
Frontiers in Immunology | www.frontiersin.

Edited by:
Julia Kzhyshkowska,

Heidelberg University, Germany

Reviewed by:
Alessia Vignoli,

University of Florence, Italy
Milena Sokolowska,

University of Zurich, Switzerland

*Correspondence:
Olivier Elemento

ole2001@med.cornell.edu
Mirella Salvatore

mis2053@med.cornell.edu

†Present address:
Charles Kyriakos Vorkas,

Division of Infectious Diseases,
Renaissance School of Medicine,

Stony Brook University, Stony Brook,
NY, United States

‡These authors share
senior authorship

Specialty section:
This article was submitted to

Viral Immunology,
a section of the journal

Frontiers in Immunology

Received: 05 November 2021
Accepted: 20 December 2021
Published: 12 January 2022

Citation:
Rendeiro AF, Vorkas CK,

Krumsiek J, Singh HK,
Kapadia SN, Cappelli LV,

Cacciapuoti MT, Inghirami G,
Elemento O and Salvatore M
(2022) Metabolic and Immune

Markers for Precise Monitoring of
COVID-19 Severity and Treatment.

Front. Immunol. 12:809937.
doi: 10.3389/fimmu.2021.809937

ORIGINAL RESEARCH
published: 12 January 2022

doi: 10.3389/fimmu.2021.809937
Metabolic and Immune Markers for
Precise Monitoring of COVID-19
Severity and Treatment
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Deep understanding of the SARS-CoV-2 effects on host molecular pathways is
paramount for the discovery of early biomarkers of outcome of coronavirus disease
2019 (COVID-19) and the identification of novel therapeutic targets. In that light, we
generated metabolomic data from COVID-19 patient blood using high-throughput
targeted nuclear magnetic resonance (NMR) spectroscopy and high-dimensional flow
cytometry. We find considerable changes in serum metabolome composition of COVID-
19 patients associated with disease severity, and response to tocilizumab treatment. We
built a clinically annotated, biologically-interpretable space for precise time-resolved
disease monitoring and characterize the temporal dynamics of metabolomic change
along the clinical course of COVID-19 patients and in response to therapy. Finally, we
leverage joint immuno-metabolic measurements to provide a novel approach for patient
stratification and early prediction of severe disease. Our results show that high-
dimensional metabolomic and joint immune-metabolic readouts provide rich information
content for elucidation of the host’s response to infection and empower discovery of novel
metabolic-driven therapies, as well as precise and efficient clinical action.

Keywords: COVID-19, metabolism, immunology, infection biology, precision medicine
INTRODUCTION

The pandemic caused by infection with the severe acute respiratory coronavirus type 2 (SARS-CoV-2)
has infected more than 218 million people worldwide as of August 2021, caused more than 4.5 million
deaths (1), and strains health systems on an unprecedented scale. The most common manifestations of
COVID-19 are fever, cough, and dyspnea (2, 3), but thromboembolic events and other organ
involvement are also common in patients with severe disease (2, 4, 5). Molecularly, severe COVID-
19 disease is characterized by uncontrolled inflammatory syndrome caused by immune system
hyperactivation (6–11). The most effective treatments are thus based on general immunosuppression
with glucocorticoids (12) or neutralization of the pro-inflammatory interleukin 6 (IL-6) with
tocilizumab (13).
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Several laboratory tests such as albumin (14), CRP (15),
lymphocyte abundance (16–19), IL-6 (20), and the fibrin
degradation product D-dimer (21) have been used to monitor
COVID-19, with their levels variably associated with disease
severity. While these routinely available assays may have some
clinical use in disease prognostication, they depict an incomplete
landscape of pathophysiological changes associated with COVID-
19. However these tests are mostly a readout of the inflammatory
state and do not capture a wide but still interpretable view of the
physiological state of COVID-19 patients. One possible approach
is to increase the dimensionality of the system by the use of mixed-
modality profiling such as the combination of immune population
quantification and circulating cytokine levels (22, 23). While much
work has been done on the characterization of the host immune
response through cytometric or serological methods,
characterization of the metabolic state of COVID-19 patients has
just begun (24–28).

There are several lines of evidence demonstrating the
importance of metabolic species - in particular lipids - during
viral infection. Lipids are structural components of the host’s
cellular and organellar membranes, taking an active role in
crucial cellular functions such as molecular trafficking, but are
also of importance during viral attachment, internalization,
packaging and release (29, 30). In animal models, it has been
shown that cholesterol composition of membrane lipid rafts
underpins the infectivity of SARS-CoV-2 (31). Beyond its
structural functions, lipids are also crucial for energy supply
and intracellular signalling (32, 33). It is plausible that viral-
induced changes in host metabolism during COVID-19 in
metabolites such as glucose and lipids (34) may be beneficial
for the infection, by altering intracellular signaling and
conditioning immune response. The host metabolome - lipids
in particular - have therefore been proposed as potential
biomarkers of COVID-19 disease severity (35), and as
therapeutic targets to counteract excessive immune activation.
Nuclear magnetic resonance (NMR) spectroscopy applied to the
measurement of metabolites provides a great balance between
precise and reproducible measurements, the breadth of analytes
measured, and the logistical efforts necessary for data production
(36–38). Importantly, it is also capable of discerning different
lipid species in circulating lipoprotein particles.

In this work, we use NMR spectroscopy to identify changes in
serum metabolome composition of COVID-19 patients that are
associated with disease severity and tocilizumab treatment, and
provide a method for precise disease monitoring, patient
stratification, and early prediction of severe disease based on
joint immuno-metabolic measurements.
RESULTS

Longitudinal NMR Metabolomics of
COVID-19 Patient Plasma
We conducted an observational study of 75 individuals with
acute or convalescent COVID-19 that were treated at New York
Presbyterian Hospital and Lower Manhattan Hospitals, Weill
Frontiers in Immunology | www.frontiersin.org 2
Cornell Medicine as in- or out-patients between April and July
2020. The disease was categorized using World Health
Organization disease severity scale for the prognostication of
COVID-19 patients (39) (henceforth referred to as “WHO
score”), which use clinical events such as patient admittance,
amount of supplemental oxygen needed, or the need for
mechanical ventilation (Figure 1A and Table 1). Serum
samples were collected at hospital admission, when permissible
approximately every 7 days thereafter, and for convalescent
patients as outpatients at least 90 days from symptom onset
(109 samples from 75 patients, 32 convalescent). Of all patients,
35 (47%) presented with low to mild disease severity, and 30
(40%) with moderate to severe disease. We also collected serum
from healthy, COVID-19 negative donors (n = 9). The median
age of COVID-19 patients was 53 years, which was comparable
with that of healthy donors (51 years) (Table 1 and Table S1).

We performed targeted high throughput NMR-based
detection of metabolites in circulating blood serum
(Nightingale Health Ltd.) (Figure 1A and Tables S2, S3). The
NMR assay detected 168 metabolite species in absolute molar
quantities, and 81 additional measurements of relative
proportions covering diverse metabolic species such as lipids
and fatty acids, apolipoproteins, amino acids, ketone bodies, and
other molecules with known prognostic value across various
diseases such as albumin, creatinine, and apolipoprotein levels
(40–42) (Figures S1A–C). The panel is dominated by the
diversity of lipids and by lipoprotein-associated lipid species
which were fractionated based on their relative density and size
(Figures S1D–F). Overall, measurements of the metabolic
species had excellent reproducibility and high signal-to-noise
ratio (Figures S1G–H). Upon relating the abundance levels of all
metabolite species across all samples, we find that metabolites
were heavily co-regulated (Figure S1I).

Metabolic Changes Associated With
COVID-19 Severity
In order to identify the metabolic features associated with
COVID-19 outcome, we leveraged linear mixed effect models
to explain COVID-19 disease severity as a function of metabolite
levels independently from patient age, gender, race, and body
mass index (BMI) (Figure 1B and Figures S2A, B). While most
of the 249 metabolite species showed no association with disease
severity as measured by the WHO score, we found significant
associations for 56 metabolites (p < 0.05, adjusted for multiple
testing with the Benjamini Hochberg False Discovery Rate (FDR)
method), which were dominated by lipid and lipoprotein
subclasses (Table S4). Specifically, we found that albumin,
high-density lipoprotein (HDL) and small HDL particle
species, as well as the cholesteryl-ester component of HDL and
intermediate-density lipoproteins (IDL) declined proportionally
with the increase in WHO score, with steeper decline in the most
severe cases (Figure 1C). On the other hand, extra small, very
low-density lipoprotein (VLDL) particles with increased
phospholipids component and extra-small VLDL, IDL, LDL
and HDL with increased triglycerides were correlated with
increased severity. Additional variables associated with
January 2022 | Volume 12 | Article 809937
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increased disease severity were acetylated glycoproteins (GlycA)
- a spectroscopic marker of systemic inflammation (43),
phenylalanine, and fraction of monounsaturated fatty acids
(MUFA). We also observed a significant association of
acetoacetate, 3-hydroxybutyrate, phenylalanine, and the ratio
of apolipoprotein B to A1 (ApoB/ApoA1) to disease severity
(Figure S2C). Of note, the levels of many of the mentioned
metabolites in severe COVID-19 (WHO score 4-7) were higher
by more than three standard deviations than the mean of a large
non-COVID population from the UK Biobank (150,000
samples) (44, 45), illustrating the degree of metabolic disarray
Frontiers in Immunology | www.frontiersin.org 3
in the serum of COVID-19 patients with severe disease. These
results are also in agreement with previous reports (24, 46).

Additionally, we performed enrichment of the changes
associated with COVID-19 severity in metabolite groups based
on their biophysical properties and known physiological roles.
This analysis revealed increased levels of inflammation markers,
amino acids and triglycerides, but above all confirmed the deep
unbalance in lipoprotein composition, size, and density
(Figure 1D and Figure S3A), where increased severity is
associated with decreased lipoprotein density and increased
size, which are in line with the increased triglyceride content of
A

C

B

D

FIGURE 1 | Discovery of metabolic biomarkers of COVID-19 severity and treatment. (A) Schematic description of the patients under study, data types collected and
approaches for their analysis. (B) Association of metabolite abundance with COVID-19 severity for all 248 metabolic species (upper panel). The lower panel illustrates
the 10 metabolites most associated with disease severity for each direction. (C) Distribution of metabolite abundance for the metabolites most associated with
COVID-19 severity depending on the sample WHO score classification. The grey horizontal dashed line represents the mean abundance of the metabolite in over
150,000 individuals from the UK biobank cohort and grey bars represent the standard deviation from the mean. (D) Enrichment analysis of metabolites changing with
COVID-19 severity in functional terms.
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the particles. One exception is extra-small VLDL particles
(3-6 nm) which are also increased in severe disease. Taken
together, the observed changes reveal considerable metabolic
changes in COVID-19 patients dependent on disease severity. As
a comparison, we investigated the association of routinely
collected clinical biomarkers with COVID-19 severity in our
cohort and found that only lactate hydrogenase (LDH) was
significantly associated with disease severity (Figures S3B, C),
while biomarkers of overall metabolic homeostasis such as
aspartate aminotransferase (AST) and alanine aminotransferase
(ALT) were not.

Effect of Tocilizumab Treatment on the
Metabolome of COVID-19 Patients
Among the therapeutic options for COVID-19, Tocilizumab, an
inhibitor of the pro-inflammatory interleukin-6 (IL-6) was used
in COVID-19 patients with elevated inflammatory markers and
rapidly escalating oxygen requirements. In our cohort, 10 (12%)
patients were treated with Tocilizumab. To assess metabolic
changes associated with tocilizumab treatment, we fit a linear
model on the time since treatment with age, gender, race, BMI,
and disease severity as covariates. Several metabolite species were
significantly associated with tocilizumab treatment (Figure 2A
Frontiers in Immunology | www.frontiersin.org 4
and Figures S4A–C, Table S5), in particular an increase in
VLDL particles but also in their cholesterol content (both free
and esterified), reduction of valine levels, triglyceride content of
VLDL, and ratio of the polyunsaturated fatty acids (PUFA)
Omega 6 to 3 - a ratio associated with the pathogenesis of
various diseases (47, 48) (Figure 2B). However, we also observed
metabolite species that were significantly changed with COVID-
19 severity with no apparent change with tocilizumab treatment
(Figures 2A, B, and Figures S4E–G). Across all metabolite
species, we observed a trend for patients treated with
Tociluzumab to have a metabolic state more similar to patients
with milder disease over time (Figure 2C), which suggests that
the administration of Tociluzimab could contribute to a partial
rescue of some of the effect of severe disease on the metabolism of
COVID-19 patients.

Precise Monitoring of COVID-19 Clinical
Trajectories by Intra-Patient Metabolome
Dynamics
Given the sensitivity of targeted NMR metabolomics to detect
changes of disease severity in COVID-19 patients, we
hypothesized that these data could be used as a rich,
multivariate measurement of disease severity grounded in
TABLE 1 | Demographic and clinical characteristics of the cohort.

Patient group P-value

Uninfected (n = 9) Low (n = 39) Mild (n = 7) Moderate (n = 11) Severe (n = 18)

Age 48.22 (18.41) 42.74 (10.88) 58.22 (12.33) 67.65 (9.94) 68.21 (13.04) 2.17E-11*
Race Asian 1 4 1 1 6 1.85E-01

Black 0 2 0 3 1

Other 0 1 0 0 1

White 8 31 6 6 10

Sex Female 5 18 3 5 7 9.50E-01
Male 4 21 4 6 11

Obesity Nonobese 8 19 4 1 9 2.51E-02*
Overweight 0 8 0 5 5

Obese 1 5 3 5 4

Body mass index 30.77 (8.89) 27.19 (4.17) 27.48 (4.55) 30.33 (5.99) 27.42 (4.89) 2.40E-01
Days of symptoms before admission 7.17 (9.6) 10.0 (10.57) 8.29 (5.8) 7.77 (4.26) 7.02E-01
Underlying pulmonary disease 3 1 1 5 5.84E-01
Hospitalization 3 6 11 18 1.71E-10*
Intubation 0 0 0 10 2.00E-08*
Tocilizumab treatment 0 0 1 9 1.65E-03*
Death 0 0 0 7 1.25E-05*
Total bilirubin 0.5 (0.17) 0.8 (0.63) 0.68 (0.25) 0.62 (0.2) 0.63 (0.31) 8.44E-01
ALT 18.33 (12.86) 28.0 (21.71) 40.25 (40.72) 41.0 (13.89) 47.65 (54.18) 2.23E-01
AST 16.0 (6.24) 50.0 (59.35) 43.25 (31.71) 32.5 (15.41) 48.16 (49.09) 1.30E-01
Creatinine 1.18 (0.07) 0.76 (0.19) 0.84 (0.16) 0.84 (0.3) 2.07 (2.13) 3.22E-01
CRP 10.8 (NAN) NAN 2.42 (2.13) 7.58 (8.91) 12.47 (9.58) 1.39E-01
Hemoglobin 8.9 (2.38) 12.22 (3.21) 10.41 (2.11) 11.58 (1.47) 9.91 (2.38) 8.58E-02
Hematocrit 26.87 (6.5) 37.58 (8.82) 31.0 (5.82) 35.02 (4.33) 31.57 (11.03) 1.03E-01
LDH 272.0 (46.67) NAN 286.67 (93.39) 301.0 (112.56) 506.71 (214.17) 1.57E-02*
RDWCV 17.33 (2.47) 16.4 (3.92) 15.42 (2.32) 24.5 (22.12) 16.72 (3.23) 6.94E-01
MCV 89.57 (2.97) 87.18 (6.59) 95.46 (8.33) 76.41 (24.12) 92.89 (4.94) 8.04E-05*
January 2022 | Volume 12 | Artic
For simplicity we aggregate patients based on an assessment of overall disease severity along the course of disease. Float-point values with parenthesis in front indicate the mean and
standard deviation within the patient group. Integers indicate the total count of individuals. Values between hyphens indicate the minimum and maximum values within the group. NAN
indicates the measurements were not available. The independence between these patient groups and categorical variables was assessed with a Chi-squared independence test, and for
numerical variables with a Kruskal-Wallis one-way analysis of variance. ALT, alanine aminotransferase; AST, Aspartate transaminase; CRP, C-reactive protein; LDH, lactate
dehydrogenase; RDWCV, Red Cell Distribution Width; MCV, mean corpuscular volume. Asterisk indicates significance at alpha < 0.05.
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metabolic data. First, to understand the temporal dynamics of
the metabolism of COVID-19 patients, we created a two-
dimensional latent space using diffusion maps on the
abundance of the metabolites across all samples (Figure 3A).
This space, made of diffusion components (DC) was largely
driven by the severity of disease and clinical outcomes associated
with it such as hospitalization, intubation, and death, and the
time since symptom onset (Figure 3A and Figures S5A, B). This
allowed us to use the distribution of clinical attributes on the
space to inform of the relative risk of adverse outcomes
(including hospitalization, intubation and death) for patients
(Figure 3A, right and Figure S5C).

Importantly, this relationship is largely independent of the
statistical method used to construct a latent space (Figure S5D).
Second, we used pseudotime to derive a direction of progression
through the latent space for each patient over multiple
timepoints. This allowed us to order samples based on their
predicted trajectory along the overall course of disease severity
(Figure 3B). Finally, we were able to observe the trajectory of
each patient along the latent space, and by weighting the amount
of change by the time between timepoints we could derive a
measure of speed of change of metabolome for each patient, and
an aggregate measure of how much the metabolome changed
over time (Figures 3C–E). For example, patients 23 and 24 have
similar trajectories at start - starting at an area of intermediate
risk and progressing to an area of highest severity -, but later
move to an area occupied most by healthy and convalescent
individuals or remain in the area of highest risk, respectively
(Figure 3D). These divergent trajectories are apparent in the
predicted relative risk from metabolic data, while a single marker
such a GlycA tends to inform only of one specific aspect of the
metabolome (inflammation) (Figure 3E).

The longitudinal aspect of the data and its reduction to a
single landscape further allowed us to study the temporal kinetics
of disease severity and recovery (Figure 3G). We hypothesized
that the overall speed of each patient along their timeline could
be related to their clinical status. We observed that different
patients can have largely different speeds of metabolic change
Frontiers in Immunology | www.frontiersin.org 5
during their clinical timeline (Figure 3G–H), and sought to
identify a clinical parameter that would be associated with that
change (Figure 3I). We discovered that the overall speed of
metabolic change along the whole timeline of the patient was
related with the overall disease severity of the patients and
whether the patient was hospitalized (Figure 3J). This
observation suggests that higher rates of metabolic changes
over time are an index of the complex interactions between
viral infection, treatment, and individual host response, and may
translate into (or reflect) a worse overall outcome for the
patients. Taken together, our pseudo-temporal analysis of the
metabolomics dataset revealed a dynamic landscape of metabolic
change within patients over time, which can be used to measure
disease progression in near-real time.

Integration of Immune and Metabolic Data
for Patient Stratification
Since metabolic requirements underpin immune activation (49,
50) which is needed for response to infection (51–53), and
immune effectors are known to regulate key enzymes in lipid
metabolism (54, 55) we sought to uncover the relationship
between metabolite abundance and immune system
composition by performing regularized regression on the NMR
metabolomics and flow cytometry immune profiling datasets
(56) (Figure 4A). This resulted in a map of interactions between
metabolites and immune populations, of which Figure 3A
illustrates the strongest. Interactions between immune and
metabolic variables could be largely categorized in two groups:
i) positive association (Figure 4A red in the heatmap): immune
variables changing in the same direction as metabolic variables;
ii) negative association (Figure 4A blue in the heatmap): increase
in metabolic variables correlated with decrease in immune
variables or vice-versa. For example, the decrease in Albumin
levels during COVID-19 was matched with the increase in
polymorphonuclear myeloid-derived suppressor cells (PMN-
MDSC); total T-cell abundance was related to the fraction of
medium size HDL, where both variables decrease with COVID-
19 severity. The immune checkpoint inhibitors Lag3 and Tim3
A B C

FIGURE 2 | Effect of tocilizumab treatment on the metabolism of COVID-19 patients. (A) Association of metabolite abundance with the time since tocilizumab
treatment. The coefficient values refer to the change per day in relation to the mean. (B) Abundance of metabolites with discordant (left), concordant (center) or
indifferent (right) change between COVID-19 severity and tocilizumab treatment for treated patients. (C) Comparison of the coefficients of change in COVID-19
severity (x-axis) and effect of tocilizumab treatment over time (y-axis). The black regression line indicates a overall linear trend across all metabolites.
January 2022 | Volume 12 | Article 809937
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FIGURE 3 | Use of metabolic data for precise disease monitoring. (A) Latent representation of metabolic data for all samples in two dimensions using diffusion
maps, from which diffusion components (DC) are derived. In the first two panel columns samples are colored by their value of WHO score, whether the patient was
hospitalized, intubated and their survival. The rightmost column indicates the position of each sample within the inferred pseudotime and the relative risk for the
whole two-dimensional space. (B) Heatmap with relative abundance of metabolites for all the samples where both axes are sorted by their relative position along the
inferred pseudotime. The lower part of the plot indicates the values of clinical parameters for every sample. (C) Trajectory of each patient across the latent space
during their clinical course starting with the day of symptom onset. Patients with at least three samples are colored distinctly while the remaining are colored in gray.
(D) Particular trajectories for patients 23 and 24 as in c). The inset illustrates the stagnated course of patient 24. dN = n days since symptoms onset. (E) Values of
GlycA and the predicted risk for patients 23 and 24 along the clinical trajectories of each patient. The shaded area in the GlycA plots represents the distribution of
that metabolite in the UK biobank cohort, while the shaded area for predicted risk represents the distribution of the COVID-19 cohort. (F) Vector field of velocities in
the latent space interpolated from the observed velocity vectors for all patients (blue). (G) Relationship between total distance moved per patient in the latent space
over the whole clinical course and its length in days from symptom onset. (H) Distribution of average velocities across the whole clinical timeline for every patient.
(I) Association analysis between clinical variables and the average velocity of each patient. p-values have been adjusted with the Benjamini-Hochberg FDR method.
(J) Illustration of differences between patient velocities and their hospitalization or overall disease severity across the whole clinical timeline.
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which we previously described increasing with COVID-19
severity showed interactions with the fraction of cholesterol in
LDL particles, themselves decreasing with COVID-19 severity.
While many of these potential interactions are not yet described,
and many are indirect, there are also specific examples of direct
interactions, such as HDL interference with the potential of T
cells to produce some cytokines, through a proposed mechanism
Frontiers in Immunology | www.frontiersin.org 7
of direct binding (57). The relationships between the two datasets
made us hypothesize that it could be possible to establish a
patient-centric view of the immune-metabolic landscape during
COVID-19. Towards that end, we employed regularized
Canonical Correlation Analysis (rCCA) to integrate both NMR
and flow cytometry datasets in a common latent space
(Figure 4B). In this new space, samples clustered based on
A B

C D

FIGURE 4 | Joint immune-metabolic analysis empowers a novel COVID-19 patient stratification strategy. (A) Heatmap of the relationship between metabolic (x-axis)
and immune variables (y-axis). Values of change with COVID-19 are regression coefficients for COVID-19 severity. Only the 30 variables with most variance are
shown per dataset. (B) Integration of immune and metabolic data into a joint embedding. Each square panel demonstrates the distribution of samples dependent on
clinical factors, and below the cumulative distribution function of each class along the first dimension. We provide silhouette scores (S) for how good the classes are
separated and their significance through an ANOVA test (p). (C) Pairwise correlation heatmap showing the similarity between samples based on immune-metabolic
data. The hierarchical clustering dendrogram illustrates the newly discovered patient groups. Axis rows and columns are the same. Values of clinical parameters for
every sample are illustrated above the heatmap. (D) Relative enrichment of sample groups in clinical (top) and immune-metabolic variables (bottom). Values were
aggregated by mean per cluster and row-wise Z-score transformed to account for the heterogeneous nature of the variables.
January 2022 | Volume 12 | Article 809937
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disease severity and its associated clinical outcomes regardless of
dataset origin (Figure 4B). This allowed us to build a novel way
to stratify patients based on both immune and metabolic data by
hierarchical clustering of the pairwise similarity between patient
samples (Figure 4C). In this classification we could identify six
groups: one with predominantly healthy samples (11% of all
samples); two groups of patients with mild disease (10 and 12%
respectively); two groups mostly containing patients with severe
disease (one with samples collected close to symptom onset, and
the other later (11 and 24% respectively); and finally a group of
samples from mostly convalescent patients (32%) (Figure 4C).
The six groups were characterized by distinct clinical parameters
and abundance of immuno-metabolic species (Figure 4C). For
example, the two groups of mild disease could be distinguished
by distinct BMI, liver enzyme levels, and triglyceride content of
lipoproteins. Additionally, the “late” severe disease group had
creatinine levels markedly higher than the “earlier” severe group,
as opposed to B-cell expression of immunoglobulins G and M
(IgG/IgM) which was highest in “early” disease and later
decreased (Figure 4D).
DISCUSSION

Here we present longitudinal immuno-metabolic data on a
cohort of COVID-19 patients representative of the whole range
of disease severity. We show that patient metabolism during
disease is quite dynamic, reflecting disease progression and
treatment. Consistent with a previous report, increased
markers of systemic inflammation correlated with COVID-19
severity (25). More importantly, we identified a deep alteration of
the lipoprotein particles levels and composition: increased
triglyceride content and VLDL, decrease of HDL, percentage of
cholesterol/cholesteryl esters in HDL, and IDL were associated
with severe disease. Previous studies have proposed a decrease in
cholesterol and increase in triglycerides (24, 27, 46)as markers of
severe COVID-19. In our study we confirm these findings and
further describe the deep modification in the lipid metabolism
and composition of lipoprotein and fatty acid associated with the
disease. This is reminiscent of a metabolic state known to
predispose to cardiovascular disease (58–60) and could be related
to the thrombotic events observed in COVID-19 patients with
severe disease (2, 4, 5, 61, 62). Furthermore, we develop groundwork
for the future development of tools that can precisely monitor
COVID-19 patient trajectories using metabolic data, potentially
enabling risk assessment on a continual fashion. We must
nonetheless acknowledge the following limitations to our
study: i) our cohort is relatively small especially in comparison
with large repositories such as the UK biobank; ii) our cohort is
also skewed to have more patients with longitudinal follow-up
for patients with severe disease - this is at least in part due to the
natural dynamic severe disease having a longer recovery period;
iii) our analysis of the interaction between the immune system
and metabolome is purely correlational, as we can’t infer
causality between the presence or activity of an immune cell
type with the abundance of a metabolite.
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It is plausible that cytokine modulation of key metabolic
enzymes or energy usage by the immune system during acute
infection are a major source of the metabolic changes associated
with COVID-19 progression (63). It has been shown for
COVID-19 specifically that in T-cells cholesterol interacts with
sphingolipids in membrane rafts in a manner that is dependent
on the saturation state of the fatty acids (31), and more generally
that lipid raft formation has a crucial role in the cytotoxic activity
of CD8 T-cells (64–66). The increase in triglyceride composition
of lipoprotein particles and their saturation state we observed
with increased disease severity could result in altered immune
function. Evidence for that has been seen in the regulation of
immune checkpoint proteins such as CTLA4 in MDSCs by
intracellular PUFA levels in cancer models (67). Another
example is the shift between energy sources in T effector cells
from glucose to aminoacids which is required for proliferation
and cytotoxic activity (51–53).

Additional evidence of immune influence on metabolism in
our data is the fact that tocilizumab - a monoclonal antibody that
inhibits the binding of the pro-inflammatory cytokine IL-6 to its
receptor - partially rescues the effect of disease severity at the
metabolic level (Figure 2C). This is in agreement with a previous
study reporting a similar rescue effect of Tosiluzimab on
COVID-19 associated metabolic alterations (27). This
reinforces the idea that metabolic changes during COVID-19
are likely to be at least partially driven by the immune system
either directly through regulation of key metabolic enzymes by
cytokines, energy consumption of cytokine-secreting cells, or by
the effect of immune cells on other tissues. At the same time, in
our study BMI had a negligible influence on disease severity
(Figure S2A), and biomarkers for liver function such as AST and
ALT did not show significant association with disease severity
(Figures S3B, C), making nutrition, obesity and liver
dysfunction unlikely candidates to explain metabolic changes
linearly associated with COVID-19 severity. Nonetheless, the
contribution of these and other factors should be further
explored in future studies with larger sample sizes and
complete measurements of well-established clinical significance
such as D-dimer.

The immune-metabolic crosstalk taking place during
COVID-19 progression suggests the future potential use of
metabolites to control disease through direct modulation of
specific steps of lipid metabolism at the immune level. In that
light, having precise methods for disease monitoring that capture
both metabolism and immune system states would be extremely
useful. In this study we develop a method for patient monitoring
using NMR spectroscopy of metabolites from blood sera
(Figure 3) that is quantitative, does not rely on thresholds, and
can be interpreted in terms of patient risk at any given time
during the patient’s clinical trajectory. Further development of
our approach of joint immuno-metabolic classification of overall
patient trajectories (Figure 4) could be used early in the course to
tailor patient care and maximize allocation of medical resources.

Collectively, our study unveils the considerable metabolic
disarray during COVID-19 progression which could open
avenues for the development of metabolic-based therapies.
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Further, by leveraging immuno-metabolic high-dimensional
data, we provide novel methods for precise disease monitoring
and stratification in order to effectively tailor clinical care to
COVID-19 patients.
METHODS

Human Studies
Blood serum samples were collected at the New York
Presbyterian Hospital/Weill Cornell Medicine. Experiments
using samples from human subjects were conducted in
accordance with local regulations and with the approval of the
IRB at the Weill Cornell Medicine (IRB 20-03021645). No
statistical methods were used to pre-determine sample size.

Targeted Metabolomics With Nuclear
Magnetic Resonance
Venous blood was collected from donors without fasting in
heparinized tubes at the indicated days. Samples were processed
within 24 hrs from collection. Plasma was stored in aliquots at -80°C
until use. Analytes were quantified from plasma samples using
targeted high-throughput NMR metabolomics (Nightingale
Health Ltd., Helsinki, Finland) using 100-350µL aliquots. This
platform provides simultaneous quantification of routine lipids,
lipoprotein subclasses, fatty acids and their saturation, several
low-molecular weight metabolites (amino acids, ketone bodies
and glycolysis metabolites), as well as a set of clinically validated
biomarkers associated with different metabolic pathways relevant
to human physiology in molar concentration units. One
advantage of the platform is that biomarkers were quantified
independently for each sample without information from
reference samples in the same well-plate or same cohort,
enabling absolute quantification. In total, 249 measures were
produced with 148 in absolute molar quantification. This
platform (same metabolite measurements) has been extensively
described and validated across large cohorts (68, 69).

Analysis of Nuclear Magnetic
Resonance Data
In order to categorize the NMR analytes biophysically and
functionally, we used data distributed by the ggforestplot package
(36) (https://github.com/NightingaleHealth/ggforestplot) and
complemented them with variables representing lipoprotein
particle size and density according to the variable names. Values
of replicability per analyte were extracted from measurements of
technical replicates performed by Nightingale Health Ltd. publicly
available at: https://biobank.ndph.ox.ac.uk/showcase/showcase/
docs/nmrm_app2.pdf. Summary statistics for metabolite species
abundance at population scale were obtained from the publicly
available resource showcase of the UK biobank (44) (https://biobank.
ndph.ox.ac.uk/ukb/) by querying field IDs 23400 to 23578. In order
to build data-driven groups of variables, we used a standardized
and centered matrix of features with absolute measurements
only, and computed a nearest neighbor graph using 15 neighbors
as the size of the local neighborhood (scanpy.pp.neighbors).
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These were used as input for UMAP (scanpy.tl.umap) and
clustered using the Leiden algorithm (scanpy.tl.leiden), both
with default parameters using Scanpy (70).

To identify variables associated with COVID-19 severity, we
performed linear regression using a mixed effect model. The
model used age, gender, and body mass index (BMI) as
covariates, with the WHO score per sample as the dependent
variable, and fixed effects for each patient. To identify variables
associated with tocilizumab treatment, we performed linear
regression with a generalized linear model. The dependent
variable was the time in days since treatment began, and only
samples of patients which received treatment were included.
Covariates of age, gender, and body mass index (BMI) were also
used. We ensured there was no collinearity between predictors by
measuring their variance inflation factor using statsmodels. We
fit the models for all variables, inspected the distribution of
residuals and for the mixed effect model also compared the
estimated coefficients to a generalized linear model with no
blocking on patient, and to models not incorporating the
covariates. We found that the estimated effect of COVID-19
severity between these models was highly similar (r2 = 0.985).
p-values were corrected for multiple testing using the Benjamini-
Hochberg FDR method. To assess whether the group of features
significantly associated with COVID-19 severity or tocilizumab
treatment were enriched in any particular biophysical and
functional classes, we performed enrichment analysis using the
annotation classes of the metabolites and parametric analysis of
gene set enrichment (71) (PAGE) as implemented in https://
github.com/afrendeiro/page-enrichment.

Generation of a Latent Space for Precision
Disease Monitoring
To establish a latent space embedding using the metabolomics
data, we performed spectral embedding of the metabolomics data
(sklearn.manifold.SpectralEmbedding). We also compared the
results of this method to the following methods for
dimensionality reduction: principal component analysis (PCA),
non-negative matrix factorization (NMF), multidimensional
scaling (MDS), non-linear dimensionality reduction through
isometric mapping (Isomap), t-distributed stochastic neighbor
embedding (72) (t-SNE), uniform manifold approximation and
projection (UMAP), as implemented in scikit-learn, diffusion
maps (DiffMap) as implemented in Scanpy (70), and minimum-
distortion embedding (70, 73) (MDE) from the PyMDE package.
Spectral embedding produces exactly the same results as
diffusion maps (DiffMap) with default parameters if the input
matrix is standardized and centered. To order variables along a
gradient within the derived latent space across its two
dimensions, we correlated the original features with each latent
vector, scaled each to the unit range and multiplied the values of
dimension 1 and 2. Then, to order samples along this gradient,
we simply computed the correlation of each sample with the
previously derived vector.

Inference of clinical parameters distribution within the latent
space was done as previously (74): two bivariate gaussian kernel
density estimators were fitted on the coordinates of the samples
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with the difference being that one was weighted by the respective
value of the sample in the clinical parameter. The final values are
given by the difference between the two estimators. The
compound measure of relative risk is the average of these
estimations for the WHO score, hospitalization, intubation,
and death.

To generate a vector field of patient movement through the
latent space, we extracted vectors representing the movement of
each sample at each timepoint by dividing the euclidean distance
between points by the time between each two consecutive
timepoints. Then, we interpolated these values across the two-
dimensional latent space (scipy.interpolate.griddata). The total
velocity of each patient in the space was calculated as the total
distance over the length of the timeline (first to last NMR
sample). To derive a score of COVID-19 severity for each
sample, we also separated features dependent on the sign of
the coefficients of the mixed effects model and calculated the
difference in the mean of up-regulated features and mean down-
regulated features scaled by their relative size.

Joint Analysis of Nuclear Magnetic
Resonance and Flow Cytometry Datasets
In order to understand the relationship between metabolic
variables and immune populations, we performed Ridge
regression between the NMR and flow cytometry datasets with
hyperparameter optimization using random search cross-
validation (sklearn.model_selection.RandomizedSearchCV) for
the alpha parameter sampled from a log-uniform distribution
with parameters a = 1e-20, and b = 1 for 1000 iterations. The
coefficients of the best model were highly regularized (alpha =
0.979196) and were used to represent the relationship between
metabolic and immune population variables.

To produce a joint embedding of metabolic and immune data
for each patient timepoint, we employed regularized canonical
correlation analysis (75) (RCCA) in the Python implementation
pyrcca. We performed hyperparameter optimization with grid
search cross validation using a number of canonical components
between 4 and 8, and a regularization parameter between 1e-3
and 1e3. The best number of canonical components was 6 and
the regularization parameter was 90. The separation of groups of
samples dependent on clinical parameters was assessed with a
silhouette score and an analysis of variance (ANOVA) test on the
first 2 canonical components only.

To produce a stratification of patients based on the joint
projection of the two datasets in the RCCA space by correlating
samples in a pairwise fashion and extracting the first 6 splits of a
dendrogram derived from hierarchical clustering of the
correlation coefficients. The association of clinical or immune-
metabolic variables with the derived patient groups was
performed by fitting a linear model explaining those variables
using the patient groups. In the case of immune-metabolic data,
only the top 3 variables per group were chosen for visualization.

Software used: Python version 3.8.2, numpy (76) 1.21.0, scipy
(77) 1.7.0, statsmodels (78) 0.12.2, scikit-learn (79) 0.24.2, scanpy
(70) 1.8.0, pymde (73) 0.1.12, pingouin (80) 0.3.12, and pyrcca
(75) 0.1.
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Supplementary Figure 1 | Characterization of the NMR metabolomics panel.
(A–C) Composition of the panel dependent on the biophysical characteristics of the
analytes from A to C with increased granularity. (D, E) Composition of the
lipoprotein particle variables in the panel depending on their density (D) and size (E).
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(F) Absolute abundance of metabolites depending on their density or size. (G)
Measures of reproducibility and signal-to-noise for all metabolites in the panel. (H)
Relationship between mean and variance for all variables in the panel. (I) Pair-wise
correlation of metabolite abundance.

Supplementary Figure 2 | Metabolic changes associated with COVID-19
severity. (A) Number of significant (p < 0.05 FDR) variables for a joint model of
COVID-19 severity, patient age, BMI, and race. (B) Volcano plot of changes in
metabolites associated with COVID-19 severity. (C) Heatmap of relative metabolite
abundance for all samples where the axes have been sorted by the amount of
change. (D) Abundance of metabolites with significant association with COVID-19
severity depending on WHO score.

Supplementary Figure 3 | Metabolic and clinical association of disease severity.
(A) Distribution of log fold-changes in lipoprotein particle metabolites depending on
their size (upper row) or density (lower row). The coefficients represent the change
associated with hospitalization, death and disease severity. (B) Volcano plot of
clinical variables associated with COVID-19 severity in our cohort. (C) Distribution of
clinical parameters in the samples dependent of COVID-19 severity. The horizontal
grey areas represent a healthy range for each parameter.
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Supplementary Figure 4 | Metabolic changes associated with tocilizumab
treatment in COVID-19. (A) Association of metabolite abundance with the time of
tocilizumab treatment for all metabolic species (upper panel). The lower panel
illustrates the 10 metabolites most associated in each direction. (B) Heatmap of
metabolites significantly associated with tocilizumab treatment for samples of
patients that have been treated. Volcano plot of clinical variables associated with
COVID-19 severity in our cohort. (C) Enrichment of metabolite classes in the change
with tocilizumab treatment. (D–F) Abundance of metabolites with discordant (D),
concordant (E) or indifferent (D) change between COVID-19 severity and
tocilizumab treatment for treated patients.

Supplementary Figure 5 | Metabolic and clinical association of disease severity.
(A) Latent space as in Figure 2A, but illustrating the distribution of additional clinical
factors. (B) Association analysis of clinical variables with the latent space axes. p-
values have been adjusted with the Benjamini-Hochberg FDR method. (C)
Difference between bivariate kernel density estimates that have been weighted with
the clinical parameters of the samples. The overall risk is the mean of the four clinical
parameters in the first row of plots. (D–F) Latent space embeddings of metabolomic
data using alternative methods. Samples have been colored by the WHO
score scale.
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