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Development of a selective agonist 
for relaxin family peptide receptor 3
Dian Wei, Meng-Jun Hu, Xiao-Xia Shao, Jia-Hui Wang, Wei-Han Nie, Ya-Li Liu, Zeng-Guang Xu 
& Zhan-Yun Guo

Relaxin family peptides perform a variety of biological functions by activating four G protein-coupled 
receptors, namely RXFP1–4. Among these receptors, RXFP3 lacks a specific natural or synthetic agonist 
at present. A previously designed chimeric R3/I5 peptide, consisting of the B-chain of relaxin-3 and 
the A-chain of INSL5, displays equal activity towards the homologous RXFP3 and RXFP4. To increase 
its selectivity towards RXFP3, in the present study we conducted extensive mutagenesis around the 
B-chain C-terminal region of R3/I5. Decreasing or increasing the peptide length around the B23–B25 
position dramatically lowered the activation potency of R3/I5 towards both RXFP3 and RXFP4. 
Substitution of B23Gly with Ala or Ser converted R3/I5 from an efficient agonist to a strong antagonist 
for RXFP3, but the mutants retained considerable activation potency towards RXFP4. Substitution of 
B24Gly increased the selectivity of R3/I5 towards RXFP3 over the homologous RXFP4. The best mutant, 
[G(B24)S]R3/I5, displayed 20-fold higher activation potency towards RXFP3 than towards RXFP4, 
meanwhile retained full activation potency at RXFP3. Thus, [G(B24)S]R3/I5 is the best RXFP3-selective 
agonist known to date. It is a valuable tool for investigating the physiological functions of RXFP3, and 
also a suitable template for developing RXFP3-specific agonists in future.

Relaxin family is a group of peptide hormones, including relaxin (primates have two relaxin genes), relaxin-3, 
and insulin-like peptide 3–6 (INSL3-6)1–5. These peptides perform a variety of biological functions1–5, such as 
regulating reproduction, food intake, stress responses, and glucose homeostasis. To date, four formerly orphan G 
protein-coupled receptors (GPCRs) have been identified as their receptors and renamed relaxin family peptide 
receptor 1–4 (RXFP1–4). Relaxin and INSL3 are the cognate agonists of the homologous RXFP1 and RXFP2, 
respectively6, 7. Relaxin-3 and INSL5 are the cognate agonists of the homologous RXFP3 and RXFP4, respec-
tively8, 9. In addition, relaxin-3 can also activate RXFP1 and RXFP4 in vitro with high efficiency10, 11.

Among these receptors, the homologous RXFP1 and RXFP2 belong to the leucine-rich repeat 
(LRR)-containing GPCR subfamily, and both contain a large extracellular N-terminal domain with 10 LRRs 
and a unique N-terminal low-density lipoprotein receptor type A (LDLa) module. The LRR module forms the 
high affinity ligand-binding site that primarily interacts with the essential B-chain residues of their respective 
ligand12–15, and the LDLa module is critical for receptor activation16–19. The extracellular loops form a low affinity 
ligand-binding site that primarily interacts with the A-chain residues of their respective ligand10, 20–23. By contrast, 
the homologous RXFP3 and RXFP4 are classical peptide receptors, with a short N-terminal domain, and thus, 
their extracellular loops form the primary ligand-binding site. Indeed, recent studies suggest that a highly con-
served WxxExxxD motif at the extracellular end of the second transmembrane domain of RXFP3 and RXFP4 
plays a critical role by forming electrostatic and hydrophobic interactions with the positively charged B-chain Arg 
residues and the large aromatic B-chain C-terminal Trp residue of the ligand24–29.

RXFP3 and its cognate agonist relaxin-3 are primarily expressed in the brain and this receptor–ligand pair 
is implicated in the regulation of food intake, stress responses, arousal and exploratory behaviors30–34. However, 
RXFP3 lacks a specific natural or synthetic agonist at present. Its cognate agonist relaxin-3 can also efficiently acti-
vate RXFP1 and RXFP4. A previously designed chimeric R3/I5 peptide, comprising the B-chain of relaxin-3 and 
the A-chain of INSL5, is not able to activate RXFP1, but activate RXFP3 and RXFP4 with almost equal potency35. 
Some stapled relaxin-3 B-chain analogues and some simplified relaxin-3 analogues display higher selectivity 
(5–30-fold) for RXFP3 than for the homologous RXFP4, but their activity towards RXFP3 is much lower than 
that of wild-type relaxin-3 or R3/I536, 37. Previous studies disclosed that the B-chain C-terminal B26Arg and 
B27Trp are essential for relaxin-3 or R3/I5 to activate receptor RXFP3 and RXFP424–29. Our recent study revealed 
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that changing the B-chain C-terminal conformation of R3/I5 can selectively abolish its activity towards RXFP338. 
Thus, we speculated that engineering of the B-chain C-terminal region of R3/I5 might increase its selectivity 
towards RXFP3.

As shown in Fig. 1, the two-chain R3/I5 peptide folds into a globular structure similar to that of relaxin-339, 40: 
Both have a folded-back B-chain C-terminus presumably due to presence of two highly conserved Gly residues 
at the B23 and B24 positions. By contrast, the B-chain C-terminus of INSL5 adopts an extended α-helical confor-
mation because its corresponding positions are typically occupied by larger Ala and Ser residues41. To generate an 
agonist with higher selectivity for RXFP3, in the present study we conducted extensive mutagenesis around the 
B-chain C-terminal region of the chimeric R3/I5 peptide. On one hand, we changed the peptide length around 
the B23–B25 region by deleting some residues or inserting an additional Gly residue. Insertion or deletion in 
this region likely affects the position and orientation of the important B26Arg and B27Trp residues, and thus 
might affect the receptor selectivity of R3/I5. On the other hand, we substituted the highly conserved B23Gly, 
B24Gly, and B25Ser residues with some other amino acids. These substitutions likely affect the flexibility of the 
B-chain C-terminus and thus might modulate receptor selectivity of R3/I5. Using these approaches, we obtained 
a selective and fully active agonist for RXFP3, [G(B24)S]R3/I5, that displayed 20-fold higher activation potency 
towards RXFP3 than towards RXFP4, and retained full activity at RXFP3 compared with wild-type R3/I5. To our 
knowledge, [G(B24)S]R3/I5 is the best RXFP3-selective agonist known to date.

Results
Preparation of R3/I5 mutants.  In the present study, we conducted extensive mutagenesis around the 
B-chain C-terminal region of R3/I5 and generated 14 mutants. All mutants were overexpressed in Escherichia 
coli as a single-chain precursor according to our previously reported procedure38, 42. After solubilisation from 
inclusion bodies using an S-sulfonation approach, mutant precursors were purified by immobilized metal ion 
affinity chromatography and subjected to in vitro refolding. Thereafter, refolded precursors were purified by high 
performance liquid chromatography (HPLC) and sequentially treated with endoproteinase Lys-C, papaya glu-
taminyl cyclase, and carboxypeptidase B, according to our previous procedure38, 42. The resultant mature mutants 
were further purified by HPLC and their identities were confirmed by mass spectrometry. All mutants displayed 
the expected molecular masses, indicating the presence of the expected mutation and the correct processing of 
the mutant precursors (Supplementary Table S1). Purity of these mutants was confirmed by HPLC analysis using 
an analytical C18 reverse-phase column (Fig. 2A): all displayed a single symmetric peak, indicating their homo-
geneity. The secondary structure of these mutants was analysed by circular dichroism spectroscopy (Fig. 2B): 
their spectra were similar to that of the template, suggesting that mutation did not disturb the overall structure 
of R3/I5.

Figure 1.  Amino acid sequence and three-dimensional structure of the chimeric R3/I5 peptide. (A) Amino 
acid sequence and disulfide linkages of the recombinant R3/I5 peptide. Disulphide linkages are shown as lines. 
For the B-chain, the B23–B25 position is shown in red, the introduced N-terminal pyroglutamate residue (pE) 
in black, and other parts in blue. For the A-chain, the N-terminal solubilising tag is shown in black, and other 
parts in green. (B) The previously reported solution structure of R3/I5 (PDB code 2K1V)39. The A-chain is 
shown in green and the B-chain in blue, except the B23–B25 position in red.
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Insertion or deletion in B23–B25 region affects the activity of R3/I5 towards RXFP3 and 
RXFP4.  To modulate the selectivity of R3/I5 towards RXFP3 and RXFP4, we first tried changing the peptide 
length around the B23–B25 position. This region is highly conserved as Gly-Gly-Ser from mammals, birds, rep-
tiles, to fishes (Supplementary Fig. S1). To increase the peptide length, we inserted a Gly residue between B23 and 
B24. Unfortunately, the resultant mutant, designated [+G(B23–24)]R3/I5, displayed ~100-fold lower activation 
potency towards both RXFP3 and RXFP4, although the binding potency for both receptors was comparable with 
R3/I5 (Figs 3A,B and 4A,B and Table 1). Thus, increasing the length at this position had a serious detrimental 
effect on the activity of R3/I5 towards both RXFP3 and RXFP4.

Alternatively, we shortened the peptide length around B23–B25 position of R3/I5 by removing some residues. 
After B23Gly was removed, the resultant [∆B23]R3/I5 displayed ~300-fold lower activation potency towards both 
RXFP3 and RXFP4, although it retained considerable binding potency for both receptors (Figs 3A,B and 4A,B 
and Table 1). When both B23Gly and B24Gly were removed, the resultant [∆B23–24]R3/I5 lost all activation 
potency towards RXFP3, but the binding potency for this receptor was only ~3-fold lower than that of R3/I5 
(Figs 3A and 4A and Table 1). Thus, [∆B23–24]R3/I5 was a strong antagonist for RXFP3. By contrast, [∆B23–24]
R3/I5 exhibited ~1000-fold lower activation potency and ~10-fold lower binding potency towards RXFP4 com-
pared with R3/I5 (Figs 3B and 4B and Table 1). Interestingly, further removal of B25Ser ameliorated the activity 
loss for both receptors: the resultant [∆B23–25]R3/I5 displayed ~30-fold lower activation potency and almost 
normal binding potency for both RXFP3 and RXFP4, compared with R3/I5 (Figs 3A,B and 4A,B and Table 1).

In summary, insertion or deletion in B23–B25 region had serious detrimental effects on the activation potency 
of R3/I5 for both RXFP3 and RXFP4 in most cases, although the binding potency for both receptors was largely 
unaffected. Thus, it seems that increasing the selectivity of R3/I5 for RXFP3 over RXFP4 cannot be achieved by 
changing the peptide length around this region.

Substitution of B23Gly selectively abolishes the activation potency of R3/I5 towards 
RXFP3.  When the highly conserved B23Gly was replaced by a slightly larger Ala or Ser residue, the result-
ant [G(B23)A]R3/I5 and [G(B23)S]R3/I5 lost all activation potency towards RXFP3, but both mutants retained 
considerable binding potency towards this receptor, especially [G(B23)A]R3/I5 (Figs 3C and 4C and Table 1). 
Thus, the B23 position appears to be an agonist/antagonist switch of R3/I5 for RXFP3: when occupied by a Gly 
residue, the peptide is an efficient agonist for RXFP3, but an Ala or Ser residue at this position results in a strong 
antagonist. By contrast, both [G(B23)A]R3/I5 and [G(B23)S]R3/I5 retained activation potency towards RXFP4, 
although they were ~100-fold less potent than R3/I5 (Fig. 4D and Table 1). However, both mutants retained high 
binding potency towards RXFP4, especially [G(B23)A]R3/I5 (Fig. 3D and Table 1).

In summary, replacement of B23Gly with Ala or Ser abolished the activation potency of R3/I5 towards RXFP3, 
but remained low activation potency towards RXFP4. Thus, it does not appear that increasing the selectivity of 
R3/I5 for RXFP3 over RXFP4 can be achieved by substitution of B23Gly.

Substitution of B24Gly increases the selectivity of R3/I5 for RXFP3 over RXFP4.  When the con-
served B24Gly was replaced by a small Ala residue, the resultant [G(B24)A]R3/I5 not only retained full binding 
potency for both RXFP3 and RXFP4 (Fig. 3E,F and Table 1), but also retained full activation potency towards 
both receptors (Fig. 4E,F and Table 1). Thus, Ala replacement of B24Gly does not change the selectivity of R3/I5 
towards RXFP3 and RXFP4.

When B24Gly was replaced by a Ser residue, the resultant [G(B24)S]R3/I5 also retained full activation and 
binding potencies towards RXFP3, compared with R3/I5 (Figs 3E and 4E and Table 1). However, this mutant 
displayed 20-fold lower activation potency and 2-fold lower binding potency towards RXFP4, compared with R3/

Figure 2.  Characterisation of the mature R3/I5 mutants. (A) Purity analysis of the mature R3/I5 mutants by 
C18 reverse-phase HPLC. (B) Structural analysis of the mature R3/I5 mutants by circular dichroism.
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Figure 3.  Binding potency of the mature R3/I5 mutants towards RXFP3 and RXFP4. A NanoLuc-conjugated 
R3/I5 peptide was used as the tracer and HEK293T cells transiently overexpressing human RXFP3 or human 
RXFP4 were used as the receptor source. Nonspecific binding was determined by competition with 1.0 μM R3/
I5. Specific binding data are expressed as means ± SE (n = 3) and fitted to sigmoidal curves using SigmaPlot 
10.0 software. The calculated pIC50 values are summarized in Table 1. Data are representative of at least two 
independent assays that gave essentially same results.
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Figure 4.  Activation potency of the mature R3/I5 mutants towards RXFP3 and RXFP4. HEK293T cells 
transiently cotransfected with a CRE-controlled NanoLuc reporter vector and the expression construct of 
human RXFP3 or human RXFP4 were used for activation assays. The measured bioluminescence data are 
expressed as means ± SE (n = 3) and fitted to sigmoidal or linear curves using SigmaPlot 10.0. The calculated 
pEC50 values are summarized in Table 1. Data are representative of at least two independent assays that gave 
essentially same results.
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I5 (Figs 3F and 4F and Table 1). As a result, [G(B24)S]R3/I5 displayed 20-fold higher activation potency towards 
RXFP3 than towards RXFP4 (Table 1). Since R3/I5 displayed almost equal activation potency towards RXFP3 
and RXFP4, Ser replacement of B24Gly led to 20-fold increase of the selectivity of R3/I5 for RXFP3 over RXFP4, 
suggesting that the B24 position is a tuning site for enhancing the selectivity of R3/I5 towards RXFP3.

We also replaced B24Gly with Val, Thr, and Glu to test their effect on the receptor selectivity of R3/I5. When 
B24Gly was replaced by a hydrophobic Val residue, the resultant [G(B24)V]R3/I5 displayed ~10-fold higher 
activation potency towards RXFP3 than towards RXFP4 (Figs 3E,F and 4E,F and Table 1), suggesting that replace-
ment with Val could also increase the selectivity of R3/I5 for RXFP3 over RXFP4. Unfortunately, this mutant 
displayed ~10-fold lower activation potency and ~5-fold lower binding potency for RXFP3, compared with R3/I5 
(Figs 3E,F and 4E,F and Table 1), suggesting it is not a good RXFP3-selective agonist. When B24Gly was replaced 
by a Thr residue, the resultant [G(B24)T]R3/I5 displayed only ~2-fold higher activation potency towards RXFP3 
than towards RXFP4 (Figs 3E,F and 4E,F and Table 1). Meanwhile, its activation potency for RXFP3 was ~20-fold 
lower than that of R3/I5, suggesting it is not a selective agonist for RXFP3. When B24Gly was replaced by the 
negatively charged Glu residue, the resultant [G(B24)E]R3/I5 lost all activation potency towards both RXFP3 and 
RXFP4 (Fig. 4E,F and Table 1), although it retained low binding potency towards both receptors (Fig. 3E,F and 
Table 1). In summary, it appears that [G(B24)S]R3/I5 is the best RXFP3-selective agonist obtained by replacement 
of B24Gly.

To further increase the selectivity of [G(B24)S]R3/I5 towards RXFP3, we tried introducing mutations at the 
conserved B25 position. When B25Ser was replaced by Ala, Gly, or Thr, the resultant double mutants all dis-
played over 500-fold lower activation potency for both RXFP3 and RXFP4, compared with R3/I5 (Fig. 4G,H 
and Table 1), although their binding potency for both receptors was largely unaffected (Fig. 3G,H and Table 1). 
Thus, B25Ser is important for the activation potency of R3/I5 towards both RXFP3 and RXFP4, and this position 
appears to be unusable for tuning the receptor selectivity of R3/I5.

In summary, substitution of B24Gly with Ser, Val, or Thr could increase the selectivity of R3/I5 towards 
RXFP3 over the homologous RXFP4. The best mutant, [G(B24)S]R3/I5, displayed 20-fold higher activation 
potency towards RXFP3 than towards RXFP4, meanwhile retained full activation potency at RXFP3 compared 
with wild-type R3/I5. To our knowledge, [G(B24)S]R3/I5 is the best RXFP3-selective agonist known to date. It 
is a valuable tool for studying the physiological functions of RXFP3, and also a suitable template for developing 
RXFP3-specific agonists in future.

Peptides

RXFP3 RXFP4

pIC50 (IC50) pEC50 (EC50) pIC50 (IC50) pEC50 (EC50)

R3/I5 8.45 ± 0.03 
(3.54 ± 0.26)

10.35 ± 0.05 
(0.045 ± 0.005)

8.23 ± 0.03 
(5.88 ± 0.42)

10.22 ± 0.05 
(0.060 ± 0.008)

[+G(B23-24)]R3/I5 8.10 ± 0.03 
(7.94 ± 0.57)

7.92 ± 0.04 
(12.02 ± 1.16)

8.14 ± 0.04 
(7.24 ± 0.70)

8.37 ± 0.06 
(4.26 ± 0.63)

[∆B23]R3/I5 8.15 ± 0.04 
(7.07 ± 0.69)

7.49 ± 0.07 
(32.35 ± 5.66)

7.42 ± 0.03 
(38.01 ± 2.72)

7.75 ± 0.07 
(17.78 ± 3.11)

[∆B23-24]R3/I5 7.99 ± 0.04 
(10.23 ± 0.99) N.D. (N.D.) 7.36 ± 0.03 

(43.65 ± 3.12)
7.31 ± 0.06 
(48.97 ± 7.26)

[∆B23-25]R3/I5 8.51 ± 0.02 
(3.09 ± 0.14)

8.74 ± 0.04 
(1.81 ± 0.18)

8.10 ± 0.02 
(7.94 ± 0.37)

9.10 ± 0.05 
(0.79 ± 0.10)

[G(B23)A]R3/I5 8.56 ± 0.04 
(2.75 ± 0.26) N.D. (N.D.) 8.20 ± 0.05 

(6.30 ± 0.77)
8.64 ± 0.07 
(2.29 ± 0.40)

[G(B23)S]R3/I5 7.79 ± 0.04 
(16.21 ± 1.57) N.D. (N.D.) 7.58 ± 0.06 

(26.30 ± 3.89)
8.12 ± 0.06 
(7.58 ± 1.12)

[G(B24)A]R3/I5 8.56 ± 0.04 
(2.75 ± 0.26)

10.29 ± 0.04 
(0.051 ± 0.005)

8.22 ± 0.04 
(6.02 ± 0.58)

10.14 ± 0.04 
(0.072 ± 0.007)

[G(B24)S]R3/I5 8.56 ± 0.04 
(2.75 ± 0.26)

10.25 ± 0.04 
(0.056 ± 0.006)

8.02 ± 0.04 
(9.54 ± 0.93)

8.92 ± 0.05 
(1.20 ± 0.14)

[G(B24)V]R3/I5 7.78 ± 0.06 
(16.59 ± 2.46)

9.29 ± 0.06 
(0.51 ± 0.08)

7.60 ± 0.04 
(25.11 ± 2.43)

8.27 ± 0.05 
(5.37 ± 0.65)

[G(B24)T]R3/I5 8.18 ± 0.05 
(6.60 ± 0.81)

9.05 ± 0.05 
(0.89 ± 0.11)

7.74 ± 0.05 
(18.19 ± 2.22)

8.57 ± 0.05 
(2.69 ± 0.32)

[G(B24)E]R3/I5 7.01 ± 0.05 
(97.72 ± 10.63) N.D. (N.D.) 6.96 ± 0.05 

(109.6 ± 13.4) N.D. (N.D.)

[G(B24)S,S(B25)A]R3/I5 8.27 ± 0.04 
(5.37 ± 0.51)

7.85 ± 0.05 
(14.12 ± 1.72)

8.30 ± 0.06 
(5.01 ± 0.74)

7.63 ± 0.07 
(23.44 ± 4.10)

[G(B24)S,S(B25)G]R3/I5 8.36 ± 0.05 
(4.36 ± 0.53)

7.65 ± 0.10 
(22.38 ± 5.80)

8.05 ± 0.06 
(8.91 ± 1.32)

7.08 ± 0.05 
(83.17 ± 10.15)

[G(B24)S,S(B25)T]R3/I5 8.13 ± 0.04 
(7.41 ± 0.71)

6.94 ± 0.09 
(114.8 ± 26.5)

7.99 ± 0.05 
(10.23 ± 1.25)

7.33 ± 0.07 
(46.77 ± 8.18)

Table 1.  Summary of the measured pIC50 and pEC50 values of the mature R3/I5 mutants towards human 
RXFP3 and human RXFP4. The calculated IC50 and EC50 values (in unit of nM) are listed in parentheses. The 
data are expressed as mean ± SE (N.D., not detectable).



www.nature.com/scientificreports/

7Scientific Reports | 7: 3230  | DOI:10.1038/s41598-017-03465-7

Discussion
In the present work, we developed a selective and fully active agonist for RXFP3, [G(B24)S]R3/I5, by extensive 
mutagenesis of the B-chain C-terminal region of the chimeric R3/I5 peptide. The B24Gly residue is highly con-
served in relaxin-3s from different species (Fig. S1). In protein engineering experiments, highly conserved resi-
dues are typically not chosen in order to avoid disturbing protein function. However, our present work showed 
that the highly conserved B24Gly is completely tolerant of Ala or Ser replacement in terms of RXFP3 binding and 
activation. Thus, conserved residues can also be selected for protein engineering in some cases.

Generation of a specific agonist for RXFP3 has proved challenging for two reasons. The homologous RXFP4 
has less stringent requirements for agonists compared with RXFP3, thus agonists for RXFP3 generally display 
high cross activity with RXFP4. Additionally, the three-dimensional structures of RXFP3 and RXFP4 are not 
yet available, thus the rational design of a specific agonist for RXFP3 is difficult or even impossible. As a result, 
trial-and-error methods must be employed that rely on a large number of mutant peptides. It is well known that 
relaxin family peptides are difficult to produce due to their complex primary structure (two polypeptide chains 
and three disulfide linkages). Although the separate A- and B-chains can be conveniently prepared by solid-phase 
peptide synthesis nowadays, combination of the synthetic chains is still challenging. In recent years, our labora-
tory established an efficient approach for producing mature relaxin family peptides based on overexpression of 
designed single-chain precursors in E. coli and subsequent in vitro refolding and enzymatic maturation42–47. Using 
this approach, mutant peptides can be quickly prepared at low cost. In the present work, we generated 14 R3/I5 
mutants and obtained a selective and fully active agonist for RXFP3 from them.

The cognate agonist of RXFP3, relaxin-3, can also efficiently activate RXFP4 and RXFP1. In the brain, RXFP4 
and RXFP1 are also expressed, thus a specific agonist will be helpful for elucidating RXFP3-mediated physio-
logical functions. As the best RXFP3-selective agonist known to date, [G(B24)S]R3/I5 can serve this purpose in 
future studies. On the other hand, [G(B24)S]R3/I5 is also a suitable template for developing RXFP3-specific ago-
nists. In future, we will try introducing mutation at other positions of [G(B24)S]R3/I5 in order to further improve 
its selectivity towards RXFP3.

Methods
Site-directed mutagenesis of R3/I5 and preparation of R3/I5 mutants.  Site-directed mutagenesis 
of R3/I5 was conducted using the QuikChange method. The previously generated expression construct pET/R3I5 
for overexpression of a single-chain R3/I5 precursor in E. coli was used as the mutagenesis template42. After the 
expected mutations were confirmed by DNA sequencing, mutant R3/I5 precursors were overexpressed in E. coli 
as inclusion bodies and solubilised through an S-sulfonation approach as previously described38, 42. S-sulfonated 
precursors were purified by immobilized metal ion affinity chromatography, and subjected to in vitro refolding as 
described in our previous studies38, 42. Refolded precursors were purified by HPLC using a semi-preparative C18 
reverse-phase column (Zorbax 300SB-C18, 9.4 × 250 mm, Agilent Technology, Santa Clara, CA, USA), and then 
sequentially treated with endoproteinase Lys-C, papaya glutaminyl cyclase, and carboxypeptidase B, as described 
in our previous studies38, 42. Finally, mature R3/I5 mutants were purified by HPLC using an analytical C18 reverse-
phase column (Zorbax 300SB-C18, 4.6 × 250 mm, Agilent Technology) and their identity confirmed by electros-
pray mass spectrometry on a QTRAP mass spectrometer (Applied Biosystems, Foster City, CA, USA).

Circular dichroism spectroscopy.  Mature R3/I5 mutants were dissolved in 1.0 mM aqueous hydrochloride 
solution (pH 3.0) and their concentrations were determined by absorbance at 280 nm using an extinction coeffi-
cient (ε280nm) of 7365 M−1·cm−1. Their final concentrations were adjusted to 20 μM in 1.0 mM aqueous hydrochlo-
ride solution (pH 3.0) for circular dichroism measurement, which was performed on a Jasco-815 spectrometer 
at room temperature. Spectra were scanned from 250 nm to 190 nm using a quartz cuvette with a 1.0 mm path 
length.

Receptor binding assays.  Receptor binding assays of the mature R3/I5 mutants were conducted using a 
NanoLuc-conjugated R3/I5 peptide as a tracer and human embryonic kidney (HEK) 293T cells transiently over-
expressing human RXFP3 or human RXFP4 as a receptor source, as described previously28, 38. Briefly, HEK293T 
cells were transiently transfected with an expression construct of human RXFP3 or human RXFP4. On the next 
day, transfected cells were trypsinised, seeded into 96-well plates, and continuously cultured for 24–36 h to ~100% 
confluence. To initiate binding assays, medium was removed and binding solution (serum-free DMEM medium 
with 1% bovine serum albumin) containing 0.5 nM of the NanoLuc-conjugated R3/I5 tracer and various concen-
trations of competitor was added (100 μl/well). After incubation at 21 °C for 2 h, binding solution was removed 
and cells were washed twice with ice-cold phosphate-buffered saline (200 μl/well for each wash). Thereafter, cells 
were lysed by lysis solution (100 μl/well, Promega, Madison, WI, USA) and cell lysates were transferred to a white 
opaque 96-well plate (50 μl/well). After mixing with freshly diluted substrate (50 μl/well), bioluminescence was 
immediately measured on a SpectraMax M5 plate reader (Molecular Devices, Sunnyvale, CA, USA) in lumines-
cence mode. Nonspecific binding was determined by competition with 1.0 μM wild-type R3/I5. The calculated 
specific binding data were expressed as means ± standard error (SE; n = 3) and fitted to sigmoidal curves using 
SigmaPlot 10.0 software.

Receptor activation assays.  Receptor activation assays of the mature R3/I5 mutants were conducted using 
the cAMP-response element (CRE)-controlled NanoLuc reporter as described previously28, 38. Briefly, HEK293T 
cells were transiently cotransfected with the NanoLuc reporter vector pNL1.2/CRE and the expression construct 
of human RXFP3 or human RXFP4. On the next day, transfected cells were trypsinised, seeded into 96-well 
plates, and continuously cultured for 24–36 h to ~90% confluence. To initiate activation assays, medium was 
removed and activation solution (serum-free DMEM medium plus 1% bovine serum albumin) containing 1.0 μM 
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of forskolin and various concentrations of peptide was added (100 μl/well). After continuous culturing at 37 °C for 
4 h, activation solution was removed and cells were lysed with lysis solution (100 μl/well, Promega). Cell lysates 
were then transferred to a white opaque 96-well plate (50 μl/well), mixed with freshly diluted substrate (50 μl/
well), and bioluminescence was immediately measured on a SpectraMax M5 plate reader (Molecular Devices) in 
luminescence mode. The measured data were expressed as means ± SE (n = 3) and fitted to sigmoidal or linear 
curves using SigmaPlot 10.0 software.
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