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Abstract: Astrocytes provide trophic and metabolic support to neurons and modulate circuit for-
mation during development. In addition, astrocytes help maintain neuronal homeostasis through
neurovascular coupling, blood–brain barrier maintenance, clearance of metabolites and nonfunctional
proteins via the glymphatic system, extracellular potassium buffering, and regulation of synaptic
activity. Thus, astrocyte dysfunction may contribute to a myriad of neurological disorders. Indeed,
astrocyte dysfunction during development has been implicated in Rett disease, Alexander’s disease,
epilepsy, and autism, among other disorders. Numerous disease model mice have been established to
investigate these diseases, but important preclinical findings on etiology and pathophysiology have
not translated into clinical interventions. A multidisciplinary approach is required to elucidate the
mechanism of these diseases because astrocyte dysfunction can result in altered neuronal connectivity,
morphology, and activity. Recent progress in neuroimaging techniques has enabled noninvasive in-
vestigations of brain structure and function at multiple spatiotemporal scales, and these technologies
are expected to facilitate the translation of preclinical findings to clinical studies and ultimately to
clinical trials. Here, we review recent progress on astrocyte contributions to neurodevelopmental
and neuropsychiatric disorders revealed using novel imaging techniques, from microscopy scale to
mesoscopic scale.

Keywords: astrocyte; development; glymphatic system; neuropsychiatric disease; microscopic imaging;
functional imaging

1. Introduction

The adult human brain contains roughly as many glial cells as neurons (84.6 ± 9.8 bil-
lion versus 86.1 ± 8.1 billion), and glial cells outnumber neurons by 3.76-fold in the cerebral
cortex [1], underscoring their developmental and physiological importance. In mouse cor-
tex, the ratio of astrocytes to neurons is even greater (8.4:1) across all regions of gray matter
(GM) [2]. Astrocytes have multiple biological functions, including organization of the blood–
brain barrier [3], clearance of metabolites [4], modulation of synaptic function to control
NMDAR-dependent plasticity [5], and perisynaptic glutamate and potassium clearance [6].
Astrocyte dysfunction is implicated in numerous neurodevelopmental, neurodegenerative,
and neuropsychiatric disorders such as Alexander’s disease [7], Rett syndrome [8–11], frag-
ile X syndrome [12], epilepsy [13–15], and Huntington’s disease (HD) [16]. To understand
the causes of these congenital diseases and create effective treatments, it is essential to
fully elucidate the mechanisms of astrocyte development and the consequences of these
developmental processes on brain structure and function. In the present review, we describe
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some of the latest technological advances in mesoscopic and microscopic imaging that are
broadening our understanding of astrocyte development and the contributions of astrocyte
dysfunction to neurodevelopmental and neuropsychiatric diseases.

2. Astrocyte Development in Cerebral Cortex

In the past three decades, technologies such as mouse transgenics, gene expression
analyses, high-throughput single-cell DNA and RNA sequencing, and multiscale imaging
analyses have vastly expanded our understanding of the development and functions of as-
trocytes. Morphological, lineage, and gene expression analyses, for example, have enabled
the distinction of two distinct astrocyte subtypes, (1) protoplasmic and (2) fibrous [17],
in rodents, as well as two further subclasses, (3) interlaminar astrocytes and (4) varicose-
projection astrocytes, in humans [18,19]. Protoplasmic astrocytes are predominant in GM,
whereas fibrous astrocytes are predominant in white matter (WM), and each type exhibits
distinct functions tailored to the local environment [19,20]. Astrocytes pass through highly
coordinated developmental stages, and it is expected that dysfunction during specific
stages and in specific regions will result in a spectrum of developmental, behavioral, and
cognitive abnormalities after birth. Therefore, it is critical to understand the processes
governing astrocyte development at the genetic and molecular levels and how disruption
of these processes can manifest in specific brain deficits. In this section, we describe the
latest findings on when, where, and how astrocytes are produced and distributed in the
developing cerebral cortex.

2.1. Spatial Origins and Heterogeneity of Astrocytes

In addition to the morphological subtyping described above, clustering has recently
been used to classify subtypes using single-cell analysis. For example, astrocytes in adult
mouse telencephalic and non-telencephalic regions can be divided into seven subtypes,
with fibrous and protoplasmic astrocytes in the telencephalon reclassified as ACTE1 and
ACTE2, respectively [21]. In the mammalian cerebral cortex, astrocytes are derived from
radial glia cells located in the ventricular zone (VZ) and ventral forebrain during develop-
ment [16,22–25]. There are two broad morphological subtypes of astrocytes, protoplasmic
and fibrous, in the cerebral cortex, and each may have different functions that depend on
distribution and gene expression profile [22]. Furthermore, subtype-specific dysfunction
may lead to unique neurological deficits.

The developing cerebral cortex is organized into six neuronal layers distinguished
by developmental order, neuronal subtype distribution, and circuit characteristics [26],
and these layers are further subdivided into tangential compartments according to the
thickness of the layer, each having a different functional circuit (termed “arealization”) [27].
Findings that astrocytes are nonrandomly distributed among radial layers and tangential
cortical areas suggest the possibility of highly localized and specialized functions for these
cells. Batiuk et al. distinguished five astrocyte subtypes (AST1-5) in cerebral cortex and
hippocampus of postnatal day 56 (P56) mice by single-cell RNA sequencing of ACSA-2-PE
immunolabeled cells [28], and they found that each subtype was differentially distributed
within these brain regions. Similarly, Lanjakornsiripa et al. found layer-specific morpho-
logical differences among astrocyte populations between the cortical upper layer (UL)
and deep layer (DL), such as distinct cell orientation, territorial volume, and arborization.
Furthermore, RNA sequencing of manually dissected UL and DL indicated molecular and
morphological differences between layers [29]. In Reeler and Dab1 KO mice, mutants in
which the six-layer laminated structure of the cortex is abnormal, the morphological and
molecular differences between UL and DL astrocytes were absent, suggesting that astrocyte
phenotype distribution depends on the establishment of neuronal layer identity during
development [29]. Bayraktar et al. established a large-area spatial transcriptomic map
(LaST) displaying astrocyte layers in three regions of mouse cerebral cortex by immuno-
histochemical staining and single-molecule fluorescence in situ hybridization (smFISH)
of 46 candidate astrocytic genes with further confirmation by single-cell RNA sequencing
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and spatial reconstruction analysis [30]. Importantly, this LaST map revealed multiple
astrocyte subtypes with layer-specific distributions, as well as tangential differences among
areas at the molecular level. Furthermore, the authors found that the identities of these
astrocyte layers were established by postmitotic neuronal cues as suggested by the altered
distributions in Reeler and Satb2 cKO mice. Analysis of Satb2 cKO mice also revealed that
acquisition of superficial layer astrocyte identity required layer 4 neuronal identity, and that
the spatial distribution of layer-specific astrocytes was inverted in Reeler mice concomitant
with the change in neuron distribution [30].

2.2. Temporal Fate Specification of Astrocytes

In mice, cortical neurogenesis begins with the production Cajal–Retzius cells in the
marginal zone and the subsequent development of first-born DL neurons around E11,
followed sequentially by production of UL neurons until E16 and then gliogenesis [2,22,31].
Neurons first migrate along the processes of radial glial cells (RGCs) extending across
the cortex, and both later-born neurons and astrocytes appear to be derived from RGCs.
For instance, single RGCs isolated from the cortical VZ by fluorescence activated cell
sorting and cultured to monitor clonal maturation differentiated into both neurons and
astrocytes [32]. A lineage study of Thy1.2-Cre mice also suggested that astrocytes were
generated from RGCs after neurogenesis [2]. Subsequent studies examined the timing
and factors controlling the transition from neurogenesis to gliogenesis. Shen et al. exam-
ined the onset of gliogenesis from RGCs using the Mosaic analysis with double markers
(MADM) system [33] and found that differentiation of cortical astrocytes from RGCs occurs
between E16 and E17 in well-defined proportions, with 60% differentiating into interme-
diate astrocyte precursor cells (I-APCs), 25% differentiating into a mixture of I-APCs and
intermediate oligodendrocyte precursor cells (I-OPCs), and 15% differentiating into I-OPCs.
The I-APCs further divided two or three times at each location to amplify the number of
astrocytes [33]. La Manno et al. established the developing mouse brain atlas from samples
of E7 to E18 mouse brain to visualize the spatiotemporal molecular profile. Focusing on
the astrocyte clusters in the mouse brain atlas, astrocyte marker genes (Gfap encoding the
astrocyte-specific intermediate filament protein glial fibrillary acid protein, Agt encoding
the angiotensin receptor, and Aqp4 encoding the aquaporin-4) were expressed around E15
concomitantly with Egfr, Dll1, Dll3, and Dll4 [34]. Di Bella et al. proposed a temporal
competence model describing the molecular developmental trajectories from cortical stem
cells to mature neurons and glia in mouse cortex between E10.5 and P4 based on scRNA-
seq data and the transcriptional similarity of pseudotime-ordered cells [35]. This model
posits that neurogenic factors promote a differentiation process in which the molecular
identity of pyramidal neurons becomes more similar to that of astrocytes. This notion
is consistent with the observation that apical progenitor cells have a common molecular
identity with pyramidal neurons and astrocytes during early development [35]. These
scRNA-seq findings further suggest that there are no strictly pre-committed progenitors in
the developing mouse cortex, but it is still uncertain whether fate-restricted progenitors
exist among cortical progenitors [36,37].

2.3. Molecular Mechanisms of the Transition from Neurogenesis to Gliogenesis

The transition from neurogenesis to gliogenesis is one of the key events during brain
development, and several molecular signaling pathways regulating this process have
been identified, such as janus kinase signal transducer and activator of transcription (JAK-
STAT), phosphatidylinositol-3 kinase (PI3K), Notch, and Smad pathways [38–41], while
extrinsic signals required for induction of astrocytic genes include epidermal growth factor,
bone morphogenetic proteins, leukemia inhibitory factor, and ciliary neurotrophic factor
(CNTF) [42–46]. In cultures of single neural progenitor cells, transition was associated
with activation of chicken ovalbumin upstream promoter transcription factors I and II
(COUP-TFI/II) [47]. More recently, zinc finger- and BTB domain-containing protein 20
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(Zbtb20) was also implicated in the regulation of the neuron–glia transition, as dysregulated
expression in vivo altered the time window for astrocyte production [48].

In addition to these genetic factors and signaling pathways, epigenetic cues are also
important modulators of neuron–glia transition. Hirabayashi et al. found that the transcrip-
tional repressor polycomb group complex (PcG) binds to and epigenetically suppresses the
proneural gene encoding neurogenin-1 (Ngn1), promoting a neurogenic to astrogenic fate
switch in the developing cortex [49]. In addition, knockout of the histone methyltransferase
enhancer of Zeste homolog 2 (Ezh2), a component of polycomb repressive complex 2
(PRC2), accelerated the onset of gliogenesis in mice [50]. High-mobility group A (HMGA)
proteins also contribute to the onset of gliogenesis by inhibiting chromatin remodeling [51].
Overexpression of HMGA2 increased the expression of insulin-like growth factor 2 mRNA
binding protein 2 (IMP2), and IMP2 perturbation directly affected astrocytic differentia-
tion, suggesting IMP2 as one potential stage-dependent regulator of cortical progenitor
differentiation potential [52]. The Hes family BHLH transcription factor 5 (Hes5) also
regulates the neurogenesis to gliogenesis transition in cortex by suppressing expression
of Hmga1/2 [53]. Other potential regulators of gliogenesis include Ngn2, Mash [54], and
HMGN [55]. Collectively, these epigenetic, genetic, and molecular signaling pathways
appear to regulate the number and distribution of astrocytes and neurons in cortex. Thus,
dysfunction or mutation in any one of these genes or processes may lead to astrocyte-
associated neurological disease.

3. Functions of Astrocytes in Neurovascular Coupling and the Glymphatic System

One of the essential roles of astrocytes is the maintenance of the local conditions
of extracellular ions, neurotransmitters, and harmful molecules such as amyloid-β via
neurovascular coupling and glymphatic system. Astrocyte dysfunction during development
may induce abnormalities in this system and, thus, result in several developmental diseases.

3.1. Functions of Astrocytes in Neurovascular Coupling

Neurovascular coupling is an essential mechanism for maintaining local metabolic
homeostasis under changing levels of neuronal activity. Briefly, neurovascular coupling
increases local arteriole blood flow (and, hence, the supply of glucose and oxygen) via
vasodilation to meet the greater energy requirements conferred by neuronal activity, par-
ticularly to clear excess extracellular K+ and synaptic glutamate accumulated from action
potential and excitatory postsynaptic potential generation (Figure 1). This mechanism
requires robust chemical signaling among neurons, astrocytes, and blood vessel cells, and
disruption of this coupling has been linked to age-related neuropsychiatric diseases [56–61].

Neurovascular coupling relies on the precise anatomic positioning of astrocyte pro-
cesses on blood vessels, mainly arteries and arterioles, and within perisynaptic spaces [56,62].
The terminal processes on vessels, termed endfeet, cover about 99% of the vessel abluminal
surface [63,64], and a single astrocyte contacts nearly 100,000 synapses in rodents and up
to two million synapses in humans [65,66]. Therefore, a single astrocyte can sense the local
rate of synaptic transmission and, in this way, modulate synaptic transmission [67] and
neurovascular coupling [56] through reciprocal communication involving extracellular
ions and various neurotransmitters, including glutamate [68]. The neurons, astrocytes, and
arteriole region linked via these signals collectively form a neurovascular unit, and these
units may function independently to regulate local metabolic conditions.
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nNOS, neuronal nitric oxide synthase.

The vasodilation of cortical penetrating arterioles is strongly reduced by inhibition
of cyclooxygenase-1 (COX-1), which is expressed in perivascular astrocytes, but not by
inhibition of cyclooxygenase-2 (COX-2), which is expressed in neurons [69]. Glutamate
released from presynaptic boutons activates astrocytic metabotropic glutamate receptor-5
(mGluR5), which increases intracellular Ca2+. Elevated Ca2+ in turn triggers the production
of epoxyeicosatrienoic acids (EETs) via cytochrome P450 2C11 epoxygenase (CYP2C11) and
prostaglandin E2 (PGE2) via COX1, which both induce vasodilation [61]. Elevated Ca2+

levels also induce potassium release from astrocytic endfeet through large conductance
calcium-dependent potassium channels (BKCa), which activate inward-rectifier potassium
channels (Kir4.1) on vascular smooth muscle cells, leading to membrane hyperpolariza-
tion, muscle relaxation, and vasodilation [70]. Glutamate in the perisynaptic space is also
taken by astrocytes through the glutamate/Na+-cotransporter to synthesize adenosine
triphosphate (ATP), which is subsequently released to stimulate purinergic receptors on
neurons, resulting in vasodilation of pial arterioles [71]. The astrocytic Ca2+ signaling
also leads to the production and release of nitric oxide (NO), a powerful vasodilator of
parenchymal arterioles, via nitric oxide synthase in endfeet [72]. Conversely, production
of 20-hydroxyeicosatetraenoic acid (20-HETE), a metabolite from arachidonic acid (AA)
released from astrocytes via cytochrome P450 4A (CYP4A), constricts vascular smooth
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muscle cells [61,73,74]. Additionally, large elevations in astrocytic endfeet Ca2+ via other
pathways induce vasoconstriction [75]. Astrocytes also communicate with neurons and
other astrocytes via gap junctions, which are composed of hemi-channels that allow tran-
scellular passage of molecules less than 1.2 kDa, including ATP, inositol 1,4,5-trisphosphate
(IP3), and Ca2+ [76,77]. This neurovascular coupling forms the basis for functional magnetic
resonance imaging (fMRI) as described below [78,79].

Neural and vascular cells have distinct embryonic origins, but the critical importance
of neurovascular coupling implies that the time courses of proliferation, migration, and
terminal differentiation must be tightly regulated. Astrocytes are also required for estab-
lishing proper blood vessel density, as inhibition of astrogliogenesis leads to a significant
decrease in vessel density and branching in cortex [80]. A delay in the development of
neurovascular coupling may have substantial effects on postnatal brain development, as
coupling appears fully complete by about 2 weeks after birth in rodents [81]. While the
developmental processes for establishing neurovascular coupling are not fully understood,
emerging evidence suggests that maldevelopment of the vascular unit may be associated
with neuropsychiatric disease.

3.2. Astrocytes and the Glymphatic System

In addition to neurovascular coupling, astrocytes mediate cerebral spinal fluid (CSF)
and interstitial fluid (ISF) flow through the parenchyma and Virchow–Robin space (Figure 2)
as part of the glymphatic system [82] that removes soluble proteins and metabolic end-
products [4,83]. The astrocyte endfeet surround the basal lamina, which extends from the
Virchow–Robin space, and regulate CSF influx via aquaporin-4 (AQP4). In addition to CSF
influx, the astrocytes also regulate CSF efflux by enlarging the CSF-drained perivascular
space. This CSF–ISF exchange is mediated by aquaporin-4 (AQP4) channels expressed
at high density on astrocyte endfeet. These water-permeable channels are also involved
in rapid astrocyte volume regulation [84,85]; thus, astrocyte volume changes can be used
as a marker for glymphatic function. The glymphatic system may be regulated by the
autonomic nervous system, as recent studies have linked glymphatic clearance of waste
molecules with vagus nerve activity [86]. The perineural spaces surrounding the cranial
nerves, including the vagus, are known to provide some level of CSF drainage to peripheral
lymphatics [87]. Additionally, vagal nerve stimulation enhanced the CSF penetrance of a
low-molecular-weight fluorescent tracer (TxRed-3kD) [88]. Vagal nerve stimulation triggers
the release of acetylcholine [89,90], noradrenaline [91–93], and serotonin [93], among which
noradrenaline appears to be a modulator of the glymphatic system [4]. Theα2-adrenoceptor
agonist dexmedetomidine [94] enhanced glymphatic transport [95], while elevated brain
noradrenaline resulted in shrinkage of the extracellular volume fraction and a reduction in
both CSF influx and brain ISF influx [96]. Locus coeruleus-derived noradrenaline was also
found to increase blood–brain barrier (BBB) permeability, leading to augmentation of ISF
secretion and enhanced glymphatic function [97]. Thus, evidence strongly suggests that
noradrenaline regulates glymphatic system function, although the underlying mechanisms
are uncertain and the effects appear bidirectional, necessitating further study. Loss of
locus coeruleus neurons is observed in Alzheimer’s disease [97], suggesting that the
accumulation of pathogenic amyloid-β, a hallmark of this disease, may be exacerbated by
deficient glymphatic clearance due to impaired modulation by noradrenaline.
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4. Neuropsychiatric Disease and Astrocyte Activity

Recent developmental studies have implicated astrocyte dysfunction in Alexander’s
disease, Rett syndrome, fragile X mental retardation, and epilepsy [98].

4.1. Alexander’s Disease

Alexander’s disease is a rare demyelinating disorder caused by mutations in the gene
encoding glial fibrillary acidic protein (GFAP), the major intermediate filament protein
of astrocytes [7], and it is the only known astrocyte-specific disease. Patients are usually
diagnosed at around 2 years of age on the basis of developmental delay and MRI abnor-
malities in WM, T2 hypo-intensities, and T1 hyperintensities in the periventricular rim,
and abnormal T2 signals and swelling or atrophy in the basal ganglia and thalamus [99].
A few reports have also documented neuronal loss in the CA1 pyramidal layer of the
hippocampus and in the striatum, although this is not a consistent finding [99]. Transgenic
mice harboring a mutant human GFAP gene exhibited hypertrophic astrocytes, astrocytic
overexpression of stress-associated small heat-shock proteins, and inclusion bodies iden-
tical histologically and antigenically to the thick, elongated, worm-like bundles termed
Rosenthal fibers observed in Alexander’s disease patients [100]. Knock-in mice with GFAP-
R76H and -R236H mutations also developed Rosenthal fibers in the hippocampus, corpus
callosum, olfactory bulbs, subpial regions, and periventricular regions [101]. In addition,
these mice exhibited GFAP accumulation, which is sometimes referred to as “GFAP tox-
icity” [102]. Although these transgenic animals have provided some insights into the
histopathological manifestations of Alexander’s disease, the pathomechanisms underlying
cognitive delay are still unclear.

4.2. Rett Syndrome

Rett syndrome is a progressive neurodevelopmental disorder almost exclusively af-
flicting females caused by loss of the transcriptional repressor methyl-CpG-binding protein
2 (MeCP2) [8]. Clinical symptoms include respiratory abnormalities and cognitive im-
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pairment. Mice lacking the MeCP2 gene also demonstrated respiratory abnormalities,
cognitive impairment, seizures, scoliosis, and sleeping problems [98,103,104], consistent
with the human symptom profile. MeCP2 is highly expressed in neurons and may be
involved in the formation of synaptic contacts and activity-dependent neuronal gene ex-
pression [105]. Astrocytes also express MeCP2, and MeCP2 deficiency in astrocytes causes
significant abnormalities in the regulation of brain derived neurotrophic factor (BDNF),
a ubiquitous regulator of neuronal dendritic and synaptic plasticity, and of cytokine pro-
duction, suggesting that this deficit may alter brain inflammatory function [8–11]. Thus,
astrocytes may drive Rett syndrome pathology via inflammatory reactions and insufficient
BDNF signaling.

4.3. Fragile X Mental Retardation

Fragile X syndrome is caused by loss-of-function mutations in FMR1, the gene encod-
ing the translational repressor fragile X mental retardation protein (FMRP) [106], resulting
in inherited cognitive impairment and an autistic phenotype [107,108]. Fragile X syndrome
is also characterized by a wide array of behavioral and metabolic impairments [109]. Spe-
cific deletion of FMR1 in mouse astrocytes elevated spine density in the motor cortex and
impaired motor skill learning in adulthood [12]. However, overexpression of FMRP in
astrocytes was insufficient to completely rescue spinal and behavioral defects in Fmr1-KO
mice, suggesting a joint astrocytic–neuronal contribution, whereby both astrocytes and
neurons contribute to fragile X pathogenesis [12].

4.4. Epilepsy

Astrocytes regulate neuronal circuit formation, excitability, blood supply, and metabolism;
therefore, disruption of any of these functions shifts the local excitatory–inhibitory bal-
ance, leading to epileptogenesis [13–15]. Investigations of brain specimens from patients
with pharmacoresistant temporal lobe epilepsy and from epilepsy models have revealed
alterations in the expression, localization, and function of astroglial K+ channels and water
channels [110]. When gap junctions among astrocytes and neurons become uncoupled, K+

clearance is hindered, resulting in accumulation of extracellular K+ and concomitant neu-
ronal hyperexcitability [14]. Neuronal degeneration due to injury or early-stage epilepsy
can lead to the reactive transformation of astrocytes, and these reactive astrocytes have been
shown to produce larger Ca2+ signals mediated by IP3R2 that contributes to epilepsy [15].
In addition, malfunction of glutamate transporters and the astrocytic glutamate-converting
enzyme glutamine synthetase has been observed in epileptic tissue [110]. Impaired astro-
cytic glutamate clearance may arise in part due to abnormalities in metabotropic glutamate
signaling [111]. For instance, astrocyte-specific conditional KO of mGluR5 slowed the rate
of glutamate clearance via astrocytic glutamate transporters under high-frequency stimula-
tion and increased the propensity for epileptogenesis [112]. Astrocyte-specific tuberous
sclerosis complex 1 (Tsc1) conditional knockout mice also exhibited abnormal neuronal
organization and seizures [113]. A model mouse with hippocampal astrocyte-specific Neo1
KO exhibited epileptiform spikes and elevated seizure susceptibility [114].

5. Microscopic Imaging of Astrocyte Development

Several neuropsychiatric diseases are associated with abnormalities in the morphology,
distribution, number, and/or function of astrocytes; thus, high-resolution visualization of
individual astrocytes and coupled populations is critical for elucidating the contributions
of these cells to pathogenesis. Essential to reliable visualization is cell-specific labeling
as astrocytes are relatively small and intermingled among larger neurons. There are two
major methods for identifying astrocytes in brain: labeling of astrocyte-specific proteins
and RNA by immunostaining and in situ hybridization, and transgenic expression of
fluorescent proteins such as green fluorescent protein (GFP) under the control of astrocyte-
specific promoters.
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5.1. Labeling of Astrocyte-Specific Genes and Proteins

Astrocytes are frequently labeled with commercial antibodies against GFAP [115],
S100b [116], aldehyde dehydrogenase 1 family member L1 (Aldh1l1) [117], Sox9 [118],
Sox10, glutamate transporter 1 (GLT1), glutamate–aspartate transporter (GLAST) [119],
and aquaporin-4 (AQP4) [120] among other proteins. Although immunostaining is easy
and can even distinguish among astrocyte subtypes, some of these proteins are also ex-
pressed by other cell types such as oligodendrocytes (S100b) and neurons (GLT1, GLAST),
whereas GFAP is undetectable in many hippocampal astrocytes [121]. Alternatively, de-
tection of RNAs by in situ hybridization, in situ sequencing [122,123], smFISH [124,125],
seqFISH [126], and osmFISH [127,128] can be used to identify astrocytes even if antibodies
are unavailable for the protein product. However, RNA detection often cannot reveal cell
morphology. Our knowledge of astrocyte gene expression patterns has benefited greatly in
recent years from the development of RNA-seq technology. Furthermore, several online
databases of astrocyte-specific gene expression are now available based on genome-wide
transcriptome or proteome analyses [129].

5.2. Genetic Visualization Tools for Astrocytes

In 2012, Magavi et al. generated knock-in mice with a site-specific Cre recombinase
linked to the Thy-1.2 gene and demonstrated that astrocytes outnumber neurons in mouse
cerebral cortex by 8.4-fold [2]. Subsequently, Cre- and tamoxifen-induced CreER lines with
promoters that allow astrocyte-specific expression, such as promoters for GFAP [130,131],
Aldh1l1 [131,132], Slc1a3 [131,133,134], S100b [135], Slc6a11 [131], Gjb6 [134], and Fgfr3 [136],
have been established. Other genetic tools now available include GFAP-Flpo [137], GFAP-
tTA [138], and fluorescent proteins fused to astrocyte-specific proteins such as GFAP-
eGFP [139] and Aldh1l1-eGFP [139,140].

5.3. Visualization Based on Somatic Transfection

Although stable cell and mouse lines are powerful tools for investigating the mor-
phology, distribution, and function of astrocytes, establishing these lines is costly and
time-consuming. Furthermore, these lines may differ in multiple ways from native
astrocytes and wild-type mice. In contrast, infection of postnatal brain with adeno-
associated viruses (AAVs) and delivery of transposon-based reporters to embryonic brain
by electroporation are relatively efficient methods for labeling astrocyte-lineage cells
in vivo (Figure 3) [141–143]. Fusing astroglial cell type-specific promoters to fluorescent
proteins with piggyBac transposon can directly label targeted subpopulations perma-
nently or within defined developmental phases [143], while recombinases driven by cell
type-specific promoters can both efficiently label and alter the genome of astrocytes [144].
Hamabe-Horiike et al. revealed that the Gfa2-promoter labeled nearly 80% of astrocytes,
the Plp1-promoter labeled nearly 96% of oligodendrocytes, and the Mbp-promoter labeled
nearly 90% of oligodendrocytes at E15 electroporation, whereas the CAG-promoter labeled
nearly 40% of neurons, 15% of astrocytes, and 8% of oligodendrocytes [143]. Thus, these
results suggest that cell type-specific promoter approach is efficient to label astrocyte by in
utero electroporation. Clavreul et al. used site-specific recombinase (Cre) electroporation
to label astrocyte lineages in E15 embryos with multiple transposon-based fluorescent
protein reporters called “MAGIC markers” [145]. Although this method labeled some
neurons, astrocytes were labeled with multicolor combinations, permitting single-cell reso-
lution [146]. This brainbow-based technique [147] combined with large-volume chromatic
multiphoton serial microscopy (ChroMS) [148] successfully reveals clonal information.
ChroMS relies on the integration of trichromatic two-photon excitation by wavelength
mixing with automated serial block-face image acquisition, making multicolor imaging
over >1 mm3 volumes possible [148]. The authors proposed that astrocyte clonal expansion
and morphotype are determined in a nonordered manner within the local environment
rather than by genetic predetermination. Another transposon-based glial-lineage tracing
method called “StarTrack” has been used to reveal astroglial lineage behavior by color
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visualization. StarTrack, which is based on the piggyBac transposon system combined with
astroglial-specific promoters such as those driving the expression of GFAP [149], NG2 [150],
and Ubc [151], can provide up to 12 combinations by color-barcoded proteins with local-
ization tags. These direct in utero electroporation of transposon-based plasmids can label
astrocytes more efficiently than postnatal brain labeling methods, although neurons can
still be labeled. It is also possible to label astrocytes via postnatal electroporation around
P0–P1, the time of astrocyte production, although expression efficiency is not as high [51].
We recently developed an alternative strategy for integration-coupled gene expression
called “iOn switch”, which suppresses episomal expression after transfection to directly
detect genomic gene expression with conventional electroporation [152]. By suppressing
episomal expression, iOn gene expression is as stable and permanent as target gene ex-
pression in transgenic animals; hence, this tool holds great potential for future long-term
astrocyte imaging to assess lineage fate and contributions to disease. For example, when
we electroporated iOnCAG∞RFP at the E13 mouse cortex and fixed brain at P10, astrocytes
were successfully labeled, whereas CAG::GFP labeled only DL neurons, which produced
approximately E13 cortical progenitors. The other strategy established based on the piggy-
Bac transposon combined Cre/loxP system, clonal labeling of neural progenies (CLoNe),
labels the promoter-specific neuronal subpopulations with the multiple fluorescent protein
(XFP) combinations [153].

1 
 

 
Figure 3. Transposon-based astrocyte visualization. Summary of genetic tools using piggyBac and
Tol2 transposons. A summary of the plasmids and the timing of the experiments under investigation
in the respective studies. 5′PB, 5′piggyBac terminal repeat; 3′PB, 3′piggyBac terminal repeat; 5′Tol2,
5′Tol2 terminal repeat; 3′Tol2, 3′Tol2 terminal repeat. XFPs denote each fluorescent protein included
in the paper.

In contrast to embryonic brain labeling by somatic transfection of plasmids, which is
mainly used for lineage and clonal analyses, astrocyte labeling using AAVs in the postnatal
brain is applied mainly for functional analyses. For example, Takano et al. fused AAV
with Split-TurboID and combined this well-known chemo-genetic tool with the neuronal
hSyn1 promoter and astrocyte GfaABC1D promoter to collect proteins around synapses
between neurons and astrocytes for proteome analysis. Results revealed that neuronal
cell adhesion molecule (NRCAM) is highly enriched between neuron and astrocytes and
involved in the formation of inhibitory synapses [154]. Furthermore, AAV can be combined
with other genetic techniques, such as optogenetics and designer receptors exclusively
activated by designer drugs, to investigate the functions of specific astrocytic proteins
during development [155,156]. Several small molecule-based astrocyte markers, including
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sulforhodamine 101 (SR101) [157], b-Ala–Lys–Nε-AMCA [158], and 4-di-2-asp [159], have
also been established for live cell imaging.

In summary, these visualization techniques have proven useful for functional analysis
of astrocytes at both the cellular and the molecular levels, as well as for elucidating the
interactions among astrocytes, neurons, and surrounding components. Methods using
transgenic mice are limited to research for only mice. In contrast, somatic transfection and
virus-derived visualization do not require genetically modified organisms and will, there-
fore, be essential for future research in other species, including primates and humans. Thus,
these tools could provide fundamental insights into developmental disorders associated
with astrocyte maldevelopment or dysfunction.

6. Potential Noninvasive and Mesoscopic Astrocyte Imaging Using MRI and Positron
Emission Tomography (PET)

Most astrocytic signaling processes and functions, including the calcium oscillations,
ion exchange, glutamate metabolism, and volume change, have so far been investigated
using in vivo animal models or culture systems with various fluorescence labeling tech-
niques, such as sulforhodamine101 [160] and genetically expressed Ca2+ indicators [161].
However, investigating astrocyte dysfunction in developmental disease patients requires
“noninvasive brain imaging techniques”. MRI and PET are noninvasive techniques that
have the advantages of providing insights on the function and structure of the whole
brain at mesoscopic resolution (100–300 µm for rodents and 1–3 mm for humans). The
challenges of noninvasive astrocyte imaging using MRI and PET have been described
in previous studies. Here, we introduce several promising noninvasive approaches to
measuring astrocyte activity in vivo (Figure 4).

6.1. Diffusion MRI

Diffusion MRI is exquisitely sensitive to changes in tissue microstructure, such as
changes induced by cell swelling or shrinkage [162]. The “apparent diffusion coefficient”
(ADC) was introduced along with the diffusion MRI to indicate the degree to which water
diffusion is limited by structures within the brain [163] compared to normal Gaussian
diffusion. This non-Gaussian diffusion is a highly sensitive indicator of pathological
changes in brain microstructure resulting from tumor, stroke, or edema [164].

In addition to pathological changes, diffusion MRI appears sufficiently sensitive
for physiological changes in astrocyte volume associated with neuronal activity. An
early study using in vitro Aplysia Californica ganglia established a robust association
among neuronal activity, subsequent cell volume change, and ADC [165,166], and several
high-resolution diffusion MRI studies have supported the utility of ADC for detecting
more subtle neuronal activation-induced changes in brain tissue microstructure using ex
vivo hippocampal slices [167]. In the case of neuronal activity, this approach can induce
transient neuronal and/or astrocyte volume increases that reduce the extracellular space
(ECS) and decrease ADC (Figure 4A). The b-value is an artificial factor that reflects the
strength and timing of the gradients to generate water diffusion-weighted images. Higher
b-values (>1800 s/mm2) signify water diffusion within the smaller space involving ECS
(Figure 4A).
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Figure 4. Possibility of astrocyte markers by diffusion MRI and MEMRI. (A) Non-Gaussian distribution of water diffusion
depends on the extracellular space, which is altered by astrocyte volume change. ECS, extracellular space. Lower images
are representative images of diffusion MRI with b = 50, 1000, and 1800 s/mm2, respectively. Images were acquired using an
11.7 T MRI system (Bruker, Germany). The b-value is an artificial factor that reflects the strength and timing of the gradients
to generate water diffusion-weighted images. Higher b-values (>1800 s/mm2) signify water diffusion within the smaller
space involving ECS. (B) Hypothesis of manganese accumulation in astrocytes via connexin 43 (Cx43). Lower images are
representative images of MEMRI performed using an 11.7 T MRI system (Bruker, Germany). Scale bar indicates 1 mm.
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Recently, we postulated that diffusion MRI can detect the astrocyte volume change
because astrocytes undergo dramatic volume changes as a result of fluid flux associ-
ated with extracellular K+ release and subsequent activation of the astrocyte Na–K–Cl
cotransporter (NKCC1), Kir4.1 inwardly rectifying potassium channel, and/or the Na+/K+

ATPase [168–173]. In addition, AQP4 activity may contribute to these volume changes
by mediating ISF–CSF exchange [174]. Brain water mobility was decreased by AQP4
knockdown using RNA interference [175], and pharmacological blockade of AQP4 using
2-(nicotinamide)-1,3,4-thia-diazole (TGN-020) increased the ADC in several brain regions,
including the hippocampus and cerebral cortex [176]. These results confirm that diffusion
MRI signals can reflect changes in astrocyte volume under physiological conditions. Astro-
cytic volume changes are also observed in pathologic states. For instance, ischemia disturbs
ionic homeostasis and induces the accumulation of neuroactive substances in the extracel-
lular space, resulting in astrocyte swelling [177–179]. Astrocyte swelling is also observed
during epilepsy, and the resulting reduction in extracellular space may exacerbate K+ and
glutamate accumulation, leading to greater neuronal hyperexcitability and pathological
firing [180,181]. Cortical spreading depression, a wave-like process characterized by loss of
neuronal membrane potential and massive redistribution of intracellular and extracellular
ions, including an increase in extracellular potassium, also reduced ADC [182]. Although
the sensitivity of diffusion MRI to physiological and pathological astrocyte volume changes
is well validated, the feasibility of diffusion MRI for clinical study of astrocyte dysfunction
in neuropsychiatric disorders has not yet been tested.

6.2. Manganese-Enhanced MRI (MEMRI)

Recently, we examined the feasibility of imaging astrocytic calcium accumulation
using manganese-enhanced MRI (MEMRI). Manganese is a chemical analog of Ca2+ and,
thus, can enter neurons through Ca2+ channels and Na+/Ca2+ exchangers, thereby provid-
ing a measure of activity [183,184]. Astrocytes also express these calcium influx pathways,
and several studies using MEMRI have found a link between Mn2+ accumulation and
astrocytic activity mediated by glutamate synthetase, manganese superoxide dismutase,
and calcium channels [185,186]. We developed a new MEMRI application for direct mea-
surement of in vivo astrocyte–neuron interactions via hippocampal connexin 43 (Cx43)
(Figure 4B) [187], a hemi-transmembrane channel that selectively passes Ca2+ between
neurons and astrocytes. Manganese concentration in the hippocampus of Cx43 knockdown
mice was enhanced compared to wild-type mice, and a pharmacological blocker of Cx43
also increased Mn2+ accumulation. These results indicate that in vivo Cx43-dependent
functions of astrocytes under physiological and pathological conditions can be measured
noninvasively using MEMRI. A significant potential limitation of MEMRI is manganese
toxicity both to neurons [188,189] and to astrocytes [190]. However, MEMRI has already
been investigated in humans using mangafodipir, an FDA-approved compound consisting
of a Mn2+ chelator fused to the ligand fodipir [191,192]. This drug may provide new
insights into neuron–astrocyte interactions in clinical trials. However, as image contrast
depends on the release of Mn2+, there is still a risk of toxicity [193]; therefore, alterna-
tive manganese-based contrast agents are required for improved astrocytic labeling with
greater safety.

6.3. Noninvasive Neuroimaging Techniques Using Neurovascular Coupling

fMRI exploits neurovascular coupling to monitor neuronal activity. When neurons are
activated, the diameter of local blood vessels and the regional cerebral blood flow increase.
Furthermore, the ratio of oxyhemoglobin to deoxyhemoglobin is altered due to changes
in supply and consumption. An appropriate MR sequence sensitive to the magnetic sus-
ceptibility can detect these changes with relatively high temporal and spatial resolution.
This is called a blood oxygenation level-dependent (BOLD) signal [194]. Functional ul-
trasound imaging (fUS) of the brain based on ultrafast Doppler can also measure local
changes in cerebral blood volume related to neuronal activation and Ca2+ signaling [79,195].
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In addition, resting-state fMRI can reveal the functional connectivity among anatomically
separated regions by measuring the degree of synchronization of neuronal
activity [196–199]. Neurovascular coupling observed by fMRI and fUS also reflects astro-
cytic activity as astrocytes are integral to neurovascular coupling. Furthermore, astrocytic
Ca2+ signals are coupled to positive and negative BOLD fMRI signals in rats [200], and
astrocyte activation evokes BOLD fMRI responses due to enhanced oxygen consump-
tion [201]. Inhibition of AQP4 channels, which are abundantly expressed on perivascular
astrocytic endfeet, and which function in the clearance of extracellular ions and metabolites,
thus altering the BOLD response in the visual cortex to visual stimulation [176]. These
imaging techniques are, therefore, potentially useful for examining the functional changes
in astrocytes during development and the associations between astrocyte dysfunction and
various neurological disorders.

6.4. PET

PET using tracers such as 11C-acetate, [11C]deuterium-L-deprenyl ([11C]DED), and
other translocator proteins (TSPOs) is another widely employed imaging technique with
potential applications for astroglial imaging in health and disease [202–204]. PET has an
advantage for kinetic modeling and for measuring metabolism, but potentially harmful
radioisotopes are required. The isotope 11C-acetate is metabolized in the tricarboxylic acid
cycle; thus, consumption is a measure of oxidative metabolism. [11C]DED is an irreversible
monoamine oxidase B (MAO-B) inhibitor. Astrocytes express elevated levels of MAO-B
during activation; hence, this ligand can be employed as a biomarker for astrocytosis
in conditions such as Alzheimer’s disease [205]. In autosomal-dominant Alzheimer’s
disease carriers, astrocytosis as measured by [11C]DED was found to be initially high
and then to decline, in contrast to the progressive increase in amyloid-β plaque load
during disease progression, suggesting that astrocyte activation is restricted to the early
stages of Alzheimer’s disease pathology [206]. The astroglial tracer BU99008, targeting
imidazoline-2 binding sites (I2BS), has also been used to visualize reactive astrogliosis
in postmortem AD brains [207]. In addition, activated astrocytes show upregulation of
TSPOs, but measurement is hampered by TSPOs in cerebral blood vessels [203].

7. Conclusions and Perspective

In this review, we described mesoscopic and microscopic imaging techniques used
to investigate the developmental lineages, functions, and structures of astrocytes. The
vital functions of these cells during development and ongoing brain function suggests
that dysfunction likely contributes to neurodevelopmental, neurological, and neuropsychi-
atric diseases. We posit that these techniques will facilitate the translation of preclinical
research in animal models to human clinical research, possibly including clinical trials of
interventions aimed at mitigating astrocytic dysfunction as disease treatments.
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