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ABSTRACT: Maximum Likelihood (ML) optimization schemes are widely used for parameter inference. They maximize the
likelihood of some experimentally observed data, with respect to the model parameters iteratively, following the gradient of the
logarithm of the likelihood. Here, we employ a ML inference scheme to infer a generalizable, physics-based coarse-grained
protein model (which includes Go̅-like biasing terms to stabilize secondary structure elements in room-temperature simulations),
using native conformations of a training set of proteins as the observed data. Contrastive divergence, a novel statistical machine
learning technique, is used to efficiently approximate the direction of the gradient ascent, which enables the use of a large training
set of proteins. Unlike previous work, the generalizability of the protein model allows the folding of peptides and a protein
(protein G) which are not part of the training set. We compare the same force field with different van der Waals (vdW) potential
forms: a hard cutoff model, and a Lennard-Jones (LJ) potential with vdW parameters inferred or adopted from the CHARMM or
AMBER force fields. Simulations of peptides and protein G show that the LJ model with inferred parameters outperforms the
hard cutoff potential, which is consistent with previous observations. Simulations using the LJ potential with inferred vdW
parameters also outperforms the protein models with adopted vdW parameter values, demonstrating that model parameters
generally cannot be used with force fields with different energy functions. The software is available at https://sites.google.com/
site/crankite/.

1. INTRODUCTION

The aim of predicting unknown protein structures from only
their primary sequences1 or to elucidate the folding process or
function of proteins with known structures is one of the central
aims of computational biology. The increase in the number of
protein sequences and structures deposited in the protein
databases2,3 highlights the need for efficient modeling of
proteins. Although all-atom molecular force fields have been
successfully applied to model fast folding mini-proteins,4 they
are too expensive for modeling larger proteins without the use
of specialist hardware. Coarse-grained (CG) protein models,
which are simpler than all-atom models, but still capture the
physics of interest, have shown an increasing popularity in their
use in computer simulations of proteins.5

In general, CG force fields are usually classified into two
main categories:5,6 structure-based or native-centric models,
such as elastic network7,8 and Go̅ models,9 where only the

native interactions are modeled as attractive interactions; and
structure-independent force fields6 that are modeling phys-
icochemical interactions that are often used in simulations of
aggregates,10−12 protein structure prediction,13 or protein
folding studies.11,14−18 Here, we optimize a Go̅-like CG force
field, CRANKITE,19 which was developed to efficiently model
peptides and proteins at room temperature by exploiting a fast
conformational sampling algorithm,20 and to stabilize secondary
structure elements at room temperature,21 which would allow it
to be used for protein structure prediction22 using predicted
secondary structure and β−β contact maps.23 It is an extended
Go̅-type model, where, although some of the secondary
structure interactions are constrained using a harmonic bias
potential, non-native attractive interactions are also modeled. In
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this paper, the bias potential acting on the backbone
conformation of residues with known α-helical and β-strand
secondary structure and the β-carbon distances of known β-
sheet contacts will be referred to as secondary structure bias.
Hence, this model allows the exploration of a more realistic
folding funnel, compared to the “perfect” funnel of standard Go̅
models. Thus, CRANKITE represents an intermediate between
the two main classes of CG protein models. CRANKITE also
uses a full atom representation of the protein backbone,
together with explicit side chain β and γ atoms, to include
entropic contributions coming from the torsional flexibility of
side chains.24 This is important, because it has been shown that
although polyalanine models (including only β atoms) are
excellent for modeling secondary structure elements, they form
more compact structures than real proteins.25

When optimizing force field parameters, protein models
should be parametrized to stabilize the native conformation of
the protein compared to unfolded and misfolded conforma-
tions; that is, the native conformation lies at the global
minimum of the free-energy landscape.26 Traditionally,
statistical-knowledge-based potentials have been used to
estimate model parameters of the energy function to reproduce
certain features of a model dataset,27 such as dihedral angles
and distance distributions, assuming that the selected features
are statistically independent and that their distribution in the
dataset of native conformations comply with the Boltzmann
distribution. This assumption is called the Boltzmann hypothesis.
Although the Boltzmann hypothesis is supported by numerous
empirical studies (see the Discussion section in refs 27 or 28),
the assumption of statistical independence is often poor.
Moreover, a reference state is usually introduced in the
potential of mean force formulation without a rigorous
definition, and the decoy sets used to describe the reference
state will affect the optimized potential parameters, as
demonstrated by Hamelryck et al.,29−31 who give a rigorous
statistical definition of a reference state.
Alternatively, native structure discriminant methods use a set

of decoy conformations to optimize the parameter values, such
that the folding characteristics of the protein are reproduced,
with the lowest energy assigned to the native state, using
various optimization techniques.32−40 However, these methods
do not incorporate temperature into the model, and so they do
not take into account the thermodynamic stability of proteins,
only the relative strength of intermolecular interactions to a set
of decoys.
An alternative way of estimating the potential parameters is

by using maximum likelihood (ML) methods, which infer the
potential parameters by maximizing the likelihood of the
experimentally observed (or computationally generated)
protein conformations, with respect to the model parameters
iteratively (or analytically,41 for very simple models), following
the gradient of the logarithm of likelihood.12,20,41−44 The model
with the parameters giving the highest likelihood would
generate a distribution of conformations (model distribution)
closest to the experimentally observed distribution of
conformations (data distribution, also referred to as the target
distribution of the parameter estimation). The free-energy
landscape of the inferred model potential is closest to the free
energy landscape corresponding to the data distribution, which
was demonstrated using a simple model of water,44 for which
the free energies could be calculated analytically. Winther and
Krogh,42 followed by Podtelezhnikov et al.20,21 used a ML
approach to train a protein model (i.e., a model applicable to

globular proteins), while Shell et al.12 used a ML approach to
train a protein model specific to a 15-residue polyalanine, a
prototype molecule used to model amyloid formation. The
relation of this ML approach (also referred to as the relative
entropy method44) to the force matching method45 was
analyzed by Chaimovich and Shell46 and Rudzinski and
Noid,47 in the context of fitting CG potentials to all-atom
models.
As we show below, the difficulty of the ML approach lies in

the calculation of ensemble averages over the model
distribution at every iteration. Winther and Krogh42 conducted
extensive simulations using replica exchange molecular
dynamics to calculate the ensemble averages, restricting their
training set to a small set of short peptides (24 different 11−14-
residue-long protein fragments), which resulted in poor
transferability to model peptides not in the training set. To
efficiently estimate the gradient of the log likelihood, instead of
re-evaluating the ensemble averages at each ML iteration,
Podtelezhnikov et al.20,21 used a statistical machine learning
technique, known as contrastive divergence (CD),48 which was
developed in the neural network literature to efficiently
estimate the parameters of Boltzmann machines.49,50 This
enabled the use of a larger data set of proteins and resulted in a
transferable protein model, which was subsequently used in
folding simulations of proteins not in the training set. Shell et
al.12 presented another solution to reduce computational costs,
using reweighted ensemble averages between successive
iterations. To accelerate the convergence of the ML
optimization, Hinton51 suggested an adaptive learning rate
with an associated momentum, while Bilionis and Zabaras52

have proposed an optimization algorithm that makes use of the
second derivative of the energy, with respect to the parameters
of the energy function.
In our earlier work, we have used the CD algorithm to

efficiently estimate potential parameters (hydrogen-bond
strength in proteins20 and the secondary structure bias
parameters21) of a CG protein model, CRANKITE. The aim
of this work is to improve the CRANKITE protein model, as an
exemplar for a CG force field, by inferring, or learning, the van
der Waals (vdW) parameters of the CG protein model using
this statistical machine learning approach. Two potential forms
are considered in this paper: a computationally efficient hard
cutoff model, employed by the original CRANKITE force field
that models short-range repulsion due to the Pauli exclusion
between overlapping electron densities, and the Lennard-Jones
(LJ) potential form53 that also models long-range attraction
due to fluctuating charge densities of induced dipoles.
Following the explanation of the method, the parameter
inference and the effect of the simulation parameters on the
inference are discussed. Subsequently, the improvement of the
force field is investigated by a comparison of the performance
of the hard cutoff and LJ type potential forms through the
investigation of structural and thermodynamic properties,
calculated from Monte Carlo (MC) and folding simulations
of 16-residue peptides and protein G (Protein Databank (PDB)
code: 1PGA). Transferability between different protein models
is tested by comparisons of LJ type potentials with learnt vdW
parameters (LJlearnt) and parameters adopted from the widely
used AMBER54 and CHARMM55 all-atom force fields (LJAMBER

and LJCHARMM, respectively). The assumptions of the method
are also discussed.
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2. METHODS
2.1. Maximum Likelihood Inference for Parameter

Estimation of Generalizable Protein Models. We assume
that we have n0 independent observations of the conformation
Ω0 of a protein with amino acid sequence S0, {Ω0|S0} = {Ω0

j |S0:
j = 1, ..., n0}, distributed according to the Boltzmann
distribution at inverse temperature β (e.g., the outcomes of
an experiment or a computer simulation). The interaction
parameters, θ, of a protein model, such as force constants,
distance cutoffs, dielectric permittivity or atomic charges,
specific to the protein with amino acid sequence S0, can be
estimated by maximizing the likelihood, L = P(θ|{Ω0},S0), by a
gradient ascent using an iterative scheme. At iteration k+1,

θ θ η= + ∇θ
+ Llnk k1

(1)

where η is the learning rate, and ∇θ ln L is the gradient of the
logarithm of likelihood, with respect to parameter θ. Assuming
that the observations {Ω0} are independent and come from the
Boltzmann distribution at inverse temperature β for a given
parameter set θ,

∏
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Using Bayes’ equality with a uniform prior P(θ|S0), the gradient
of the likelihood, with respect to the model parameters, can be
written as
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where ⟨A(Ω)⟩θ,S0 = ∫ A(Ω)P(Ω|θ,S0)dΩ is the ensemble
average of A(Ω) in the model distribution. The first term in
the parentheses of eq 3 is an average over the data,
approximating an ensemble average over the data distribution.
Maximizing the likelihood is equivalent to minimizing the
Kullback−Leibler divergence (or relative entropy) of the data
distribution and the model distribution:
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since the entropy of the data distribution, H(P(Ω0)) =
−∑j=1

n0 P(Ω0
j |S0)lnP(Ω0

j |S0), does not depend on the parameters
θ, and the observations are drawn from the data distribution.
Such a protein model will be specific to the protein with

sequence S0 it was trained on, and is unlikely to be transferable
to proteins with arbitrary amino acid sequences. A generalizable
protein model, that is, one that is transferable to proteins not in
the dataset, must be trained on a set of proteins that are
representative of all the proteins we aim to model, and which
are independent of each other. Hence, let us take observations
of the conformations of N proteins with amino acid sequences
{S0} = {S0

i : i = 1, ..., N}. Let us allow that, for some proteins
with sequence S0

i , more than one independent observation of

the conformation is available, {Ω0
i } = {Ω0

ij|S0
i : j = 1, ..., ni}, and

that all observations come from the Boltzmann distribution
corresponding to the same inverse temperature β. The
parameters of the generalizable protein model (we use the
same parameter set θ to describe all proteins) maximize the
likelihood of the parameters, given the observed conformations.
The probability of finding the dataset, given the sequences and
the parameters, is

∏θ θΩ = | = Ω |
=

P i N S P S({{ }: 1, ..., } , { }) ({ } , )i

i

N
i i

0 0
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0 0
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as a conformation is only dependent on its own protein
sequence and the general θ parameters. Following a similar
derivation to that for eq 3, the gradient of the logarithm of
likelihood, with respect to the model parameters θ, can be
written as

∑ ∑β θ θ
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This is equivalent to minimizing the average of KL divergences
between the data and model distributions for all sequences,

∑ θΩ | || Ω |
=

P S P SKL( ( ) ( , ))
i

N
i i i i

1
0 0 0 0

(7)

Note that neither the length of the proteins, nor other
properties of the protein sequences explicitly affect the
parameter estimation; the direction of the gradient ascent is
given by the unbiased average of the KL divergences of the
model and data distributions for all sequences S0

i . Also note that
if there is only one observation available for any protein
sequence, the first term of the inner sum of eq 6, the average
over the data distribution for S0

i , is approximated by one data
point. Even in this case, the ML estimate is still correct, as long
as all protein conformations are described by the Boltzmann
distribution at the same inverse temperature β, and they are
representative of the proteins we aim to model.

2.2. Contrastive Divergence. In contrastive divergence,48

to avoid the cumbersome calculation of the ensemble average
in the model distribution at every step of the ML iteration (eq
6), the Kullback−Leibler divergence of the data distribution
and a perturbed data distribution is minimized, instead of the
KL divergence of the model and data distributions. Samples
from the perturbed distribution are generated by performing K
MC steps starting from the observed conformations represent-
ing the data distribution, using the model parameters θk at
iteration k. For a protein with amino acid sequence S0, we use
P0(Ω|S0) = P(Ω0|S0) to denote the data distribution, Pθ

∞(Ω|S0)
= P(Ω|θ,S0) to denote the equilibrium distribution of the model
with parameters θ, and Pθ

K(Ω|S0) to denote the perturbed data
distribution, which is generated by performing K MC steps
starting from the data distribution using the model parameters
θ at every iteration. The direction of gradient ascent is given by
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where ⟨A(Ω|S0)⟩0 = (1/n0) × ∑j=1
n0 A(Ω0

j |S0) is the ensemble
average in the data distribution, and ⟨A(Ω|θ, S0)⟩K = (1/n0) ×
∑ j=1

n0 A(ΩK
j |θ, S0) is the corresponding average in the perturbed

data distribution, with ΩK
j being a conformation in the

perturbed data distribution. In the original work by Hinton,48

simulation results of restricted Boltzmann machines with a
small number of visible and hidden units demonstrate that the
third term may be safely ignored, and so the CD parameter
estimation algorithm becomes
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For the problem at hand, we additionally provide the
following argument. As K → ∞, eq 1 is recovered. However,
even for a small number of steps, unless the model distribution
reproduces the data distribution, Pθ

K(Ω|S0) drifts away from the
data distribution, toward the model distribution KL(P0(Ω|S0) ∥
Pθ
∞(Ω|S0)) > KL(Pθ

K(Ω|S0) ∥ Pθ
∞(Ω|S0)), and the drift in the

energy gradient observed during the MC simulation can be
used as the estimate of ∇θ ln L. Changing the parameters
according to eq 9 reduces the tendency of the model
distribution to drift away from the data distribution. To
support this argument for the convergence of the algorithm
using the approximate gradient, we calculated the distribution
of the approximate ∇θ ln L for different model parameter
values, and plotted the distributions at the initial and converged
values of one of the model parameters (Figure S1 in the
Supporting Information). The expected value of the distribu-
tion at the initial parameter values is nonzero (and has the
correct sign), while at the converged parameter values, it is
zero.
When the observed conformations belong to proteins with

different amino acid sequences (i.e., when inferring a
generalizable protein model with ni = 1 for all sequences S0

i ),
the ML algorithm takes the form

∑θ θ ηβ θ θ= + ⟨∇ Ω | ⟩ − ∇ Ω |θ θ
+
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E S E S( ( , ) ( , ))k k

i

N
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K
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when using the CD estimation of the KL divergences for all
proteins with amino acid sequence S0

i . This equation is used
throughout this work in the ML inference of the protein model
parameters. As a constant during the ML inference, β can be
incorporated into the learning rate.
2.3. The Protein Model. We use a protein model with an

all-atom backbone and coarse-grained side chains represented
up to the gamma atoms, as described by Podtelezhnikov et al.20

and Burkoff et al.22 Bond lengths and bond angles are rigid,
with values taken from Srinivasan et al.56 and Burkoff et al.,22

except for the Cα valence angle τ (the angle determined by the
amide N, Cα and carbonyl C atoms of a residue), which is
allowed to change. Peptide bond geometries are kept fixed,

resulting in fixed Cα−Cα distances. The conformational
flexibility of the backbone comes from free rotation around
the φ and ψ dihedral angles and the Cα valence angle. The side-
chain (N−Cα−Cβ−Cγ) dihedral angles can take values of ±60°
or 180°. During MC simulations, the move set consists of
crankshaft rotations around any axes connecting up to 4 Cα

atoms, and rotations at the termini around any axis passing
through the Cα atom, as implemented in the CRANKITE
software.19,57 At every fourth MC step, the side-chain dihedral
angles were reassigned by drawing from the frequency
distribution of side chain dihedral angles in the dataset.
The energy function of the protein model depends on the

conformation Ω containing all coordinates of its N residues,
and the parameter set θ. It consists of six terms,22
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(11)

EB is the backbone stress term due to deviations of the Cα

valence angle τi of residue i from the equilibrium value τ0 =
69°,58 and kτ is the force constant of the quadratic potential.
EvdW is the van der Waals interaction term described below,
employed to prevent atomic clashes, and to model long-range
weak attractive interactions. EHB is the hydrogen bonding term
with hydrogen-bond strength H. nl→m

HB is a number between 0
and 1 representing the strength of hydrogen bonding between
the amide H atom of residue l (Hl) and the carbonyl O atom of
residue m (Om), determined using a distance cutoff δ and two
angle cutoffs (ΘCOH and ΨOHN). (For the exact function form,
see the Supporting Information.) Ehyd is a hydrophobic
interaction term with interaction strength kh, a hydrophobic
match factor Mlm, and the cutoff function fcut

hyd. The hydrophobic
match takes a value of 2 if both amino acids are hydrophobic, 1
if one is hydrophobic and the other one is amphipathic, and 0
otherwise. The cutoff function changes linearly from 1 to 0 as
the distance of the Cβ atoms of residues l and m goes from the
sum of vdW radii (from the hard cutoff model) across 2.8 Å.
ESC is the side-chain−side-chain interaction term representing a
secondary structure bias on the dihedral angles of the residues
as well as β-sheet contacts. The γl,l+1 dihedral angle, Nl−Cα,l−
Cα,l+1−Cl+1, is restrained to an equilibrium value γ0,ss typical for
the corresponding secondary structure element ss (γ0,α = 82°
for α-helical conformation, and γ0,β = 180° for β strand
conformation) using the force constant ηss (ηα for residues in
an α-helical, and ηβ for residues in β-strand conformation, and 0
otherwise, defined by a predetermined secondary structure).
The Cβ,l−Cβ,m distances of residues l and m (rlm) that are in β-
sheet contact, defined by a predetermined binary contact map
Clm are restrained by a quadratic potential to an equilibrium
value r0,β using a force constant κβ. E

P is a proline term, specific
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due to deviations of the Cl−1−Nl−Cα,l−Cl dihedral angle, ϕl, of

the proline residue l from the equilibrium value of ϕ0 = −60°,59

and kP = 30RT is the force constant of the quadratic potential.20

In this paper, we consider the following forms of the vdW

interactions acting between atoms:
• A hard cutoff potential, often used by CG models, because

of its simplicity and computational efficiency,56,57,60 with a

distance-dependent excess energy for clashing atoms:22,57
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where Ri and Rj are the vdW radii of atoms i and j taken from
the original CRANKITE model,20 and rij is their distance.
•A Lennard-Jones potential form, also used in more

sophisticated CG models.32,61,62 Here, the vdW energy is
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between atoms i and j at a distance rij, where εij is the vdW
energy contribution at the minimum energy separation, Rmin,ij
(see Figure S2 in the Supporting Information). The energies
are shifted to obtain zero vdW energy at the cutoff, 2Rmin,ij. For
simplicity, the ε parameters of the LJ model are kept the same
for all atom types.
More-sophisticated approximations of the vdW potential (for

example, the Buckingham potential63 or many-body Axilrod−
Teller−Muto contributions64) would be computationally too
expensive to include in our CG simulations, where the aim is to
develop the simplest protein model that captures the physics of
the systems of interest.
2.4. The Optimization Procedure. In this work, the

following parameters of the energy function (eq 11) were
inferred for all models considered: the backbone stress force
constant (kτ), the hydrogen-bond strength (H), the hydrogen-
bond distance cutoff (δ) and angle cutoffs (ΘCOH and ΨOHN),
the hydrophobic interaction strength (kh), the secondary
structure biasing dihedral angle force constants (ηα and ηβ),
and the Cβ−Cβ contact equilibrium distance (r0,β) and force
constant (κβ). For the hard cutoff model, no further parameters
were inferred. For the LJ model (eq 13), a mutual vdW energy
contribution εi parameter for all atom types and the minimum
energy separation parameters Rmin,i for every atom type (CA,
CB, C, N, O and S) were also inferred (LJlearnt model), or
adapted from the CHARMM and AMBER force fields
(LJCHARMM and LJAMBER; see Table 1). Note that, in the LJlearnt
model, the CRANKITE atom types have the same εi parameter,
while in the LJCHARMM and LJAMBER models they have individual
ones.
During the ML inference, the parameters were inferred in

two stages, following a multigrid approach.65 The potential

parameters that govern the local and global configurations are
separated in the inference, starting with local parameters, and
then moving to more global parameters. The local parameters
were chosen as those affecting the local configuration of atoms
and short atomic distances near atomic clashes, namely, the
hydrogen bonding (H, δ, ΘCOH, and ΨOHN), Cα valence angle
stress (kτ), and vdW potential parameters (Rmin,i and ε, only for
the LJ model), and were inferred together in the first stage. The
other parameters acting over larger distances, namely, the
secondary structure bias (ηα, ηβ, κβ, and r0,β), and hydro-
phobicity (kh), were learnt subsequently, with the former ones
being fixed. Note that the LJ potential also acts at long
distances, and hence, the length scale separation is not perfect.
In fact, it is an effective way to decouple the effects of
potentially competing long-range parameters, such as the
hydrophobic interaction potential or the Cβ−Cβ contact
potential, from the short-range part of the LJ parameters,
which cannot be decoupled from the long-range part of the LJ
parameters.
As the data set of known protein structures representing

thermodynamic equilibrium, we use a subset of the protein
structures in the ASTRAL 1.75 database.66 To avoid proteins
with high sequence similarity, proteins with less than 40%
sequence identity were included. The ASTRAL 1.75 database
contains three-dimensional (3D) structures of protein domains,
classified into folding classes. For each structure, a Summary
PDB ASTRAL Check Index (SPACI)67 score is assigned,
indicating the reliability of crystallographically determined
structures. All PDB structures from the α, β, α+β, and α/β
classes of the ASTRAL 1.75 database with SPACI scores above
0.8 were included in the dataset, excluding the ones with
missing residues, disulfide bonds, or unusual residues.
Following the inference, the hydrophobic interaction

strength kh needed modification. kh was increased by 0.1 RT,
which was necessary for the protein folding simulations to
stabilize the conformation with the hydrophobic residues in the
interior of the protein. Although the hydrophobic interaction
strength was sufficient to preserve the folded structure of the
proteins in the database, it was not sufficiently strong for
folding proteins from an unfolded state. A possible reason for
the learnt value of kh being too small could be that the ASTRAL

Table 1. The CHARMM and AMBER Atom Types Whose LJ
Parameters Were Adopted for the CRANKITE Atom Types
in the LJCHARMM and LJAMBER Models

CRANKITE CA CB C N O S

CHARMM CT1 CT2 C NH2 O S
AMBER CT CT C N O S
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1.75 database used contains individual domains of multidomain
proteins, thus including numerous hydrophobic residues on the
surfaces of proteins in the dataset, although these would be in
the interior of the native multidomain proteins. Moreover,
increasing the hydrophobic interaction strength in effect
incorporates a penalty term for hydrophobic−hydrophilic
interactions of hydrophobic side chains with water molecules.
All other potential parameters were used unmodified.
The convergence was monitored by calculating the mean and

the standard deviation of parameter values for consecutive
1000-step intervals. When the mean changed by less than the
standard deviation and it fluctuated over three consecutive
steps, convergence was achieved. The simulations were further
run for another 5000 steps, and from these steps, the mean and
standard deviation of the distributions of the parameter values
were calculated.
2.5. Simulation Parameters. For the parameter estima-

tion, structures in the protein database were mapped onto the
protein model. In the mapping process, in which constraints of
the CG model are enforced, a few atomic clashes are
introduced. In order to eliminate high-energy configurations
due to clashing atoms, the following modifications were made
to the PDB library. The Cβ−Cγ distances of amino acids with
long and flexible side chains (lysine, methionine, glutamine, and
arginine) were set to their real Cβ−Cγ bond lengths: 1.52 Å for
lysine, methionine, and arginine, and 1.53 Å for glutamine.
Furthermore, any γ atoms that caused atomic clashes (for
instance, due to nonstandard side-chain dihedral angles), 765
atoms in total, were removed from the PDB structures used.
Subsequently, PDB structures whose backbone atoms were
involved in further atomic clashes after the mapping onto the
protein model, 6 proteins in total, were also removed from the
library. The list of the proteins used with their SPACI scores,

ASTRAL class information, and the α-carbon root-mean-square
distance (RMSD) of the mapped and the original structures are
included in Table S1 of the Supporting Information. The
maximum Cα RMSD between a mapped and an original
structure was 0.045 Å, while the mean Cα RMSD between the
mapped and the original structures was 0.025 Å.
In the CD learning simulations, we use 4096 MC moves per

CD learning iteration, and a temperature of 298 K was used in
calculating the Metropolis−Hastings acceptance criterion. The
learning rate of the CD learning simulations for each parameter
was determined by a trial-and-error method and set to be
sufficiently large to speed up the convergence, but small enough
to avoid instabilities in the convergence. The effect of the
maximum amplitude of the crankshaft rotations during the CD
learning was also investigated (see the Results section).
To validate the model parameters against the data, the model

distributions of some geometric observables using the
optimized parameters were compared to the data distribution
of the training set. The model distributions were generated by
106 step MC simulations using the protein models with
optimized parameters, starting from the training set, or from an
independent PDB set consisting of structures of the ASTRAL
1.75 database with SPACI scores between 0.7 and 0.8.
The inferred vdW potentials were further tested using 16-

residue peptides and a 56-residue protein, Protein G (1PGA).
First, a 108 step MC simulation was performed on a 16-residue
polyalanine peptide, using only the stress, vdW, and hydrogen-
bond contributions of the energy function, to determine the
accessible areas on the Ramachandran map, and the stable
secondary structure forms without using any secondary
structure bias. Subsequently, nested sampling (NS)22,68

simulations of β-hairpin folding were performed on a 16-
residue polyalanine and its glycine mutants, introducing a β-

Figure 1. Dependence of the converged potential parameter values, as a function of the Monte Carlo (MC) step size, inferred using the ASTRAL
PDB structures after removing overlapping atoms (solid lines), thus using a dataset that better represents the Boltzmann distribution. The plots
correspond to (a) hydrogen-bond strength (H), (b) α-helix backbone dihedral angle bias potential strength (ηα), (c) β-strand backbone dihedral
angle bias potential strength (ηβ), (d) β−β contact bias potential strength (κβ), (e) β−β contact equilibrium distance (r0,β), and (f) Cα valence angle
stress potential strength (kτ). For the hydrogen-bond strength plot (panel a) only, parameter values inferred using the ASTRAL PDB structures
without removing overlapping atoms are also shown (represented by a dotted line). Vertical dashed lines mark a crankshaft MC step size of 0.01.
The error bars correspond to one standard deviation of the distribution of the converged parameter value.
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hairpin secondary structure bias, to examine the behavior of the
unbiased loop. In the mutants, a glycine residue was introduced
at amino acid positions 8, 9, or 10, corresponding to the i+1, i
+2, and i+3 positions in the turn. Nested sampling is a Bayesian
sampling technique,68 which has been shown to be superior to
parallel tempering with regard to finding the native basin of
Protein G using the CRANKITE protein model in our previous
work.22 Further NS simulations were performed on the 16-
residue polyalanine peptide using α-helix and β-hairpin
secondary structure bias, respectively, to determine melting
heat capacity curves of the secondary structure. The NS
simulations were performed until the partition function
converged to T = −100 °C, which implies that the
thermodynamically accessible states have been sampled for all
temperatures above T, and hence, the heat capacity values have
been converged for any temperature above −100 °C. In the NS
simulations of the 16-residue peptides, 10 000 active points
were used, and 10 000 MC steps were used to generate new
points in the NS iterations. In the NS simulations of Protein G,
20 000 MC steps and 20 000 active points were used, and the
partition function was converged down to 25 °C.

3. RESULTS
3.1. Effect of the Simulation Parameters on the

Inference. In a contrastive divergence iteration, a short MC
simulation is performed to estimate the gradient of the energy,
with respect to the simulation parameters. The number of MC
steps, K, during each CD iteration affects the quality of the
gradient estimation, that is, the smaller the K value, the more

stochastic the gradient estimate becomes; however, K does not
affect the overall maximum likelihood.48 A more-stochastic
estimate of the gradient slows the convergence of the CD
simulations; however, it will not prevent convergence.
Following an argument by Hinton,48 even for K as small as
1, on average, over the training set, the perturbed data
distributions are closer than the data distribution to the
equilibrium distribution of the current model parameters
(unless the data and model distributions are equal), even if
individual MC simulations might result in an opposing gradient
at any iteration. Throughout this work, we use K = 4096, which
was found to be effective for the parameter inference.
During the MC evolution of each CD iteration, the

maximum allowed amplitude of the crankshaft rotations affects
the local exploration, thus influencing the converged potential
parameter values (Figure 1), and this can cause significant
variations in the converged parameter values. Our aim is to
infer a protein model that can be used in protein folding
simulations; hence, the exploration must be local for the
quadratic functions to describe the local basin, but it should
also be able to describe the energy surface nonlocally, and not
only the energy restrained to the crystal structure. In this work,
we approximate many terms of the energy function using
quadratic functions. On rugged energy landscapes where this
harmonic approximation of the curvature of the landscape is a
very crude approximation, larger MC moves facilitate the
crossing (effectively tunnelling) of energy barriers that smaller
MC moves could not climb over, and this makes the potential
energy surface appear to be different, often flatter (e.g.,

Table 2. Inferred Potential Parameters Using Contrastive Divergence, for the Protein Models Using the Hard Cutoff and the
Lennard-Jones (LJ)-Type van der Waals (vdW) Potentialsa

vdW and Backbone Stress Potential Parameters

vdW potential Rmin
CA Rmin

CB Rmin
C Rmin

N Rmin
O Rmin

S ε(RT) kτ(RT)

hard cutoff 1.57 1.57 1.42 1.29 1.29 2.00 90
LJlearnt 2.43 1.97 1.82 1.74 1.98 3.10 0.018 98
LJCHARMM 2.275 2.175 2.00 1.85 1.70 2.00 b 103
LJAMBER 1.908 1.908 1.908 1.824 1.6612 2.00 c 114

Hydrogen-Bond Potential Parameters

vdW potential H (RT) δ (Å) cos ΘCOH cos ψOHN

hard cutoff 4.95 2.01 0.770 0.930
LJlearnt 4.98 2.01 0.772 0.928

LJCHARMM 4.80 2.01 0.772 0.925
LJAMBER 4.91 2.01 0.771 0.921

Secondary Structure Bias Potential Parameters

vdW potential ηβ (RT) ηα (RT) Kβ (RT/Å
2) Rβ (Å)

hard cutoff 4.5 18.0 0.80 5.65
LJlearnt 3.7 15.3 0.85 5.39
LJCHARMM 4.5 18.6 1.00 5.62
LJAMBER 2.6 19.7 1.18 5.15

Hydrophobic Interaction Potential Parameters

vdW potential kh (RT)

hard cutoff 0.030
LJlearnt 0.022
LJCHARMM 0.051
LJAMBER 0.057

aThe vdW potential parameters of the hard cutoff model were taken from ref 20, while those of the LJCHARMM and LJAMBER models were taken from
the CHARMM55 and AMBER54 force fields, respectively. bε/RT values from the CHARMM force field (0.0338, 0.0929, 0.186, 0.338, 0.203, and
0.760 for the CA, CB, C, N, O, and S atom types respectively). cε/RT values from the AMBER force field (0.185, 0.185, 0.145, 0.287, 0.355, and
0.422 for the CA, CB, C, N, O, and S atom types respectively). The potential parameters are described in section 2.3; wherever a unit of length is not
indicated, the unit of length is Å.
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increasing the MC step size from 0.01 to 0.2 in Figures 1a, 1b,
1c, and 1f). Since the parameter estimates do not change by
more than 5% for amplitudes of 0.001−0.01 radians for H and
kτ and 0.002−0.02 radians for ηα, in the following, we chose to
use a maximum crankshaft rotation of 0.01 radians in the CD
estimations of the parameters for all models, and we will be
comparing results using this maximum rotation amplitude. For
the other parameters, we accept that the harmonic approx-
imation is probably far from perfect.
We also note that, although the convergence of parameters

for the individual maximum amplitude sizes is not prohibited,
the speed of convergence also depends on the MC step size.
Decreasing the MC step size increases the acceptance rate,
although from an MC step size of 0.02, the acceptance rate is
over 80% (see Figure S3 in the Supporting Information), and it
does not give much advantage in the exploration of the energy
surface during the short MC simulations used to estimate the
gradient in the CD iterations. On the other hand, when the
allowed MC step size is set to be small (for a given number of
MC steps), the exploration of the energy surface becomes
poorer, and the poorer gradient estimate slows the convergence
of the CD simulations.
3.2. Estimation of the Protein Model Parameters.

When inferring several potential parameters together, learning
correlated potential parameters is crucial for the convergence of
the ML estimation. This can be done by considering the
functional form of the energy function. When using the LJ-type
potential that is designed to have a nonspecific long-range
attractive energy contribution, we find problems with the
convergence of the CD learning of the parameters. The reason
for this is that the attractive interactions of the LJ potential
compete with the short-range attractive interactions. For
example, the vdW interaction between a N atom and an O
atom of a hydrogen bond would compete with the hydrogen-
bond interaction between them, both trying to describe an
attractive interaction between the two atoms at the same time.
Similarly, distances that occur frequently in secondary structure
elements (and are therefore enforced by the secondary
structure bias interactions), e.g., the Cβ−Cβ distance of
interacting amino acid residues in a β-sheet, would introduce
an artificial bias to the LJ potential parameters. To avoid these
problems, we only evaluate the hard cutoff part of the LJ
potential between atoms of amino acid residues that are
connected via a hydrogen bond, or whose neighbors are
connected via a hydrogen bond. This way, only nonspecific
nonbonded interactions are taken into account in the
parameter estimation of the LJ potential, and the correlation
of the potential parameters are suppressed for the inference.
Other ways to address this problem include fixing a parameter
value, or the ratio of the competing parameters together (e.g.,
merging the hydrogen bond with a hydrophobicity into one
function). However, introducing such constraints on the
potential parameters could introduce an artificial bias on the
parameter values.
The inferred values of the vdW potentials, hydrogen bond,

secondary structure bias, and hydrophobicity potential
parameters are summarized in Table 2, together with
corresponding values taken from the CHARMM and AMBER
force fields. While there is no noticeable difference between the
hydrogen-bond potential parameters for the two vdW models,
the force constant kτ of the backbone stress interaction is higher
for the protein model using the LJ potential than for the one
using the hard cutoff potential. This indicates that when using

the LJ functional form, as opposed to the hard cutoff functional
form, to represent the atoms, a larger conformation space might
be available by applying the vdW potential, and a higher
backbone stress force constant compensates for this, to obtain
the equilibrium distribution of Cα valence angles in the dataset.
This is supported by the comparison of vdW interaction
functions between various atom types using the model
parameters. Also, the β-strand backbone bias potential
parameter, ηβ, is noticeably higher for the protein model
using the hard cutoff vdW potential, which shows that the LJ
models favor the extended conformation more than the hard
sphere model. On the other hand, the β−β contact potential is
slightly stronger in the protein model using the LJ-type vdW
potential, with shorter equilibrium distance, r0,β, for the
interacting Cβ atoms, and a slightly higher force constant.
The α-helices might also be slightly more stable without a bias
potential, suggested by the lower α-helix backbone bias force
constant, ηα.
During the ML inference, the KL divergence of the model

and data distributions is minimized. However, for an unrealistic
energy function, the model distribution might still be far from
the data distribution. To validate our protein models for
describing the training set of proteins, we calculate various
structural observables in the model and data distributions, such
as the backbone dihedral angles (see Figures S4 (left) and S5 in
the Supporting Information), the α-carbon valence angle (see
Figure S7 (left) in the Supporting Information) and the
distribution of the distance between β-carbon atoms of
interacting amino acid residues in β-sheets (see Figure S7
(left) in the Supporting Information). Although the above
distributions are 1-dimensional (1D) or two-dimensional (2D)
marginalizations of the joint distributions, they would provide a
good indication if the model distribution were different from
the data distribution. In our current work, all model
distributions of the α carbon valence angle are identical to
the data distribution. The model distribution of the β-carbon
atoms of interacting amino acid residues in β-sheets in the
LJAMBER model is shifted to smaller values by 0.3 Å (potentially
indicating a slightly too strong bias on β sheets), while all other
model distributions are identical to the data distribution. All
model distributions of the backbone dihedral angles show the
same features as their distribution in the training set with high
occurrences in the α-helical, extended, and left-handed helical
regions, although the model distributions tend to be more
diffuse, spanning a larger area of the Ramachandran map than
in the distribution of the training set. These differences reflect
the residual KL divergence between the optimized model
distribution and the data distribution, arising from the mapping
entropy (i.e., that several configurations in the atomistic model
translate to the same CG configuration), which is the same for
all models, and from the differences in the potential energy
functions, which are unable to perfectly describe the native data
distribution. For example, the CG protein model employed
here allows for slightly more flexibility of the backbone by its
side-chain beads filling less space than the full side chains in an
atomistic representation, and this manifests in the more diffuse
Ramachandran plots of the backbone dihedral angles.
The transferability of the protein models was investigated

using a test set of proteins independent of the training set,
consisting of all 78 proteins in the ASTRAL database with a
SPACI score between 0.7 and 0.8. The data and model
distributions of the above-mentioned structural observables
were calculated for this test set (see Figures S4 (right), S6, S7
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(right), and S8 (right) in the Supporting Information). These
model distributions were practically identical to the data
distributions of the test set, indicating the transferability of the
protein models to proteins not in the training set. This is an
improvement over the nontransferable protein model of
Winther et al.,42 who were limited to a small set of short
peptides as their training set by the cumbersome calculation of
the ensemble averages in the model distributions at every
iteration. Here (and in our previous work20,21), it is the efficient
estimation of the gradient of the logarithm of likelihood by the
CD approximation that allows for the employment of a more-
realistic training set. We note that other efficient methods also
exist to avoid the re-evaluation of ensemble averages (for
example, Shell et al. used a reweighting of ensemble
averages12).
3.3. Accessible Regions of the Ramachandran Plot

from MC Simulations of an Ala16 Peptide. To test the
available regions of the Ramachandran plot using the two vdW
models described in the Methods section, MC simulations of a
16-residue peptide, Ala16, were carried out at room temper-
ature, using the vdW and hydrogen-bond energy contributions,
together with the Cα valence backbone stress, without the
secondary structure bias. For all models investigated, the
accessible regions of the Ramachandran maps in the MC
simulations at room temperature cover the allowed regions
calculated from the ASTRAL 1.75 database (see Figure S9 in
the Supporting Information). On the individual residue level,
for all models, helical backbone dihedral angles occur most
frequently, with the extended and left helical conformations
also being significant. The distributions for the LJlearnt and hard
cutoff models are more diffuse and more connected between
the positive and negative ϕ values, indicating a smaller energy
barrier for the conformational changes of the peptide backbone
within these regions of the probability map. During the
simulations, there is approximately one hydrogen bond per
configuration at any time, indicating that random coil is the
main conformation. The hydrogen-bond distribution is plotted
in Figure 2. For the hard cutoff model and the LJ model with
learnt vdW parameters (LJlearnt), the most commonly observed
hydrogen bonds correspond to 3,10- (i→(i−3) hydrogen
bonds) and α-helices (i→(i−4) hydrogen bonds). This is
consistent with experimental studies of polypeptides with high
alanine content.69 However, when using the LJ potential with
vdW parameters adopted from CHARMM (LJCHARMM) or
AMBER (LJAMBER), π-helices (i→(i−5) hydrogen bonds) are
also found to be common, which are not seen experimentally.
This problem was also seen in previous molecular dynamics
simulations of short peptides70 using the CHARMM force field.
The difference between the hydrogen-bond distribution using
the various LJ potential parameters implies that it is possible to
change the relative stability of the different helix types by tuning
the LJ potential parameters, and this is confirmed by
simulations using the hydrogen-bond and the Cα valence
angle stress parameters of the LJlearnt model with the LJ
parameters of the three LJ models investigated (see Figure S10
in the Supporting Information). For all models, left handed
helices (i→i+3,4) are also present, in agreement with the
allowed regions of the Ramachandran map, indicating that turn
formation in unbiased loop regions of proteins is conforma-
tionally accessible.
3.4. Studying Steric Effects in Turn Conformations on

16-Residue Peptides with a Hairpin Bias. The protein
model employed here is designed to be used with a known (or

predicted) secondary structure and β−β residue contact bias.
To further test how the hard cutoff and LJ type vdW models
perform in unbiased regions of proteins, in particular in turn
regions of β-hairpins, nested sampling simulations of 16-residue
peptides were performed employing a hairpin bias, where the
turn is located at the center of the peptide (residues 8 and 9).
The peptides used in this test were an Ala16 peptide, and its
mutated forms, where one of the turn residues is replaced by
Gly. These will be referred to as A-G-A-A, A-A-G-A and A-A-A-
G, corresponding to the glycine being at the i+1, i+2, or i+3
position of the turn, respectively. The secondary structure bias
of the energy function keeps the backbone of residues 1−7 and
10−16 extended, as well as restraining the Cβ−Cβ distances of
the interacting amino acid residue pairs of the two strands. The
inner two residues of the turn are unbiased, thus allowing the
investigation of whether or not the protein models described in
the Methods section reproduce observed correlations between
the position of glycine in a β-turn and the observed turn
conformation.71 The turn types found in the NS simulations are
listed in Table 3, with their relative probabilities at 298 K,
where we used the turn definitions of Venkatachalam72 (see
Figure S11 in the Supporting Information). The relative
probability of a turn type at 298 K is calculated by summing the
posterior weights of all NS configurations that fall into the
definition of the turn type, and then normalizing it by the sum
of the posterior weights of all turn types. [The posterior
weights of NS configurations are proportional to the available
phase space volume at a given temperature; hence, they provide
the probability of finding the system in that configuration.]
Turn type IV, that is, when no particular turn type can be
assigned to the dihedral angles of residues 8 and 9, is omitted
from this analysis.
All models investigated show the same trend of the turn

types adopted in the corresponding simulations, although
significant differences between the models used can be
observed for simulations of peptides with the i+2 residue of
the turn substituted with a glycine (A-A-G-A). In all the

Figure 2. Hydrogen-bond pattern from MC simulations of an Ala16
peptide, using the protein models employing the hard cutoff vdW
potential (solid line), the LJlearnt model (dashed line), the LJCHARMM
model (dotted line), and the LJAMBER model (dash-dotted line).
Potential parameters are listed in Table 2. On the horizontal axis, −4
represents a hydrogen-bond between amino acid residues i→j = i−4,
typical of α-helices, while −3 is typical of (3,10)-helices, and −5 of π-
helices. The small peak between +3 and +5 corresponds to left-handed
helices.
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simulations of the peptides, the type II′ turn is the dominant
turn type. When substituting the i+1 residue of the turn of the
polyalanine peptide with a glycine (A-G-A-A), the posterior
weight of type II′ turn increases further, and becomes almost
the exclusive turn type. This is consistent with the findings of
Sibanda et al.71 that, among the protein structures investigated,
type II′ turns mostly occurred with X-G-[ST]-X turn residues
(with X being an unspecified amino acid). Substituting the i+3
residue of the turn with a glycine (A-A-A-G) increases the
probability of adopting a type I turn (by more than a factor of
2). This is consistent with type I turns typically having glycine
residues at the i+3 position of the turn (X-X-X-G).71 When
substituting the i + 2 residue of the turn with a glycine (A-A-G-
A), the type I′ and type II turns become much more significant
compared to simulations of other glycine-substituted peptides.
The increase in the probability of type I′ turns is consistent
with type I′ turns most often consisting of X-[NDG]-G-X
residues.71 Simulations using the LJAMBER model appear to
demonstrate this best. However, this discrepancy might also be
attributable to the LJAMBER model being best at artificially
compensating for the lack of explicit side-chain−main-chain
hydrogen bonds in our model. If this were the case, including
side-chain-main-chain interactions in our model would further
increase the probability of the type I′ turn for an A-[ND]-G-A
peptide for the other models investigated, and the apparent
advantage of the LJAMBER model would be lost; however, this is
beyond the scope of the present paper.
When comparing the fully learnt (LJlearnt) model with the

hard cutoff model, the two models perform very similarly, and
consistently with findings in the literature. We find no apparent
superiority of the more-elaborate LJ function of the vdW
potential in this test. However, note that this does not imply
that, generally, vdW interactions would be unimportant in
modeling small peptides; for example, they have been found to
have a stabilizing effect in quantum mechanical studies of short
polyalanine helices.73 In our CG model, secondary structure
bias contributions are optimized to stabilize the secondary

structure, and, for this particular model, no superiority of any
one of the investigated vdW models is indicated.

3.5. Heat Capacity Curves of an Ala16 Peptide with
Varying Secondary Structure Bias. Since purely structural
properties of polyalanine peptides are not sufficient to rank the
protein models, we also investigated the energetics of the
models. However, analyzing the energetics of solely the vdW
contributions would be misleading, since all other model
parameters might depend on the values of the vdW parameters.
Instead, we investigated relative stabilities and heat-capacity
curves from polyalanine simulations. One of the major
advantages of nested sampling is that, by post-processing the
results of the simulation, thermodynamic properties such as
heat capacity curves may be calculated for any temperature.
Here, we calculate heat capacity curves for a 16-residue
polyalanine peptide under the assumption of either an α-helix
or β-hairpin secondary structure by using an α-helical or β-
hairpin secondary structure bias.
The critical temperatures of the heat-capacity curves (Tc)

(i.e., the peak position) and the heat capacities Cv,c at these
temperatures are listed in Table 4, with the heat capacity curves

given in Figure S12 in the Supporting Information. Also shown
in Table 4 are some indicative experimental values taken from
calorimetric measurements of a variety of peptides 20−30
amino acid residues in length,74 although the secondary
structures of these peptides were not reported. Specific β-
hairpin peptides (see, e.g., ref 75) involve a significant amount
of stabilizing side-chain interactions which are not modeled by
the polyalanine peptides, so they were omitted from this
comparison. The heat capacities for all four models correlate
better with the experimental values under the assumption of a
α-helix rather than a β-hairpin. This is consistent with
experimental NMR studies of polyalanine peptides, which
find a helical form at room temperature,69 and strongly suggests
that the α-helix form is indeed the more stable.
Of the four models, the LJCHARMM model initially appears to

give the best prediction for the critical temperature. However,
this is the only simulation that predicts the β-hairpin to be
more stable than the α-helix (i.e., to have a higher Tc values). In
contrast, the very high critical temperatures predicted for the
hard cutoff potential and LJAMBER model show that these
models cause the α-helix secondary structure to be overly
stable, which is consistent with the critical temperature (∼400
K, or 127 °C) found by Peng et al.,76 using the AMBER force
field for a 15-residue polyalanine peptide. The critical

Table 3. Relative Probabilities of the Turn Types Identified
from Nested Sampling Simulations of 16-Residue Peptides
Applying a β-Hairpin Bias, at 298 Ka

turn residues vdW model turn II′ turn I′ turn I turn II

AAAA hard cutoff 0.968 0.000 0.000 0.032
AAAA LJlearnt 0.983 0.000 0.003 0.014
AAAA LJCHARMM 0.965 0.000 0.028 0.000
AAAA LJAMBER 0.997 0.000 0.002 0.001
AGAA hard cutoff 0.980 0.000 0.001 0.020
AGAA LJlearnt 0.993 0.000 0.001 0.006
AGAA LJCHARMM 0.997 0.000 0.003 0.000
AGAA LJAMBER 1.000 0.000 0.000 0.000
AAGA hard cutoff 0.864 0.022 0.001 0.113
AAGA LJlearnt 0.873 0.023 0.001 0.102
AAGA LJCHARMM 0.619 0.091 0.029 0.182
AAGA LJAMBER 0.588 0.383 0.001 0.025
AAAG hard cutoff 0.944 0.000 0.009 0.046
AAAG LJlearnt 0.980 0.000 0.007 0.012
AAAG LJCHARMM 0.931 0.000 0.066 0.000
AAAG LJAMBER 0.969 0.000 0.030 0.000

aTurn type IV was excluded from the analysis. Substituting the i+1, i
+2, or i+3 residue of the turn by glycine (AGAA, AAGA, and AAAG,
respectively) increases the relative probability of the type II′, the types
I′ and II, and the type I turn, respectively.

Table 4. Critical Temperatures (Tc) of Heat-Capacity Curves
and the Heat-Capacity Value at Tc (Cv,c) in Units of R for the
Ala16 Nested Simulations with α-Helix and β-Hairpin
Secondary Structure Bias, Using the Hard Cutoff (Hard) and
Lennard-Jones Type vdW Modelsa

Critical Temperature Data (°C)

Tc
hard Tc

LJlearnt Tc
LJCHARMM Tc

LJAMBER Tc
exp

α-helix 130 70 0 150
0−30

β-hairpin 10 40 20 30
Heat-Capacity Data (R)

Cv,c
hard Cv,c

LJlearnt Cv,c
LJCHARMM Cv,c

LJAMBER Cv,c
exp

α-helix 170 130 90 80
100−200

β-hairpin 67 63 43 47
aApproximate experimental values (exp) are taken from ref 74.
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temperatures calculated using the LJlearnt model correlate best
with the experimentally observed range while still predicting the
correct relative secondary structure stability. Comparing the
hard cutoff model and the LJlearnt model (for which all
parameters including the LJ parameters were inferred), the heat
capacity results and the relative stabilities suggest that the LJ
potential may be more suitable than the hard cutoff vdW
potential for calculating the thermodynamic properties of
peptides. We also note that there is sufficient flexibility in the LJ
parameters to change the relative stabilities of helical and strand
conformations. The LJ parameter values of the LJCHARMM

model overstabilizes the β-hairpin form, while the LJAMBER

model overstabilizes the α-helical form, when used with the
CRANKITE force field.
3.6. Folding Simulations of Protein G. In the previous

sections, simulations of small peptides with fixed secondary
structure were described, where the form of the vdW
interactions was found to have no significance using our CG
force field including a secondary structure bias. The effects of
the long-range vdW interaction contributions of our force field
on side-chain packing between interacting secondary structure
units (α-helices and β-sheets) can be investigated by protein
folding simulations, because this tertiary level of structure

formation is not modeled by other interaction parameters in
our force field. We present folding simulations of protein G,
including secondary structure bias and hydrophobic interaction
contributions in the models used. Protein G is a 56-residue
protein consisting of an antiparallel four-stranded β-sheet and
an α-helix, with a β-Grasp (ubiquitin-like) fold (see Figure S13
(right) in the Supporting Information). Conformations found
in simulations using the different vdW models were assessed
visually (which side of the β-sheet the helix was on, whether the
hydrophobic residues are in the interior of the protein or
exposed), as well as quantitatively, by calculating the Cα root-
mean-square distance (RMSD) from the crystal structure
present in the PDB database, and the angle of the helix
orientation with respect to the axis of the β-sheet. The helix
orientation angle is calculated as the directional angle between
the axis of the N-terminal β-strand (the vector pointing from
the Cα atom of residue 7 to the Cα atom of residue 3) and the
axis of the α-helix (the vector pointing from the center of mass
of the Cα atoms of residues 24−27 to the center of mass of the
Cα atoms of residues 31−34), around the surface normal of the
β-sheet (the cross product of the vector pointing from the Cα

atom of residue 7 to the Cα atom of residue 3, and the vector

Figure 3. The backbone RMSD from the native state (top), and the angle of the helix with respect to the axis of the β-strands (bottom), as a
function of the potential energy for the conformations in the main basin of the energy landscape, explored by nested sampling simulations using the
protein model with (left) hard cutoff vdW potential and (right) Lennard-Jones type vdW potential with inferred vdW parameters. The estimated
energy at room temperature is marked by solid vertical lines. Conformations obtained by using the LJ potential show a wide range of allowed helix
orientation angle at room temperature, including the native angle in the crystal structure, 21.8° (dashed horizontal line), while simulations using the
hard cutoff potential fail to find the native helix orientation.
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pointing from the Cα atom of residue 7 to the Cα atom of
residue 54).
For all vdW models investigated here, the main conformation

at room temperature is topologically correct. The helix was on
the correct side of the β-sheet at room temperature in all
simulations, as opposed to earlier simulations using the
CRANKITE protein model without including the γ atoms
(and without hydrophobic interactions), which allowed the
helix to be equally on either side of the sheet.21 Since there is
no information coded in the secondary structure bias about
which side of the sheet the helix may pack against, this indicates
that having the γ atoms and the hydrophobic interactions in the
model makes a clear distinction between the two basins.
Previous simulations including γ atoms but no hydrophobic
interactions (data not shown) showed a preference for the helix
to be on the correct side of the sheet, probably due to the steric
clashes of large residues in the loops that prohibit the folding of
the helix onto the wrong side of the sheet at room temperature.
The inclusion of hydrophobic interactions enables a qualitative
shaping of the energy landscape, representing a driving force for
the correct collapse of the protein in the folding simulations, in
agreement with previous studies arguing for the importance of
the hydrophobic interactions in protein folding.77

When comparing the RMSD of the conformations in the
main basin from the native conformation in the PDB database,
the LJlearnt model outperforms the hard cutoff potential.

Conformations in the main basin of the energy landscape,
explored by NS simulations using the LJlearnt model, have an
RMSD from the native conformation as small as 2 Å, while the
model employing the hard cutoff potential cannot find
conformers that have an RMSD distance of less than 3 Å
(see Figure 3, top). The reason for this is that the packing of
the helix with respect to the β sheet can be better described by
the LJ model. Indeed, the orientation of the α-helix, with
respect to the β-sheet, is closer to the native orientation when
using the LJlearnt model (see Figure 3 (bottom), as well as
Figure S13 in the Supporting Information). The native helix
orientation angle, with respect to the sheet, only appears using
the LJ potential, and a wide range of orientation angles are
accessible at room temperature, showing that a twisting motion
of the helix is allowed. This is consistent with rigidity analysis of
Protein G,22 where the lowest-frequency nontrivial mode of the
normal-mode analysis of Protein G was found to correspond to
a rotation of the helix about an axis perpendicular to the β-
sheet, allowing a deviation of more than 30° in the helix
orientation angle from the crystal structure while maintaining
the network of hydrophobic bonds present in the crystal
structure.
The reasons why the LJ potential form could be better than

the hard cutoff at modeling the packing of Protein G could be
2-fold. First, as discussed in section 3.2, the LJ potential is softer
than the hard cutoff potential, allowing for more flexibility of

Figure 4. Distribution of the helix angle at room temperature from a MC simulation for the different models: (top left) hard cutoff model, (top
right) LJlearnt , (bottom left) LJCHARMM, and (bottom right) LJAMBER. Simulation length: 1010 MC steps, starting from the crystal structure. Vertical
dashed lines show the helix orientation angle in the crystal structure.
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the loop regions at the two ends of the helix; and second, the
weak long-range attractive interactions might favor the packing
of the helix in the native orientation, which would appear as a
zero-energy contribution using a hard cutoff. However, we have
found that the hard cutoff and the LJ potentials behaved
similarly in modeling small loop regions of peptides with simple
tertiary structure, suggesting that it is more likely that the long-
range attractive interactions make the Lennard-Jones potential
a more-realistic model for proteins. Our results confirm
previous observations about the importance of the long-range
attractive interactions of the vdW interactions in the modeling
of the packing of protein interior78 and small clusters.79 We find
that, in the CRANKITE model, while the hydrophobic
interactions are responsible for stabilizing the correct tertiary
assembly of the secondary structure elements enabling the
qualitatively correct collapse of the protein during the folding
process, the vdW interactions are important for the fine-tuning
of the energy landscape within its main basin. This agrees with
previous experimental and simulation results (see citations
given in ref 80), which found that both the hydrophobic
interactions and the packing are important in protein folding.
When comparing simulations using the LJ potential with

learnt or adopted vdW parameters, we find that, although low
RMSD structures with the native orientation are observed in all
LJ simulations (see Figure S14 in the Supporting Information),
the distributions of the helix orientation angle exhibit significant
differences: while the helix distribution angle follows a broad
unimodal distribution for the LJlearnt model, it follows a bimodal
distribution using the LJCHARMM and LJAMBER models, implying
a two-state model with a high energy barrier. This is shown by
the distribution (Figure 4), the trace plots (Figure S15 in the
Supporting Information), and the autocorrelation functions
(Figure S16 in the Supporting Information) of the helix
orientation angle, calculated in room temperature MC
simulations of 1010 steps, starting from the crystal structure.
The energy barrier of twisting the helix is so high using the
LJAMBER model that the helix orientation angle only switched
once between the two main basins. The trace plots and the long
autocorrelation time of the helix orientation angle of the
LJCHARMM model suggest the presence of an energy barrier for
this model. The rigidity analysis of Protein G22 suggests a broad
unimodal distribution without the implication of an energy
barrier, supporting the distribution generated by the LJlearnt
model. We note that the helix angle distribution is far from
perfect, being shifted toward negative values, which indicates
that there are other effects not considered in the model that
play a role in the helix packing, for example, electrostatic
interactions.

4. DISCUSSION
When inferring a generalizable protein force field using a
training set of proteins with varying sequences (see section
2.1), our ML approach with the CD approximation relies on
the following assumptions. First, the protein conformations of
the various sequences S0

i come from their respective Boltzmann
distributions corresponding to the same inverse temperature,
and second, the training set of protein conformations
represents independent and representative samples from a set
of proteins that is intended to be modeled by the protein force
field.
The training set of protein conformations may be

experimentally observed,20,21,42 or computer-generated.12,28

When conformations are generated from computer simulations

at a given temperature, although the assumption of Boltzmann
distribution of each sequence holds a priori, the fitted CG
model will have the limitations of the all-atom model at best.
The same holds for fitting to NMR structures optimized by all-
atom force fields. Hence, we used only crystal structures in the
training set of our protein model. The assumption that the
individual conformations in the training set, all of which are
crystal structures, are representative of the native structure in
thermodynamic equilibrium in solution, is based on previous
studies.81,82 When the atomic coordinates of proteins are
mapped onto the CG model, high energy states, non-
representative of the Boltzmann distribution were eliminated
by removing the clashing gamma atoms. This causes the
converged parameter values (hydrogen bond strength, bias
potential strength) to be consistently up to 5% lower than
when the ensemble including high energy conformations is
used (Figure 1a). A possible explanation of this is that stronger
attractive interactions (hydrogen bonds and side-chain−side-
chain interaction) are necessary to compensate the high energy
atomic clashes, in order to be able to preserve the structure of
the proteins in an MC simulation. This demonstrates the
importance of the data set of known proteins being drawn from
an ensemble representing thermodynamic equilibrium at room
temperature. One might argue that it could be better to keep all
atoms, and relax the structure by minimization or perturbation
of the structures. However, at this stage, we do not know the
parameters of the energy function, and the energy function
used would bias the equilibrium state, and the inferred potential
parameter values. We also note that, in PDB structures, there
are missing atoms, and none of the potential parameters of our
CG model are dependent on whether all atoms in a residue are
present. In the parameter inference, the dataset with the
clashing atoms removed was used.
According to the Boltzmann hypothesis, the statistics of

structural features such as hydrogen-bond distances in the
native state of proteins comply with the Boltzmann
distribution.83−85 It has been argued that the Boltzmann
hypothesis represents an evolutionary equilibrium where these
structural features are maintained around a narrow set of
values,83 for example it has been proposed that protein
sequences have evolved maintaining an optimal mean hydro-
phobicity profile.84 According to the maximum entropy
principle, these may be considered as evolutionary constraints
on the evolution of protein sequences (see the Discussion
section in the work of Podtelezhnikov et al.27). This argument
suggests the existence of a generalizable protein force field that
captures these evolutionary constraints, which we infer using a
training set of protein conformations that is representative of
the proteins to be modeled (that is, proteins with a globular
structure). In another study, to recover a very simple
underlying CG force field, a training set of 5 proteins have
been found to be sufficient,28 where the training set is called an
extended canonical ensemble, referring to the collection of
equilibrium systems that are governed by the same underlying
general force field.
To test that our training set is representative of this

distribution, we considered parameter estimation using differ-
ent subsets of the ASTRAL library, marked by a minimum
SPACI score, representing the quality of the crystallographic
structures. The higher the SPACI score the better the
crystallographic structures are, although the variability of folds
may be lower, due to the smaller number of structures. The
parameter estimation using the different subsets reveals a trend
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for the hydrogen bond strength (a 10% increase for SPACI
score 0.8 as opposed to 0.4), corresponding to more perfectly
formed hydrogen bonds in the dataset, but no dependence of
the bias potential parameters on the quality of protein
structures. The weak dependence of the protein model
parameters on the quality of the crystal structures indicate
that the ASTRAL data set is sufficiently diverse to estimate
parameters of a generalizable protein model, and as such, in the
parameter inference, we used the subset of the database with a
minimum SPACI score of 0.8, comprising 73 proteins of
varying length from 43 to 690. In comparison, Winther and
Krogh42 used a dataset of 24, 11−14-residue-long peptides as
the training set of their ML inference. Although the training set
was successfully folded with their optimized potential, the
inferred protein model was not found to be transferable to
peptides not included in the training set. One of the reasons for
this was that the training set was not representative of the
native distribution of protein sequences.
The CD approximation allows a significant acceleration of

the ML inference. Assuming 106 MC steps for the convergence
of the ensemble average, which might be a reasonable estimate
for the peptide size used by Winter and Krogh,42 the
acceleration of the ML inference coming from the use of the
CD approximation is over 200-fold for the same dataset of
peptide conformations. Moreover, larger proteins included in
the dataset will have longer equilibration and decorrelation
times (for example, in the MC simulations of Protein G using
the LJAMBER model, even 1010 MC steps are not sufficient to
calculate the equilibrated distributions), further increasing the
acceleration of the current algorithm over a naıv̈e ML
algorithm.

5. CONCLUSION
In this work, the potential parameters of a generalizable coarse-
grained (CG) force field for modeling proteins were inferred,
or learnt, from a data set of known protein structures, using a
maximum likelihood (ML) approach. We show how our
method of inferring a generalizable protein model relates to
inferring protein models specific to an amino acid sequence.
This ML inference of a specific force field relies on the
assumption that the training set contains independent
observations of conformations of not only one, but a set of
proteins, which are independent and representative of the
proteins to be modeled by the force field. While the training set
used here is a subset of crystal structures from the Protein
Database (PDB) database (the only available experimental data
on protein structures), it could also be generated by computer
simulations.12,28

To avoid the necessity of equilibrating each protein of the
training set in the model distribution at each iteration of the
ML optimization, we employ contrastive divergence for a
computationally efficient approximation of the gradient of the
energy with respect to the potential parameters, reducing the
computational requirements by several orders of magnitude.
The contrastive divergence approximation relies on the
assumption that the conformations of any protein in the
training set represent samples from a thermal equilibrium. We
show that if this assumption does not hold (due to including
several high energy conformations), a systematic error in the
parameter estimation is introduced. The algorithm is very
simple, increasing the number of the parameters of the ML
inference by only two; the number and the maximum
amplitude of Monte Carlo (MC) steps to generate the

perturbed data distribution. While the number of MC steps
only affects the noise on the gradient estimate, we find that,
because of the ruggedness of the energy landscape, selection of
the maximum allowed MC step size affects the local exploration
of the energy landscape. Preliminary tests show that the ML
optimization can be further accelerated by employing an
adaptive learning rate with an associated momentum, as
suggested by Hinton.51

We infer parameters for protein models employing two
different van der Waals (vdW) interaction potentials: a hard
cutoff potential and a Lennard-Jones (LJ) potential using
inferred parameters (LJlearnt) and parameters adopted from the
CHARMM and AMBER force fields (LJCHARMM and LJAMBER,
respectively). We find that the LJlearnt model better models heat
capacities of small peptides, as well as the helix orientation
distribution of Protein G at room temperature, when used
within the CRANKITE force field, which is an improvement
over the original version of the force field employing the hard
cutoff potential form. In the improved force field, the
hydrophobic interactions determine the main basin of the
energy landscape into which the protein collapses during the
folding simulations, while the vdW interactions serve to fine-
tune the potential energy landscape within the main basin. The
simulation results suggest that the CRANKITE force field can
be further improved by incorporating electrostatic interactions
or side-chain−main-chain hydrogen-bond interactions. Our
simulations demonstrate that model parameters generally are
not transferable between different models. When comparing
the all-atom CHARMM or AMBER force fields using our CG
force field, both the atomistic resolution and the energy
function differ significantly. Adopting vdW parameters without
further optimization was found to cause a significant change in
the secondary structure bias potential parameters (not present
in the CHARMM or AMBER force fields), and the relative
stability of the secondary structure elements was also found to
be altered. However, the maximum likelihood inference using
the contrastive divergence approximation employed here
provides an efficient general inference scheme to achieve a
model distribution closest to the data distribution in the
training set, as long as the assumptions of the model discussed
above hold.
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