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Abstract: Myostatin (MSTN), a member of the transforming growth factor-β superfamily, inhibits
the activation of muscle satellite cells. However, the role and regulatory network of MSTN in equine
muscle cells are not well understood yet. We discovered that MSTN knockdown significantly reduces
the proliferation rate of equine muscle satellite cells. In addition, after the RNA sequencing of equine
satellite cells transfected with MSTN-interference plasmid and control plasmid, an analysis of the
differentially expressed genes was carried out. It was revealed that MSTN regulatory networks
mainly involve genes related to muscle function and cell-cycle regulation, and signaling pathways,
such as Notch, MAPK, and WNT. Subsequent real-time PCR in equine satellite cells and immunohis-
tochemistry on newborn and adult muscle also verified the MSTN regulatory network found in RNA
sequencing analysis. The results of this study provide new insight into the regulatory mechanism of
equine MSTN.

Keywords: horse; satellite cell; MSTN gene; RNA sequencing; signaling pathway; cell proliferation

1. Introduction

MSTN knockout increases mice skeletal muscle mass as a result of both hyperplasia
(increase in number) and hypertrophy (enlargement) of the muscle fibers [1], and the mu-
tations in the MSTN gene could result in the “double muscling” phenotype in cattle [2,3],
sheep [4], dogs [5], and humans [6]. MSTN, often known as the “speed gene” in horses [7],
has been acknowledged as a significant genetic factor influencing race distance aptitude [8,9].
Numerous sequence variations have been found in the MSTN gene’s upstream and down-
stream regions, and research has examined their relationships to Thoroughbred horses’
race performance [10–12]. Researchers have used CRISPR/Cas9 editing technologies to
make MSTN-null horse embryos with the goal of artificially enhancing equine sports per-
formance [13,14]. The equine’s general health is significantly impacted by skeletal muscle
metabolism. The majority of research on equine skeletal muscle has concentrated on a
small number of specific metabolites produced during acute exercise or training [15]. After
suffering a muscle-fiber injury, skeletal muscles in particular have an extraordinary ability
for regeneration, allowing for the complete restoration of their structure and function
within a few weeks [16]. Direct trauma and excessive exercise can harm a horse’s myofibers
over the course of a lifetime [17], and the activation [18], proliferation [19], and terminal
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differentiation of muscle quiescent satellite cells (SCs) [20] are crucial to their recovery. At
present, little is known about the MSTN regulation network in equine muscle SCs, despite
the fact that the impact of MSTN knockdown and MSTN-related signaling pathways in
other mammalian skeletal muscle SCs have been examined [20–25]. In this study, we used
miRNA interference approaches to expose the MSTN regulation network in equine muscle
SCs because MSTN is an important gene for comprehending the mechanisms underpinning
equine muscle development and regeneration [26].

2. Materials and Methods
2.1. In Vitro Culture of Horse Muscle SCs

Semitendinosus muscle samples were collected from healthy horses at the local slaugh-
ter house. When the muscle sample arrived at the lab, it was immediately sanitized with
70% ethanol and washed three to four times with 4-fold volume cold DPBS. After the visible
adipose and connective tissues on the muscle mass were removed with a knife, all the
muscles were excised and chopped into little pieces with scissors. With collagenase type IV
(Sigma-Aldrich, St. Louis, MO, USA) and trypsin (0.25%, Sigma-Aldrich) solutions, fraction-
ated enzymatic digestion was carried out for 2–30 min at 37 ◦C while stirring in a water bath.
The cell suspension was then progressively filtered through 70 µm and 40 µm cell strainers.
The cell pellet was then extracted from the filtrates using a centrifuge. The cells pellet was
then transferred to culture disks and resuspended in media (20% FBS/DMEM/AB), which
were then incubated at 37 ◦C with 5% CO2. In total, 1.5 h of preplating were utilized to
reduce any potential fibroblast contamination. Satellite-cell-containing supernatant was
then added to culture disks. Every two days, the growing media were changed. The cells
were passaged at a ratio of 1:3 after reaching 80% confluence.

2.2. Immunofluorescence Assay

After being fixed with 4% paraformaldehyde for 30 min, the cells were rinsed with
PBS containing BSA and Triton X-100, blocked for 1 h at 37 ◦C with PBS containing Triton
X-100, and then incubated with the primary Pax7 (AB-528428, DSHBY) and desmin (LS-
B3122, LSBio) antibodies overnight at 4◦C. Following three cycles of washing, samples
were incubated with the secondary antibody for 1 h at room temperature. The cells were
then washed three times, exposed to Hoechst (1 mg/mL, 10 min at RT), incubated, rinsed
once more, and mounted.

2.3. Plasmid Construction and Transfection Analysis

The miRNAs targeting MSTN (mirRNA267 and mirRNA364) were designed with
BLOCKit RNA DESIGN (https://www.thermofisher.cn/cn/zh/home/life-science/rnai.
html (accessed on 7 October 2022)) based on the sequence of Mongolian horse MSTN CDS.

In order to create the MSTN knockdown plasmid, these two miRNAs with BglII
and EcoRI restriction sites were separately ligated with Td Tomato-C1 vector and then
transformed into the competent cells DH5α. The plasmid was verified by restriction
digestion and sequencing, and finally the correct interference plasmid was purified and
named Td Tomato-mirRNA267(364)-eMSTN.

SCs were transfected with the Td Tomato-miRNA plasmid using Lipofectamine 2000
(Life Science) at a plasmid density of 60,000 cells/cm2. At 36 h post transfection, the
fluorescence signal was observed with a fluorescence microscope to verify the transfection
efficiency.

2.4. RNA Sequencing (RNA-seq)

At 36 h, the cell culture fluid was removed and the cells were washed with PBS three
times. Finally, each well was collected with 1 mL Trizol reagent (Invitrogen, Waltham, MA,
USA) to collect the cell sample; then, the total RNA could be extracted immediately, or it
could be stored in an ultra-low temperature refrigerator at −80 ◦C for later use. The RNA
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Library Prep Kit for Illumina (NEB, Ipswich, MA, USA) was used to create a library, and
the Illumina HiseqTM2500 was used to perform the sequencing.

2.5. Screening of Differentially Expressed Genes (DEGs)

DEGs in MSTN knockdown group compared with controls of equine SCs were identi-
fied using the DESeq R package from ww.bioinfo.au.tsinghua.edu.cn/software/degseq,
accessed on 7 October 2022. Differential gene screening mainly refers to the difference fold
(Fold change value) and q value (padj value, corrected p value) as related indicators; the
genes with expression |log2 fold change| ≥ 1 and q < 0.05 were selected as DEGs.

2.6. Gene Ontology (GO) and KEGG Pathway Enrichment Analysis

DEGs were annotated using the GO enrichment analysis, in which gene length bias
was corrected. GO terms with the corrected value p < 0.05 were considered significantly
enriched. Signaling pathways were investigated using KEGG (Kyoto Encyclopedia of Genes
and Genomes), and KOBAS version 2.0 software. q < 0.05 was considered a significant value.

2.7. Quantitative PCR (qPCR) Assay

Trizol (Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) was used to sep-
arate the RNA from the MSTN knockdown and control groups, and a reverse transcription
kit was used to convert the RNA samples into cDNA (Fermentas; Thermo Fisher Scientific,
Inc., Pittsburgh, PA, USA). Using β-actin as a control, 14 genes were chosen for validation
of the RNA sequencing gene profiling results. In total, 10 µL of SYBR Green PCR Master
Mix, 2 µL of cDNA, 1.2 µL of each primer (10 µM), and 6.8 µL of RNase-free water made
up the SYBR Green PCR experiment. The cycling schedules were as follows: 95 ◦C for
1 min, 95 ◦C for 15 s, 60 ◦C for 30 s, and 72 ◦C for 30 s. Using the 2−∆∆CT approach, the levels
of gene expression were calculated. The parallel experiment has at least three replicates,
and the data’s mean value of Mean ± S.D. is shown. In this study, a significance level of
p < 0.05 is accepted. Table S1 contains a list of the primers utilized for this study.

2.8. Immunohistochemistry

Equine muscle cryosections of 8 µm were prepared from the Tissue-Tek embedded
samples and were collected onto coated glass slides (Thermo Scientific SuperFrost Plus
Adhesion slides, Fisher scientific, Brussels, Belgium) and stored at −20 ◦C. The muscle
cryosections were air-dried and then blocked for 120 min in 5% defat milk in PBS solution
at room temperature. The slides were washed with permeabilization solution (BSA and
0.2% triton in PBS solution) and incubated overnight at −4 ◦C with primary antibodies
for MSTN (DF13273, Affinity, Hong Kong, China), MyoD1 (MA5-12902, Thermo Fisher),
and MyoG (A17427, ABclonal, Wuhan, China) at a dilution of 1:500. After the slides
were rinsed 5 min in PBS, they were washed briefly with permeabilization solution and
incubated with the secondary antibodies dissolved in 0.5% BSA in PBS for 1 h at room
temperature. Subsequently, after rinsing the slides for 5 min in PBS, the DAB Horseradish
Peroxidase Color Development Kit (HZ-0010, Luzhen Biology, China) was applied. The
staining intensity of 10 random units at a 200× amplification (with each muscle fascicle as
the measure unit) was quantified by the well-established Image-J-software-based method
indicated in the previous studies [27–29].

2.9. Statistics

There are at least three replicates of the parallel experiment, and the mean value of
Mean ± S.D is indicated for the data. All data were analyzed by SPSS16.0 using two-way
ANOVA with repeated measures, followed by Tukey’s test. A difference was deemed
statistically significant if the p-value was less than 0.05.
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3. Results
3.1. The Characteristics of Horse Muscle SCs

We were able to successfully separate and purify the Mongolian domestic horse mus-
cle satellite cells (HMSC) in vitro using the methods of enzyme digestion and differential
adhesion. The horse fetal fibroblast (HFF) is a polygonal cell type, as can be seen in
(Figure 1A), whereas the HMSC have finer edges and are primarily spindle-shaped. Addi-
tionally, HMSC demonstrated a different rate of in vitro proliferation, demonstrating that
its proliferation is slower than that of HFF (p < 0.05). (Figure 1B). Additionally, the results
of qPCR (Figure 1C) and cell immunofluorescence test (Figure 1D–F) jointly demonstrated
that HMSC, but not HFF, exhibits significant expression of genes specific to mammalian
SCs, such as Desmin, Pax7, and MyoD1.
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Figure 1. HMSC characterization. (A) Morphology of HFF and HMSC in vitro. (B) Proliferation
curves (p < 0.05) of HFF (blue line) and HMSC (red line). (C) qPCR determination of Pax7 and MyoD1
mRNA expression in HFF and HMSC * p < 0.05. (D–F) Immunofluorescence results of Pax7, Desmin,
and MyoD1 in HFF and HMSC.

3.2. MSTN Knockdown Accelerates HMSC Cell Growth

The interference plasmids miR267 and miR364 were created in this investigation by
designing two miRNAs (miR267, miR364) that target horse MSTN mRNA and cloning
them into the Td Tomato-C1 plasmid (Figure 2A). The CtrlmiR plasmid containing a control
miRNA was employed in this investigation as a control. Based on the red fluorescence of
Td Tomato, the transfection efficiencies of three different plasmid types reached 80% after
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24 h (Figure 2B), and the expression of MSTN mRNA was dramatically repressed (p < 0.05)
(Figure 2C). Furthermore, we discovered that MSTN knockdown might greatly improve
the cell proliferation rate of HMSC during subsequent culture, particularly during the first
48 to 72 h (Figure 2D).
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Figure 2. The effect of MSTN knockdown on HMSC proliferation. (A) Plasmid construction images
in SnapGeneTM1.1.3 Software for equine MSTN knockdown plasmid. (B) After 24h transfection
in Mongolian horse SCs in monolayer cultures. (C) qPCR validation of the interference efficiency.
(D) Cell proliferation curves for different groups. * represents p < 0.05.

3.3. MSTN Knockdown Alters the Transcriptome

Two samples of each cell line were sequenced, and RNA-seq libraries were created for
the control (transfected with CtrlmiR) and experimental (transfected with miR267 and 364)
groups to profile gene expression after MSTN knockdown. After eliminating adapters and
removing low-quality reads, the sequencing provided a high-quality dataset (Figure 3A–C)
and about 78,134,605 clean reads.

3.4. DEG Analysis Reveals the MSTN Regulatory Networks in HSMCs

To examine variations in gene expression, read count data from the transcriptome were
used. There were 598 DEGs in all that showed a difference expression in the experimental
and control groups. When the threshold values were q < 0.05 and |log2 Fold change| ≥ 1,
427 of them were up-regulated and 171 were down-regulated in the experimental groups
compared to the control group (Figure 3D,E). Three categories were created from the results
of the GO enrichment study of DEGs: biological process (BP), cellular component (CC), and
molecular function (MF). The cellular activities, developmental processes, and biological
regulation in terms of BP; the cell part, organelles, and membranes in terms of CC; and the
catalytic activity, signal transduction activity, and binding in terms of MF were shown to be
enriched in the down- and up-regulated genes (Figure 3F). According to KEGG analysis,
DEGs are involved in 37 pathways, including the mitogen-activated protein kinase (MAPK)
signaling pathway, the TGF-β signaling pathway, the signaling pathway that controls stem
cell pluripotency, the signaling pathway that controls the actin skeleton, the PI3A-Akt
signaling pathways, the cancer pathways, and the signaling pathway for cell adhesion
molecules (Figure 3G). In total, 14 DEGs associated with myogenesis and the satellite cell
cycle were chosen for qPCR experiments to confirm the RNA-seq results. Overall, the
qPCR and RNA-seq results were well correlated, proving the accuracy and reliability of the
RNA-seq data (Figure 3H).
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Figure 3. Analysis of differentially expressed genes (DEGs) after MSTN knockdown in HMSC.
(A) Clean base number of all sample readings. (B) Filtering distribution map indicates the high quality
of readings. (C) The location of readings indicates the normal distribution ratio of read sequences.
(D) Clustering of DEGs among samples. (E) Volcano plot for the DEGs between control group and
MSTN knockdown group. (F) Histogram of GO enrichment of DEGs. (G) KEGG pathway analysis
on DEGs. (H) qPCR validation of DEGs. Red line represents the gene expression level in control
group, and all bars represent the expression levels of tested genes in experimental groups treated
with different miRNA targeting MSTN. All tested genes in experimental groups showed significant
changes at p < 0.05 compared to the control group.

3.5. The MSTN Regulatory Network in the Horse Muscle Was Verified by Immunohistochemistry Data

We used immunohistochemistry to examine the expression of MSTN, MyoG, and
MyoD1 in adult and newborn equine muscle tissues because the in vivo expression of
MSTN in muscle tissue declines with age. This allowed us to determine whether the
expression of the positively regulated DEG MyoG, and the negatively regulated DEG
MyoD1 also changed in a manner that was consistent with age. The immunohistochemistry
results confirmed the findings of RNA-seq and qPCR, demonstrating that MSTN negatively
regulates MyoD1 expression while positively regulating MyoG at the protein level (Figure 4).
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Figure 4. Immunohistochemistry staining of MSTN, MyoG, and MyoD1 expression in newborn and
adult equine muscles. The positive signals are quantified in left bar charts. * Indicates the significance
at the level of p < 0.05.

4. Discussion

An ancient horse breed known as the Mongolian horse, which has long been a sta-
ple of the nomadic pastoral herders’ culture in North Asia [30,31], is renowned for its
exceptional endurance and robust genetic variety [30,32]. As a result, the Inner Mongolia
Autonomous Region of China and Mongolia consider the Mongolian horse to be one of the
most significant breeds of traditional long-distance races [32].

The procedure of harvesting SCs from equine muscles was first described in 1992 [33]
and has been used to examine the impact of exercise on muscle tissue [34]. However, there
haven’t been many investigations into the processes that underlie MSTN’s function in
the horse model. When tissue is damaged or injured, SCs change to a proliferative state,
which enables the production of a large cell pool suited for myogenic differentiation [35].
Our research shows that, similar to SCs from other species, SCs from horses exclusively
express Pax7, MyoD1, and Desmin [36–38]. In the population of adult SCs, Pax7 is expressed
in both quiescent and active conditions [39]. Equine SCs grown in culture have “wedge”
morphologies and have condensed interphase chromatin, which is in line with the idea that
the majority of SCs in resting muscles are quiescent and transcriptionally inactive [40,41].

The MSTN CDS region’s full-length sequence, which was cloned from a muscle
sample from a Mongolian horse in the current work, is 1134 bp, and it is entirely consis-
tent with the Thoroughbred MSTN CDS sequence supplied by NCBI (Accession number:
NM_001081817.1). We discovered that MSTN knockdown could boost the SCs’ proliferation
rate through the very effective RNAi studies. The MSTN knockdown investigations on
the SCs of other animals likewise reported the same behavior. A previous mouse study
discovered that MSTN functions through a complex regulatory network that includes PAX,
Myosin family proteins, WNT, MAPKmTOR family members, and numerous genes related
to CDKN1C (p57, Kip2) that control the cell cycle [42]. Similar to this, our RNA-seq analysis
following MSTN knockdown revealed that MSTN is involved in the regulation of multiple
pathways crucial for the activities of muscle cells in horse muscle SCs.
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According to our findings, we discovered that a number of DEGs are connected
to the PI3K/AKT/mTOR signaling pathways, which are crucial for mediating a variety
of cellular functions, including nutrition uptake, anabolic responses, cell development,
and survival. Phosphatidylinositol 3-kinase (PI3Ks), AKT, and the mammalian target of
rapamycin (mTOR, also known as mechanistic TOR), which make up the heart of this
pathway, are frequently over-activated in most malignancies and have thus come to be the
subject of research in this area [43]. Additionally, it has been noted that the MSTN-Smad
pathway affects protein kinase AKT’s activity, preventing the mTOR pathway and protein
synthesis [44]. DEGs belonging to WNT signaling also emphasize the critical functions
of WNT members in muscles. The previous study found that WNT signaling might be
activated after muscle damage and that myogenic cells’ TCF reporter activity increased
two days after muscle damage [45]. Unlike Wnt1, Wnt3a, and Wnt5a, which promote
SCs proliferation, Wnt4 and Wnt6 inhibit it [19]. Although Wnt4 has a beneficial role in
controlling the proliferation of SCs, MSTN can operate as Wnt4’s upstream antagonist to
prevent Wnt4-mediated SCs growth. Additionally, it has been demonstrated that MSTN
increases the expression of the WNT signaling pathway inhibitors sFRP1 and sFRP2 [46].
We discovered that Wnt5a greatly increases following MSTN interference, suggesting that
WNT is also involved in the SCs regulation controlled by MSTN. We also focused on
aspects of cell cycle regulation in this work. SCs are in a quiescent state in the adult resting
muscle [47], which is characterized by a low rate of metabolism, a lack of cell cycling (G0
phase), and low RNA concentration [48]. In cell-culture studies, mechanistically, MSTN
interacts with the cell cycle machinery to induce the cell cycle exit during the gap phases
(G1 and G2) [49]. In bovine skeletal muscle SCs, MSTN knockdown resulted in an increase
in CDK2 expression, a decrease in P21 expression, and a stimulation of proliferation [50].
The increased production of the cyclin-dependent kinase inhibitor, P21, which further
suppresses the gene essential for the G1/S transition, Cdk2, is thought to be the cause of the
MSTN-triggered halt of the cell cycle and the inhibition of proliferation [51–53]. Compared
with activated/cycling SCs, many negative regulators of the cell cycle and myogenic
inhibitors, including cyclin-dependent kinase inhibitors 1B (Cdkn1b; also known as p27 or
p27Kip1 [54]) and 1C (Cdkn1c, also known as p57 or p57Kip2); Rb [55] (also known as Rb1);
and Rgs2, Rgs5, Pmp22, and FGF suppressor gene Spry1 [56], were highly up-regulated
in quiescent SCs [57,58]. Our RNA-seq results mainly agree with those from studies on
different species and models, suggesting that one of the main roles of MSTN is cell-cycle
regulation.

Pax7 is robustly and consistently expressed in the SCs of adult muscle, whereas Pax3 is
often expressed at very low levels, with the exception of muscles such as the diaphragm [59].
In our study, Pax7 and Pax3 expression did not alter significantly; however, Pax5 expression
significantly decreased. This distinction leads us to believe that different species have
different regulatory roles for PAX family proteins in the SCs. However, more research is
required to make this clear. Myogenic cells can selectively express the genes Myf5 and
MyoD1, whereas resting SCs cannot. When SCs enter the cell cycle again and differentiate
into highly proliferating myoblasts, Myf5 and MyoD1 are elevated. Some cells exit the cell
cycle during the proliferation phase, start to express MyoG, and then differentiate into new
muscle fibers, while other cells lose their myogenic capabilities by lowering the level of
MyoD1 expression and return to a resting state to refill the SCs pool [60]. In our research,
after MSTN knockdown in horse muscle SCs, MyoD1 increased, whereas MyoG decreased.
Together with the age-related MSTN downregulation-induced MyoD1 increase and MyoG
decrease in horse muscle, the critical role of MSTN in the entire life cycle of muscle cells is
highlighted here.

In conclusion, the MSTN regulatory network described here advances our under-
standing of the function and activity of equine muscle SCs and encourages the use of this
information in tissue engineering, regenerative medicine, and related fields of study.
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