine release is only increased after massive NA concen-
trations are attained by inhibition of reuptake (Misoguchi et al.,
2008). Finally, noradrenaline also controls dopamine availability,
as there is dopamine uptake at NA terminals (Carboni and Silvagni,
2004).

During REM sleep, the activation of the nucleus accumbens is
evidenced by the presence of even more active neuron firing than
occurs during waking (Callaway and Henriksen, 1992). The con-
centration of NA is minimal during this sleep stage (Léna et al.,
2005). Although the A1 and A2 medulla oblongata nuclei have
not been recorded during the sleep–waking cycle, they seem to be
inhibited during REM sleep-like the LC; as confirmation of this,
the firing of another low brainstem NA nucleus, A5, also becomes
silent during REM sleep (Fenik et al., 2002). Because of the above
described different influences that NA has on the regulation of
dopamine, the near absence of NA is presumably, at least in part,
responsible for the maximal dopamine release that takes place dur-
ing REM sleep (Léna et al., 2005), and could explain the abnormal
mental activity of dreaming, with its hallucinations and delusions
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characteristic of high accumbal levels of dopamine (MacKay et al.,
1982).

In contrast to aspartate, glutamate release also decreases during
REM sleep (Léna et al., 2005). This could be related to the pre-
frontal dorsolateral deactivation (Maquet et al., 1996; Braun et al.,
1997), but could also partly result from hippocampal dysfunction.
Indeed, although the same theta rhythm is present during REM
sleep (Cadilhac et al., 1961; Michel et al., 1961) as during active
waking (Jung and Kornmüller, 1938; Green and Arduini, 1954),
hippocampal function should be different, particularly because of
the noradrenergic (Segal, 1974; Segal and Bloom, 1976) and sero-
tonergic (Segal, 1981, 1990) silence observed during REM sleep.
For example, a nearly continuous hippocampal theta rhythm is
observed not only in “cerveau isolé” transected cats (Tokizane,
1965; Olmstead and Villablanca, 1977) and rats (Gottesmann et al.,
1980), but also in transections injuring the posterior hypothala-
mus (Glin et al., 1991). Thus, hippocampal electrophysiological
field activity is not a faithful criteria of the functional state of this
structure (Gottesmann, 2000) or of the level of glutamate released
during REM sleep.

THE SECOND STRUCTURE I WILL ADDRESS HERE IS THE
AMYGDALA
The amygdala is the main central structure involved in encoding
emotional information and promoting avoidance learning storage
(Ferry et al., 1999). Its afferents bring affectively charged informa-
tion from the environment, and the amygdala triggers appropriate
emotional responses. Several nuclei have a predominant function,
and the output of the amygdala is primarily influenced by NA, as
54% of pyramidal neurons respond to NA whereas only nearly 3%
respond to dopamine (Miyajima et al., 2010). First, the basolateral
complex is considered one functional unit, since the basalis and
lateral nuclei react similarly to NA, being inhibited in 64 and 74%
of cases, respectively (Buffalari and Grace, 2007). The basolateral
complex is reciprocally related to the LC, with each structure acti-
vating the other. However, the amygdala also receives afferents
from the medulla oblongata NA A1 and A2 nuclei. The centralis
nucleus seems to be under the inhibitory control of the basolateral
complex, and its efferents on the one hand are directed to the LC,
also activating A2 and adrenergic C2 nuclei (Wallace et al., 1992;
Bouret et al., 2003; the latter controlling LC functioning), and on
the other hand promote hypothalamic vegetative influences sup-
porting behavioral characteristics of stress (Cecchi et al., 2002;
Buffalari and Grace, 2007). It is noteworthy that, in the same way,
dorsal raphe nucleus afferents to the centralis nucleus inhibit the
neurons (Jha et al., 2005), leading to a complementary disinhibi-
tion of glutamate output during REM sleep (Grace, 2000; Tran and
Keele, 2011), and as a consequence of this, a reinforced affective
load of mentation.

Both stimulation of the LC and stress increase the release of NA
in the basolateral area (Buffalari and Grace, 2007), and NA deficits
impair the consolidation of avoidance reactions and suppress
c-Fos expression in the amygdala (Radwanska et al., 2010). Nora-
drenaline infusion into the basolateral area inhibits the major-
ity of pyramidal neurons by activating GABAergic interneurons
(Kaneko et al., 2008) via the activation of α1 receptors (Laz-
zaro et al., 2010). Emotional memory consolidation by NA has

been confirmed in humans, since clonidine (an α2 receptor ago-
nist) inhibits this process (Groch et al., 2011), while reboxetine (a
reuptake inhibitor) promotes it (Gais et al., 2011). Moreover, the α2

receptor antagonist idazoxan infused into the basolateral amygdala
enhances avoidance memory consolidation (Ferry and McGaugh,
2008). Finally, while NA and β-agonists favor avoidance memory
consolidation while requiring α1 receptor activation in a first step
(Ferry et al., 1999), magnetic resonance imaging (MRI) has shown
that activation of the amygdala by emotional pictures, or verbal
stimuli can be decreased by blockade of the β receptor (Strange
and Dolan, 2004; Stegeren van et al., 2005); consistent with this, β
antagonists are used as anxiolytics (Hurlemann et al., 2010).

The amygdala is activated during REM sleep, as was first shown
by neuron recordings. There are units firing at a higher rate than
during SWS (similar to the rate observed during waking; Reich
et al., 1983; Zhang et al., 1986; Gulyani et al., 2002), as well as
REM sleep-on specific neurons, which fire at high or low rates
and which are disinhibited because of, at least in part, NA silence.
Indeed, as both LC stimulation and footshocks inhibit neurons of
the amygdala (Chen and Sara, 2007), the silence or near silence of
LC neurons during REM sleep should also disinhibit the amygdala.
Indeed, NA is strongly reduced in the amygdala during REM sleep
[by from 61 (Park, 2002) to 85% (Shouse et al., 2000) as compared
to waking]. In addition, tomographic studies have also shown that
the amygdala is activated during REM sleep (Maquet and Franck,
1997).

Since glutamate release is decreased in the nucleus accum-
bens during REM sleep, very probably as a result of prefrontal
and hippocampal dysfunction, the remaining accumbal glutamate
could mainly be a product of the (NA-mediated) disinhibition of
the amygdala (Grace, 2000). The NA deficit present during REM
sleep, like experimental deficits induced during waking, could
impair amygdala (Strange and Dolan, 2004) and hippocampal-
based (Kukolja et al., 2011) emotional encoding, and retrieval of
mental processes (Murchison et al., 2011); this is the case even
though an often excessive emotional activity is operative during
REM sleep, explaining affectively loaded dreams. Moreover, gluta-
mate release by the activation of the amygdala could participate in
the increase in dopamine in the nucleus accumbens (Floresco et al.,
1998), promoting hallucinations, and delusions during dreaming.
As seen above, the nature of the emotional load during SOREM
and REM sleep dreams appears to be different. Certainly partly due
to NA influence, this distinction is probably related to differences
in glutamate output in the amygdala. In this structure, NA seems
to be more involved in the affective quality of mental activity than
in the encoding of dreams, since SOREM dreams are not known
to be better retrieved than REM sleep dreams.

A complementary neurobiological alternative to explain the
rapid evanescence of dreams upon awakening (Gottesmann, 2006,
2008) could be the usually rapid reappearance of NA in the few sec-
onds prior to behavioral arousal (Aston-Jones and Bloom, 1981a;
Takahashi et al., 2010). This precocious restoration of some fore-
brain waking processes, with a highly probable re-establishment of
intracortical (Perez-Garci et al., 2001; Corsi-Cabrera et al., 2003),
intra-hippocampal (Montgomery et al., 2008), and hippocampo-
cortical (Cantero et al., 2004) relations, could erase previous fragile
memory traces (Gottesmann, 2008). This possible NA-mediated
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basis for forgetting upon exit from REM sleep could be reinforced
by the later recovery of function in the prefrontal cortex (Balkin
et al., 2002), the brain area involved in long-term memory storage.

DISCUSSION
As recalled above, the forebrain is an interdependent ensemble
of structures which are subjected to numerous neurotransmitters
and neuromodulators acting simultaneously at different types of
receptors situated presynaptically, postsynaptically, or both; fur-
ther, several types of receptors, noradrenergic in the present case,
can be localized on the same target neurons with distinct activation
thresholds. Moreover, a single structure, here the LC, can project
to and differently influence several forebrain areas: the LC max-
imally influences the somatosensory cortex when tonically firing
at 0.5 Hz, whereas in the thalamic ventroposterior medial nucleus
the highest sensitivity occurs at 1 Hz stimulation. Moreover, such
LC firing inhibits the somatosensory cortex neurons in 63% of
cases, whereas it activates the thalamic neurons in 65% of cases
(Devilbiss and Waterhouse, 2004). Thus, interpreting the neuro-
chemical basis of mental activities requires caution, all the more so
since 31% of somatosensory cortex neurons are activated by NA.

Although today this notion has been partly questioned
(Domhoff, 2007), the main characteristic of REM sleep menta-
tion is its similarity to symptoms of schizophrenia (Gottesmann,
1999, 2005a, 2006); indeed, 11 published neurobiological proper-
ties of REM sleep (Gottesmann, 2007, 2010a) represent powerful
potential endophenotypes (Gottesman and Gould, 2003) of this
disease (Gottesmann and Gottesman, 2007; Gottesmann, 2010a).
It is noteworthy that although some neurobiological criteria of
REM sleep are also encountered in syndromes like depression
and bipolar psychotic disorders, we have now identified fourteen
strong similarities with schizophrenia. As confirmation of this, NA
reuptake inhibiting factors are included in antipsychotic formu-
lations (Friedman et al., 1999; Linner et al., 2002) because of the
deficit of this neuromodulator in schizophrenia, although this is
also the case in other conditions, particularly depression.

Moreover, NA promotes prefrontal attentional processes, and
although its decrease cannot be expected to single-handedly
account for dorsolateral prefrontal deactivation – which also
occurs in schizophrenia, particularly when cognitive performances
are impaired (Buschbaum et al., 1982; Weinberger et al., 1986;
Berman et al., 1993; Fletcher et al., 1998) – the NA deficit seen in
both states seems at least to be responsible for the anarchic firing
of cortical pyramidal neurons (Evarts, 1964; McCormick et al.,
1991). This reduced efficiency of cognitive processes during REM
sleep and in schizophrenia is certainly related to the decrease in the
signal/noise ratio of neuron activity. In the same way, NA favors
gamma rhythm activity. The lowered NA level in both states could
explain the corresponding cerebral disconnections, as shown by
the disappearance of coupled gamma activity during REM sleep
(see above) as well as the dysfunction in this rhythm in schizophre-
nia (Uhlaas and Singer, 2010), a complementary index of impaired
intracerebral relations (Young et al., 1998; Meyer-Lindenberg et al.,
2001, 2005; Peled et al., 2001; Kubicki et al., 2008). Moreover, in
the nucleus accumbens, which is involved in the hallucinations and
delusions observed in both states, the decrease in NA is, at least
in part, responsible for the increased level of dopamine (Pothos
et al., 1991); this occurs by disinhibition of release and loss of

uptake in NA terminals (Carboni and Silvagni, 2004). Finally,
in the amygdala, the lower level of NA during REM sleep dis-
inhibits the pyramidal neurons, allowing the activated structure
(see above) to excessively manifest itself, particularly by gluta-
mate release in the nucleus accumbens; this results from deficits in
prefrontal and hippocampal afferents (Grace, 2000) and promotes
the threatened mental activity often encountered during dreaming
and in schizophrenia.

Another possible relationship between dreaming and schizo-
phrenia has been shown by responsiveness studies, which have
demonstrated the presence of a cortical disinhibition in animals
and humans that takes place during REM sleep and which could
be consecutive to an NA decrease; the same disinhibition has
been observed in schizophrenia by a deficit in prepulse inhibi-
tion (Kisley et al., 2003). The thalamic sensory deafferentation that
occurs during REM sleep due to presynaptic inhibition of afferents,
could contribute both to this sleep stage and to schizophrenic hal-
lucinations (Behrendt andYoung,2005). The involvement of NA in
thalamic transmission processes could also be hypothesized based
on the difference in the sensory arousal threshold during SOREM,
when it is low (Dement and Kleitman, 1957; and personal observa-
tions) while the NA level is very probably close to the waking level,
and during REM sleep, when the threshold is high (see above)
while NA is very low. However, mismatch negativity, an index of
a kind of sensory detection, can be observed not during SWS but
during SOREM (Nittono et al., 2001) and REM sleep (Sculthorpe
et al., 2009), revealing a similar “pre-conscious level of process-
ing” (Sculthorpe et al., 2009), or a kind of “protoconsciousness”
(Hobson, 2009).

Finally, it is possible that the muscular atonia present dur-
ing REM sleep (Jouvet and Michel, 1959; Berger, 1961; Michel
et al., 1961), which is induced by lower brainstem processes
(Jouvet and Mounier, 1960; Jouvet and Delorme, 1965; Hen-
ley and Morrison, 1974), conceals some symptoms of attention
deficit hyperactivity disorder (ADHD), which is also related to
an NA deficit (Arnsten and Dudley, 2005; Arnsten and Pliszka,
2011; Gronier, 2011). Indeed, the “vivid” mentation of REM
sleep (Reeves et al., 2001), the classical jumping from one sub-
ject to another, the emotional instability, and the impulsivity,
attention, and memory consolidation deficits (Prehn-Kristensen
et al., 2011) are also encountered in ADHD. In both states,
there is an impairment of inhibitory control processes regulat-
ing mentation and behavior, i.e., a kind of “say no” (Aston-Jones
and Gold, 2009) ability deficit, which is partly related to right
inferior frontal (Aston-Jones and Gold, 2009) and left dorsolat-
eral prefrontal dysfunction (Burgess et al., 2010); both of these
are concomitant to the NA decrease. While Methylphenidate, a
dopamine/NA reuptake inhibitor, improves ADHD by activat-
ing prefrontal dopamine D1 as well as NAα2a receptors (Gronier,
2011) (the latter at least partly located on GABAergic interneu-
rons: Wang et al., 2011), the more specific α2a, agonist guanfacine,
while also acting on postsynaptic α2a receptors in the dorsolat-
eral prefrontal cortex (Arnsten, 2011), also improves patients with
ADHD (Scahill et al., 2001; Biederman et al., 2008; Kollins et al.,
2011).

Thus, partly related to the NA deficit, the dorsolateral pre-
frontal deactivation occurring during REM sleep, together with
consecutive or simultaneous amygdala, and nucleus accumbens
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disinhibition, could provide the basis for the emotional and
psychotic-like – and most often not definitively stored – dreaming
activity that takes place during this sleep phase. At the same time,
similar prefrontal deficits and correlative activation and disinhi-
bition of other main cortical areas could explain the usually lively,
unstable, and disorganized mental content of dreams, which is

also observed in ADHD: “deficits in prefrontal cortex function are
evident in most neuropsychiatric disorders” (Ramos and Arnsten,
2007).
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