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Pancreatic beta (b)-cell dysfunction and reduced mass play a central role in the
development and progression of diabetes mellitus. Conventional histological b-cell mass
(BCM) analysis is invasive and limited to cross-sectional observations in a restricted
sampling area. However, the non-invasive evaluation of BCM remains elusive, and
practical in vivo and clinical techniques for b-cell-specific imaging are yet to be
established. The lack of such techniques hampers a deeper understanding of the
pathophysiological role of BCM in diabetes, the implementation of personalized BCM-
based diabetes management, and the development of antidiabetic therapies targeting BCM
preservation and restoration. Nuclear medical techniques have recently triggered a major
leap in this field. In particular, radioisotope-labeled probes using exendin peptides that
include glucagon-like peptide-1 receptor (GLP-1R) agonist and antagonist have been
employed in positron emission tomography and single-photon emission computed
tomography. These probes have demonstrated high specificity to b cells and provide
clear images accurately showing uptake in the pancreas and transplanted islets in preclinical
in vivo and clinical studies. One of these probes, 111indium-labeled exendin-4 derivative
([Lys12(111In-BnDTPA-Ahx)]exendin-4), has captured the longitudinal changes in BCM
during the development and progression of diabetes and under antidiabetic therapies in
various mouse models of type 1 and type 2 diabetes mellitus. GLP-1R-targeted imaging is
therefore a promising tool for non-invasive BCM evaluation. This review focuses on recent
advances in non-invasive in vivo b-cell imaging for BCM evaluation in the field of diabetes; in
particular, the exendin-based GLP-1R-targeted nuclear medicine techniques.

Keywords: beta-cell imaging, glucagon-like peptide-1, exendin, positron emission tomography, single photon
emission computed tomography, b-cell mass, islet transplantation, diabetes mellitus
INTRODUCTION

The number of patients with diabetes worldwide is on the rise. The estimated prevalence of patients
with diabetes 20 years of age or older has risen from 151 million to 463 million from 2000 to 2019,
and it is predicted to increase to 700 million by 2045 (1). To control this increase, we need a detailed
understanding of the pathogenesis of diabetes and to develop new diagnostic strategies and policies
for treating the disease.
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The reduction of pancreatic beta (b)-cell mass (BCM) and
b-cell function involves the onset and progression of diabetes;
BCM plays a central role in the pathophysiology of both type 1
and type 2 diabetes mellitus (2–4). In type 1 diabetes mellitus, the
time-course patterns of b-cell destruction vary from the
prominent type to latent autoimmune diabetes in adults or
slowly progressive insulin-dependent diabetes mellitus (5–7).
Residual BCM is therefore an important factor in managing
type 1 diabetes mellitus, whereas viable graft islet volume largely
affects the outcomes in islet cell transplantation (8). In type 2
diabetes mellitus, substantially reduced BCM is observed, even at
diagnosis, and can affect the responsiveness of antidiabetic
therapy (3, 9–11). Therefore, a BCM evaluation leads to not
only a deeper and more concise understanding of the individual’s
diabetic state but also the development and evaluation of
antidiabetic therapy aimed at BCM restoration and protection.
Although conventional methods for evaluating in vivo BCM are
difficult for practical use due to their invasiveness and
unsatisfactory b-cell specificity, non-invasive pancreatic b-cell
imaging using nuclear medicine techniques have emerged in
recent years. In particular, radioisotope-labeled probes using
exendin peptides [including glucagon-like peptide-1 (GLP-1)
receptor agonist and antagonist] have been promising tools for
positron emission tomography (PET) and single-photon
emission computed tomography (SPECT) imaging. A number
of these probes, including 111indium-labeled exendin-4
derivative {[Lys12(111In-BnDTPA-Ahx)]exendin-4}, have
demonstrated the visualization of the mouse pancreas and its
image analysis for BCM quantification and thereby have shown
potential for clinical use (12–15). This review focuses on the
recent advances in non-invasive in vivo b-cell imaging and BCM
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evaluation for type 1 and type 2 diabetes mellitus, especially
exendin-based GLP-1R-targeted nuclear medicine techniques.
THE URGENT NEED FOR NON-INVASIVE
b-CELL MASS EVALUATION IN DIABETES

Both type 1 and type 2 diabetes mellitus are characterized by a
progressive reduction in BCM (16). Although the evaluation of
pancreatic b-cell function is essential for understanding insulin
secretion failure, the systemic b-cell function consists not only of
the ability of individual b cells to secrete insulin but also the
regulation of BCM (Figure 1). However, conventional markers
such as plasma and urine C-peptide levels do not provide direct
information regarding BCM and do not discriminate changes in
BCM from those of individual b-cell function. Therefore, the
exact relationship between BCM and b-cell function in the onset
and progression of diabetes remains unclear (17–19). Direct
information regarding BCM itself provides a novel parameter
for understanding the pathophysiology of diabetes and
evaluating the efficacy of new and existing antidiabetic therapy.
However, the conventional histological method for evaluating
BCM using pancreas samples through autopsy or surgery is
invasive and is limited to cross-sectional observations (20). This
method also raises certain concerns in terms of the restricted
sampling area and staining evenness in view of representing the
BCM of the entire pancreas (20). A novel technique for non-
invasive BCM monitoring is therefore an urgent need in basic
research and clinical fields.

In type 1 diabetes mellitus, pancreatic b cells are predominantly
destroyed by autoimmune attacks, which result in markedly
FIGURE 1 | The expected benefits of non-invasive b-cell mass (BCM) evaluation. Loss of BCM has a central role in the onset and progression of type 2 diabetes
mellitus. The establishment of non-invasive BCM evaluation methods will open the door to elucidating and understanding the pathophysiology of diabetes, the
evaluation of therapeutic efficacies aimed at preserving and restoring BCM, the implementation of personalized diabetes management based on individual BCM, and
drug development targeting BCM preservation and restoration.
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reduced BCM and severe insulin deficiency. However, the
remaining viable b cells, including non-functional ones, are
observed in over 30% of patients with long-duration type 1
diabetes mellitus (18, 21, 22). Moreover, slices of pancreatic
tissue from organ donors with type 1 diabetes mellitus revealed
that BCM loss might be preceded by a decline in b-cell function
and have a varying contribution to the pathogenesis of type 1
diabetes mellitus (23). Recent studies have revealed that certain
patients present with slowly progressive types of type 1 diabetes
mellitus, such as latent autoimmune diabetes in adults and slowly
progressive insulin-dependent diabetes mellitus, in which systemic
b-cell function is persistently preserved, although the natural
history of BCM changes in these types remains to be
investigated (5–7). These findings suggest the range of
remaining BCM in individuals with type 1 diabetes mellitus and
increase the clinical importance of evaluating BCM. In addition,
BCM can be a potential target for preservation and restoration in
future therapeutic interventions for type 1 diabetes mellitus. A
BCM evaluation is therefore essential for broadening the insights
into its pathophysiology and developing a new therapeutic strategy
for type 1 diabetes mellitus.

Islet transplantation, in which isolated donor islets are infused
into the portal vein, has become a promising treatment option
for patients with type 1 diabetes mellitus (24, 25). Although islet
transplantation can improve glycemic control and even achieve
insulin independence (25, 26), a sufficient volume of islet grafts is
required to achieve insulin independence. The post-
transplantation loss of islet grafts is often observed, which
might require repeated islet transplantations (8, 26, 27). A
non-invasive imaging method is therefore needed to monitor
these islets over time. Stem-cell-derived transplantation,
encapsulation devices, and subcutaneous implantation have
received significant attention recently as approaches for solving
the problem of lack of donors and to minimalize invasiveness
(26, 28–30). Non-invasive b-cell imaging is useful for evaluating
and improving the efficacy of these techniques.

In type 2 diabetes mellitus, a hypothetic model of BCM
changes has been proposed; type 2 diabetes mellitus occurs in
response to a reduction in BCM following a temporary
compensatory increase in BCM induced by obesity and insulin
resistance. BCM subsequently decreases progressively (2, 3). This
hypothetic model is, however, simply a patchwork model based
on the implications of cross-sectional studies, given that the
method for evaluating BCM has been limited to a pathological
type, using surgically resected or postmortem pancreatic samples
(20). Butler AE et al. investigated BCM using post-mortem
pancreatic sections and reported that BCM in type 2 diabetes
mellitus was reduced by 63% in cases of obesity and by 41% in
cases without obesity compared with those cases with normal
glucose tolerance (10). Interestingly, BCM in impaired fasting
glucose conditions also showed an approximately 40% reduction
compared with that in healthy participants (10). In other autopsy
studies of Asian populations such as Japan and South Korea, a
30–50% reduction in BCM was observed in patients with type 2
diabetes mellitus compared with those with normal glucose
tolerance (31, 32). These reports suggest that the onset and
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progression of type 2 diabetes mellitus is involved not only in the
decline in b-cell function but also in the reduction in BCM (33,
34). In this context, preserving or restoring BCM is a critical
strategy for the prevention and long-term management of the
disease (3, 9). Moreover, individual BCM information can
provide a chance to optimize antidiabetic therapy individually,
which can open the door to truly personalized precision
medicine in the field of diabetes. The elucidation of the
individual’s remaining BCM and the effects of antidiabetic
agents on BCM is of significant value (20, 35). These studies
also raise the clinical issue that a non-negligible reduction in
BCM might have already occurred by the time type 2 diabetes
mellitus is clinically diagnosed (10, 20). To address this unmet
clinical need, an earlier recognition and monitoring of BCM
changes are essential for preventing and preemptively managing
type 2 diabetes mellitus. Urgent needs for non-invasive BCM
evaluation should therefore be noted (Figure 1).
CHALLENGES OF NON-INVASIVE
b-CELL-SPECIFIC IMAGING

Despite the need for and the potential of non-invasive b-cell
imaging and quantification, the feasibility of such technologies
has been hampered by numerous obstacles, one of which is the
small and scattered area comprising b cells in the total pancreas.
Pancreatic b cells constitute only 1–3% of the total pancreatic
mass. b cells also constitute the islets of Langerhans, which are
heterogeneously distributed throughout the pancreas and are
composed of various other cell types such as alpha, delta, and
pancreatic polypeptide cells (34, 36). Another major obstacle is
the spatial resolution of clinical imaging modalities, given that
the islets of Langerhans are approximately 40–300 mm in
diameter. In vivo b-cell visualization and quantification require
imaging modalities with sufficiently high spatial resolution to
image individual islets, and no widely available clinical modality
[including computed tomography (CT) and magnetic resonance
imaging (MRI)] has satisfied this requirement (17). Therefore,
instead of resolving single islets, the strategy has been to measure
total pancreas signals from tracer molecules highly specific to
b cells and provide an estimated BCM. In this context, nuclear
medicine imaging techniques such as SPECT and PET have
attracted attention (20, 37) due to their ability to detect their
radioisotope-labeled probes at picomolar ranges, despite their
limited spatial resolutions (38). The high specificity to b cells of
high-sensitivity imaging modalities combined with radioisotope-
labeled probes outweighs the shortcomings of their spatial
resolution (17, 39). Accordingly, SPECT and PET have been
investigated for the application to in vivo b-cell-specific imaging.
EXPLORATION OF IDEAL PROBE
TARGETS IN IN VIVO b-CELL IMAGING

The identification of ideal probe targets highly specific to b cells
is essential for performing b-cell SPECT and PET imaging.
June 2021 | Volume 12 | Article 714348
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Therefore, the various molecules whose expression is observed
specifically in b cells have been explored, and those ligands,
substrates, and antibodies have been investigated as putative
probes for b-cell imaging. To date, sulfonylurea receptor 1
(SUR1) (40, 41), glucose transporter 2 (42), voltage-dependent
calcium channel (43), G protein-coupled receptor 44 (GPR44)
(44, 45), D2 and D3 dopamine receptors (46, 47), serotonergic
system (48–51), vesicular monoamine transporter 2 (VMAT2)
(52, 53), and GLP-1 receptor (GLP-1R) (54, 55) have been
reported as potential probe targets (Figure 2) (56).

SUR1 is a subunit of ATP-dependent potassium channels and
is specifically expressed in b cells except in the brain. Given that
sulfonylureas are known for their binding affinities to SUR1 and
in light of their clinical use experience, a number of radiolabeled
sulfonylurea derivatives such as glibenclamide and glipizide have
been investigated. However, these probes have failed to achieve
sufficient specificity to b cells; low accumulations in the pancreas
and high background signals (57, 58). Although a mitiglinide
derivative has been reported as a potential b-cell imaging probe
with higher specificity (40), none of the available probes targeting
SUR1 are currently feasible.

D2 and D3 dopamine receptors involve glucose-stimulated
insulin secretion in b cells (59) and have been suggested as a
target for b-cell imaging (46). PET imaging with the receptor
agonist 3,4,4a,5,6,10b-hexahydro-2H-naphtho(1,2-b)(1,4)
oxazin-9-ol was examined in patients with type 1 diabetes
mellitus (46), demonstrating reasonable pancreatic uptake and
Frontiers in Endocrinology | www.frontiersin.org 4
non-negligible uptake in the spleen, located near the tail of the
pancreas. A substantial overlapping of probe accumulations in
the pancreas has been observed between patients with type 1
diabetes mellitus and healthy participants (46). Another probe,
[18F]dihydroxyphenylalanine [(18F)DOPA], has been
investigated for nesidioblastosis, with several groups reporting
the successful imaging of responsible foci. However, [18F]DOPA
was taken up in both endocrine and exocrine pancreatic cells and
showed high background signals, which suggests a limited
potential use for this probe (60).

(11C)5-hydroxytryptophane [(11C)HTP] is a tracer employed
for evaluating serotonin biosynthesis and is metabolized by
dopamine decarboxylase to (11C)serotonin. Given that
serotonin is accumulated in b cells, [11C]HTP PET has been
investigated in b-cell imaging, demonstrating substantially
reduced accumulation in the pancreas of patients with type 1
diabetes mellitus (48). (11C)HTP PET also demonstrated its
potential utility for the longitudinal observation of islet mass in
type 1 diabetes mellitus and islet transplantation (49, 51).
However, conflicting reports have suggested that HTP is
accumulated in other pancreatic endocrine and exocrine cells
and have encountered difficulties in distinguishing BCM between
healthy participants and patients with diabetes due to the large
overlap (17, 61, 62).

VMAT2 is an integral membrane protein for neurotransmitter
transport. The derivatives of dihydrotetrabenazine (DTBZ), a
ligand of VMAT2, have been actively researched as potential
FIGURE 2 | An overview of the potential targets of b-cell-specific imaging probes. The identification of ideal probe targets highly specific to b cells is essential for
realizing b-cell imaging. The various molecules whose expression is observed specifically in b cells have been explored. SUR1, glucose transporter 2 (GLUT-2),
voltage-dependent calcium channel (VDCC), G protein-coupled receptors (GPRs), D2 and D3 dopamine receptors, serotonergic system, vesicular monoamine
transporter 2 (VMAT2), and GLP-1 receptors have been reported as leading potential probe targets. KATP channel, ATP-sensitive potassium channel; 5-HT receptor,
5-hydroxytryptamine receptor.
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b-cell imaging probes. However, most DTBZ derivatives have
demonstrated high exocrine-islet ratios in the pancreas, lacking
the specific accumulation in b cells. (18F)fluoropropyl-DTBZ has
been employed for evaluating BCM in patients with type 1
diabetes, showing lower accumulations in the pancreas
compared with those of healthy participants (52). However,
non-specific binding was observed not only in the liver and
spleen but also in the pancreas, which could significantly affect
the accuracy of the BCM evaluation and could overestimate BCM
(52). Most signals of the DTBZ-related probes originated from
delta and PP cells, which also expressed VMAT2, and this non-
specific binding was higher in patients with diabetes (52, 63, 64).
These probes should therefore be further optimized for
BCM evaluation.
VISUALIZATION OF b CELLS: GLUCAGON-
LIKE PEPTIDE-1 RECEPTOR-TARGETED
IMAGING

GLP-1R is a G-protein-coupled receptor that plays a key role in
glucose metabolism and is a major therapeutic target for
diabetes. GLP-1R is considerably expressed in b cells, whereas
its expression level in other endocrine cells has been reported as
absent or low (65). GLP-1R expression in pancreatic exocrine
cells is low in humans, although certain animal models such as
pigs exhibit relatively high GLP-1R expression in the exocrine
pancreas (66). GLP-1R has therefore been the most actively
investigated viable target of b-cell imaging probes.

GLP-1, an endogenous GLP-1R ligand peptide, ameliorates
glucose-dependent insulin secretion, whereas having a very short
plasma half-life due to the rapid degradation by dipeptidyl
peptidase-4 (67). In line with efforts to improve the in vivo
stability against dipeptidyl peptidase-4, exendin peptides
(originally found in the saliva of Heloderma suspectum) have
been synthesized and have shown high in vivo stability with a
high affinity to GLP-1R (68). Whereas exendin (9-39) is a GLP-1
antagonist, exendin-3 and exendin-4 are GLP-1R agonists.
Exendin-4 differs from exendin-3 by two amino acid
substitutions (Gly2-Glu3 in place of Ser2-Asp3) but is
otherwise identical (Figure 3). Moreover, exendin-4 has been
successfully employed in the clinical treatment of type 2 diabetes
Frontiers in Endocrinology | www.frontiersin.org 5
mellitus, which qualified the potential clinical stability and safety
of exendin-based probes for b-cell imaging. Exendin-related
peptides, especially exendin-4, have therefore become the lead
compounds in the development of GLP-1R-targeted probes for
b-cell imaging, and various modified peptides have been
investigated as potential imaging probes.

As for in vivo b-cell visualization, the pioneer study with
exendin-based probe for GLP-1R was reported with
radioiodinated exendin-3 (69). Biodistribution studies of [123I]
exendin-3 in rats harboring rat insulinoma cells (RINm5F) have
shown rapid blood clearance and uptake of the radiotracer into
the tumor and pancreas, which could be detected by SPECT.
111In-labeled exendin-3, {Lys40[(111In)DTPA]}exendin-3, was
subsequently synthesized, given that the high sensitivity of
111In-labeled tracers allowed for the administration of small
amounts of tracer to prevent receptor saturation and adverse
effects in SPECT (70). In a controlled, unilaterally
nephrectomized mouse study, autoradiography showed the
specific uptake of {Lys40[(111In)DTPA]}exendin-3 in insulin-
expressing cells, with the highest uptake in the pancreas and
lungs followed by the kidneys (71). In another study, diabetic rats
showed 111In-[Lys40]exendin-3 uptake in the pancreas (12).
68Gallium (Ga)-labeled exendin-3 has also been developed as a
probe for PET imaging (72). In most of the designs of exendin-3
probes for SPECT and PET, the residue Lys40 of exendin-3 was
conjugated with the radioisotope-labeling structures. Although
exendin-3 probes showed successful in vivo visualization of
the pancreas, further research to improve the stability is
warranted (39).

Subsequently, exendin (9-39) also has been expected as a potent
skeleton of GLP-1R-targeted probe for b-cell imaging, and its
derivatives have been investigated. One of the considerable
advantages of exendin (9-39) is its ability to avoid hypoglycemia
due to GLP-1R activation. A preclinical study of 125Iodine-Bolton-
Hunter ([125I]BH)-labeled exendin (9-39) exhibited good affinity to
GLP-1R and high uptake in mice pancreas (54). However, the
uptake inpancreaticb cellsmight be species-dependent because the
pancreatic uptake of (125I)BH-exendin (9-39) differed in human
and mouse tissues (73). Based on the influence of the BH labeling
site on the target properties, BHlabelingonLys19 showedcomparable
affinity in human and rat tissues (74). In addition, a moiety of (111In)
diethylenetriaminepentaacetic acid (DTPA) or tetraazacyclododecane
FIGURE 3 | An overview of the leading compounds for GLP-1R-targeted probes. In the development of GLP-1R-targeted imaging probes, exendin-related peptides
such as exendin-3, exendin-4, and exendin (9-39) have been investigated as promising compounds. These compounds have approximately 50% homology with
human GLP-1 (hGLP-1) and show high stability in vivo and high affinity to GLP-1R, which qualifies their potential as tracers for in vivo b-cell imaging. Exendin-4
differs from exendin-3 by two amino acid substitutions (in orange). C-terminally modified derivatives tended to show superior specificity, whereas the modified
derivatives on the residue Lys12 of exendin-4 (in blue) demonstrated high affinity to GLP-1R and in vivo stability as in vivo imaging probes for b cells.
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tetraacetic acid (DOTA) via aminohexanoic acid linker (Ahx)hasbeen
introduced to obtain clearer SPECT images of the pancreas. In
accordance with (125I)BH reagents, partial modifications of exendin
(9–39) at lysine residues and the N-terminus have been considered in
the development of [111In]DTPA-labeled derivatives (75). However, a
crystal structure analysis suggested that modification of the lysine at
position 27 would not improve the imaging of GLP-1R-positive
tissues (75, 76). 111In-[Lys40(Ahx-DTPA)NH2]exendin (9–39) probe
showed reasonable affinity to GLP-1R in vitro, whereas a
biodistribution study demonstrated low specific uptake without
efficient retention or internalization of the probe, with lower
accumulation in rat insulinoma INS-1 tumors and lower INS-1
tumor/pancreas contrast ratio compared with GLP-1R agonist-based
counterparts (77). (111In)benzyl (Bn)DTPA-exendin (9-39)
demonstrated higher affinity for GLP-1R compared with its parent
compound, exendin (9-39), and clearly visualized INS-1 tumors in
mice (75). Compared with 111In-[Lys40(Ahx-DTPA)NH2]exendin
(9-39), higher levels of tumor accumulation and uptake ratios
between tumors and surrounding organs were observed in a
biodistribution study involving INS-1 tumor-bearing mice (75). As
for PET imaging, fluorobenzoyl (FB)-modified exendin (9-39)
derivatives have been synthesized (15, 78). (18F)FB40-exendin (9-39)
showed moderate affinity to GLP-1R, visualized the mouse pancreas,
and exhibited superior potentials to other 18F-labeled exendin (9-39)
derivativesondifferent conjugating sites (Lys12 andLys27) (15). Further
enhancementofpancreatic uptake and specificbinding toGLP-1Rwill
lead to a clearer visualization of pancreatic b cells in exendin (9-39)-
based PET imaging (15).

Exendin-4 has been the most promising compound in the
development of GLP-1R-targeted probes for b-cell imaging.
Although various modifications of exendin-4 have been
investigated, the representative potent exendin-4-based probes
are those with the modification of lysine at position 12 and those
with the C-terminal modification of adding a lysine at position
40 for SPECT imaging (12, 14). [Lys40(Ahx-DTPA-111In)NH2]
exendin-4 exhibited higher and more stable uptake in the murine
pancreas compared with 111In-[Lys40(Ahx-DTPA)NH2]exendin
(9-39) and visualized the pancreas with SPECT in healthy
participants and patients with type 1 diabetes mellitus (12, 77).
A clinical study employed [Lys40(Ahx-DTPA-111In)NH2]
exendin-4 to detect insulinoma and showed successful
visualization and clinical safety in patients with insulinoma
(79). {Lys40 [Ahx-hydrazinonicotinamide (HYNIC)-99mTc]
NH2}exendin-4 was also developed as an alternative to [Lys40

(Ahx-DTPA-111In)NH2]exendin-4 (80). Separately, Jodal et al.
reported on the use of 68Ga-labeled exendin-4 with a chelator,
1-(1,3-carboxypropyl)-1,4,7-triazacyclononane-4,7-diacetic acid
(NODAGA) (81). The conjugation of the chelator to resident
lysines at position 12 or the C-terminally attached lysines at
position 40 resulted in favorable binding and kinetics for the
peptide, in accordance with their high specific uptake in GLP-
1R-positive murine tissues. Interestingly, the authors also
reported that {Lys12[(68Ga)NODAGA]}exendin-4 was more
stable than {Lys40[(68Ga)NODAGA]}exendin-4 in human
blood plasma. In this context, an exendin-4 derivative labeled
with 111In via BnDTPA and Ahx attached to the epsilon amino
Frontiers in Endocrinology | www.frontiersin.org 6
group at the lysine-12 residue, [Lys12(111In-BnDTPA-Ahx)]
exendin-4, has been synthesized (Figure 4A) (14). This probe
has a high affinity for GLP-1R, and the introduction of In-
BnDTPA at lysine 12 does not affect the affinity for GLP-1R. The
radiochemical purity exceeded 95%, and specific activity at the
end of synthesis was superior to that of the 111In-labeled
exendin-3 derivative (12, 14). A preclinical biodistribution
study of [Lys12(111In-BnDTPA-Ahx)]exendin-4 showed higher
and more stable murine pancreatic uptake compared with [111In]
BnDTPA-exendin (9-39) (14, 75). In addition to good pancreatic
uptake with probe internalization, low probe uptake and rapid
clearance in the surrounding organs (including the liver and
kidneys) are desirable properties for in vivo b-cell imaging
probes (14, 77). For [Lys12(111In-BnDTPA-Ahx)]exendin-4, the
pancreas-to-liver uptake ratios increased in a time-dependent
manner, and the pancreas-to-kidney uptake ratios remained
stable, which enhanced the contrast and allowed for clear
visualization of the murine pancreas in SPECT images
(Figure 4B) (14).

As for PET imaging, 68Ga, 18F, 64Cu, and zirconium-89
(89Zr)-labeled exendin-4 derivatives have been developed (39).
In particular, 68Ga-labeled exendin-4 derivatives have been well
researched in preclinical and clinical studies, with the goal of
overcoming the low spatial resolution and relatively high kidney
uptake of SPECT probes by using 68Ga for PET imaging. In
addition to NODAGA (81), several chelator moieties such as
DOTA, 1,4,7-triazacyclononane-triacetic acid (NOTA), and
desferrioxamine B (DFO) have been conjugated to exendin-4
at various positions. [Lys40(Ahx-DOTA-68Ga)NH2]exendin-4
showed significant uptake in insulinomas developed in
RipTag2 mice and proved to be a potential alternative to
[Lys40(Ahx-DTPA-111In)NH2]exendin-4 (80). Exendin-4
peptide radioiodinated at Tyr40 side by side with [Nle14, Lys40

(Ahx-DOTA-68Ga)NH2]exendin-4 showed high binding to INS-
1 cells and fast internalization kinetics, yielding in vivo tumor
visualization in mice bearing INS-1 xenografts (82). A similar
peptide, 68Ga-DO3A-VS-Cys40-exendin-4, also demonstrated
GLP-1R-mediated accumulation in the pancreas of rats and
cynomolgus monkeys (83). As for NOTA conjugation, an
exendin-4 derivative comprising leucine at position 14 and
NOTA-conjugated Met-Val-Lys (MVL) sequence with Cys40

([68Ga]NOTA-MVK-Cys40-Leu14)exendin-4 showed
comparable tumor uptake and reduced kidney uptake in INS-1
mouse xenografts to that of a control agent without the cleavable
MVL sequence (84). Similarly, [Lys40(Ahx-DFO-68Ga)NH2]
exendin-4 demonstrated high serum stability and high and
specific in vivo accumulation in mice bearing RINm5f
xenografts (85). Several clinical studies have been conducted
using 68Ga-labeled exendin-4 derivatives, mainly for the
purpose of detecting insulinoma, and have reported successful
visualization of insulinomas and acceptable clinical safety
(86–89). The potential benefits of radioisotopes with longer
half-lives have been investigated using 64Cu (half-life, 12.8 h)
and 89Zr (half-life, 78.4h). Although 64Cu-DO3A-VS-Cys40-
exendin-4 showed strong accumulation in INS-1 xenografts
and transplanted islets (90), [64Cu]NODAGA-exendin-4 failed
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to visualize the murine pancreas in in vivo PET imaging due to
high kidney and liver uptake (91). The other chemical
modifications with 64Cu labeling still have difficulties avoiding
high kidney and liver uptake (92). As for 89Zr, [Lys40(Ahx-
DFO-89Zr)NH2]exendin-4 showed comparable biological
performance with [Lys40(Ahx-DFO-68Ga)NH2]exendin-4,
whereas [Lys40(Ahx-DFO-89Zr)NH2]exendin-4 revealed long
kidney retention times (85). In this context, fluorine-18
appears to be one of the most favorable radioisotopes for
nuclear medicine imaging due to its positron emission energy
and potential for high resolution and widespread use in current
clinical settings (93, 94). However, preclinical and clinical studies
of 18F-labeled exendin-4 derivatives are still relatively limited
(94). Against expectations, most previous reports on 8F-labeled
exendin-4 derivatives have demonstrated high non-specific
uptake even in the kidneys (39, 89, 94). For example, [18F]FB-
exendin-4 showed relatively high liver and kidney uptake,
leading to low contrast in in vivo PET images (95). Several
potential strategies for reducing non-specific uptake and kidney
uptake have therefore been discussed, including the
incorporation of highly lipophilic groups, albumin and
albumin-binding domains, and nanoparticles (94, 96–98).
Certain modifications such as [18F]fluoropentyl maleimide
(FPenM)-[Cys40]exendin-4 and [18F]fluoronicotinamide
(FNEM)-[Cys40]exendin-4 have improved renal clearance and
tumor-to-kidney contrast in mice bearing INS-1 tumors (93, 99).
Exendin-4 conjugated with polyethylene glycol might prove to be
a promising alternative, given that PEGylation is a well-
established technique for increasing the probe’s molecular
weight and stability in circulation and for improving its
specific uptake (100).
Frontiers in Endocrinology | www.frontiersin.org 7
QUANTIFICATION OF b-CELL MASS
USING GLUCAGON-LIKE PEPTIDE-1R-
TARGETED IMAGING

Advances in GLP-1R-targeted imaging have opened the door to
non-invasive BCM quantification in the whole intact pancreas,
representing a breakthrough in uncovering the pathophysiology
of diabetes mellitus and guiding the development of novel
therapeutic strategies in diabetes. Non-invasive BCM
quantification methods have been investigated based on the
use of probes achieving successful visualization of pancreatic b
cells. Consequently, these studies have been performed primarily
as preclinical studies using small animals and SPECT imaging
with 111In-labeled probes (11–13, 35, 101–103). Although
SPECT appears to present drawbacks in in vivo quantification
analysis due to the decay and diffusion of its low-energy gamma
rays, recent studies have demonstrated that SPECT could yield
sufficient quantitative information, especially in rodents (12, 13,
101, 102).

111In-labeled exendin-3 derivatives have been reported as
useful for quantifying rat BCM with ex vivo SPECT scans of
resected pancreata (12, 103). In Brown Norway rats with and
without alloxan treatment, 111In-[Lys40]exendin-3 demonstrated
a good correlation between pancreatic uptake (determined by the
quantitative analysis of SPECT scans) and BCM (determined by
the histological analysis of immunohistological staining with
insulin antibodies) (r = 0.83) (12). Similarly, [Lys40([111In]
DTPA)]exendin-3 showed a distinctively different uptake in
resected pancreas between healthy and alloxan-treated diabetic
Brown Norway rats. The ex vivo pancreatic uptake of [Lys40

([111In]DTPA)]exendin-3 determined by SPECT showed linear
A

B

FIGURE 4 | An 111Indium(In)-labeled exendin-4 derivative: [Lys12(111In-BnDTPA-Ahx)]exendin-4. (A) Chemical structure of [Lys12(111In-BnDTPA-Ahx)]exendin-4.
Exendin-4 was labeled with 111In via isothiocyanate-benzyl-diethylenetriaminepentaacetic acid (BnDTPA) and 6-aminohexanoic (Ahx) attached to the epsilon amino
group at the lysine-12 residue. (B) Representative in vivo axial abdominal image of [Lys12(111In-BnDTPA-Ahx)]exendin-4 single-photon emission computed
tomography (SPECT)/computed tomography (CT) in a mouse. [Lys12(111In-BnDTPA-Ahx)]exendin-4 successfully visualized the pancreas (white dotted circle).
Maximum to minimum SPECT intensity: red > orange > yellow > green > blue > black. R, right; L, left; V, ventral.
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correlations with histological BCM (r2 = 0.52) and with BCM
based on optical projection tomography (r2 = 0.77) (104).
Importantly, the probe’s pancreatic uptake was not correlated
with alpha cell mass (105). Moreover, severe insulitis and
hyperglycemia did not affect the linear correlation between the
pancreatic probe uptake and histological BCM in nonobese
diabetic (NOD) mice (106). Although mice were reported to
show relatively higher exendin uptake in the exocrine pancreas
compared with rats (66, 107), [Lys12(111In-BnDTPA-Ahx)]
exendin-4 demonstrated good linear correlations between ex
vivo pancreatic uptake and histological BCM in several diabetic
model mouse strains such as NOD (r = 0.90) (102), db/db (35),
and RCS-10 mice (r2 = 0.75) (11). These 111In-labeled exendin-3
and exendin-4 derivatives can therefore be promising probes for
BCM quantification using ex vivo SPECT imaging.

However, ex vivo SPECT scans for BCM quantification can
provide only limited opportunities for BCM observation during an
individual’s lifetime and are invasive for obtaining pancreatic
samples. Establishing an in vivo SPECT analysis method for BCM
quantification is therefore essential for performing non-invasive
BCM evaluations. Analyzing in vivo rodent SPECT images is more
difficult than with ex vivo images due to two factors:
indistinguishable pancreatic margins in CT images and the
influence of renal probe uptake on the analysis of pancreatic
regions of interest (101). To solve these issues, several attempts
have been examined in addition to various chemical modifications
on exendin skeletons to reduce renal uptake as described in the
previous section Visualization of b cells: Glucagon-like peptide-1
receptor-targeted imaging. Mathijs et al. performed unilateral
nephrectomy prior to SPECT scans to reduce the influence from
the left kidney in rats (71).According to this protocol, [Lys40([111In]
DTPA)]exendin-3 showed a good correlation between pancreatic
uptake determined by in vivo SPECT/CT and histological BCM in
biobreeding diabetes-prone rats with unilateral nephrectomy (r =
0.89) (108). Furthermore, dual probe injection methods have been
examined todistinguish thepancreas fromother abdominal organs.
123I-labeled L-phenylalanine and 99mTc-demobesin-4 have been
employed with 111In-labeled exendin-3, improving the correlation
between ex vivo pancreatic uptake and that determined by in vivo
SPECT image analysis (r = 0.83 and r = 0.92, respectively) (71, 109).
However, these methods still required simultaneous nephrectomy,
which might alter probe biodistribution, and could not adequately
cover the volume of pancreatic regions of interest for BCM
evaluation of the whole pancreas (71, 101, 109). A method for the
in vivo SPECT imaging analysis of mice without the need for
nephrectomy or a secondary probe has subsequently been
developed using [Lys12(111In-BnDTPA-Ahx)]exendin-4 (101).
The exclusion of the peripheral space 2.7 mm from the kidney
surface on SPECT/CT images can remove the influence of renal
uptake and can cover over 40% of the entire pancreatic volume,
which provides a reliable estimate of the mean uptake value for the
entire pancreas (101). According to this method, the correlation
between ex vivo pancreatic uptake and that determined by ex vivo
SPECT scans was almost perfect (r = 0.99). In vivo SPECT imaging
analysis demonstrated good correlation between pancreatic uptake
determined by in vivo SPECT scans and histological BCM in NOD
Frontiers in Endocrinology | www.frontiersin.org 8
(r = 0.89) (102) and db/dbmice (r = 0.93 and 0.84) (35, 103). These
correlations were higher or comparable to those achieved by
methods that require nephrectomy and secondary probes.

As for clinical research, SPECT scans using [Lys40([111In]
DTPA)]exendin-3 have been performed on patients with type 1
diabetesmellitus (12). In this study, the pancreatic uptake estimated
with a SPECT imaging analysis showed an approximately 60%
reduction in the patients with type 1 diabetes compared with the
healthy participants. However, the pancreatic probe uptake
between the two groups overlapped, and high interindividual
variations were observed. Further clinical studies for non-invasive
BCM evaluation are therefore warranted, including with other
exendin-4 derivatives and PET imaging.
APPLICATION OF GLP-1R-TARGETED
IMAGING IN DIABETES MELLITUS

The establishment of in vivo SPECT imaging analysis using [Lys12

(111In-BnDTPA-Ahx)]exendin-4 has enabled the longitudinal
observation of BCM changes in diabetic model mice with and
without interventions. In NOD mice, a reduction in pancreatic
probe uptake in in vivo SPECT images was longitudinally
observed in the mice that developed hyperglycemia, whereas no
significant changes in pancreatic probe uptake in the in vivo
SPECT images were observed in the mice that did not develop
hyperglycemia (102). In db/db mice, longitudinal in vivo SPECT
observations revealed a spontaneous reduction in pancreatic
probe uptake (35, 103) and that diet-restriction attenuated the
reduction in BCM loss (35). In vivo SPECT observations also
observed that canagliflozin (a sodium glucose transporter-2
inhibitor) and DS-8500a (a G protein-coupled receptor 119
agonist) attenuated the progression of BCM loss in db/db mice
(34, 103). Although chronic hyperglycemia might affect probe
uptake via changes in GLP-1R expression levels on the b-cell
membrane surface (110), the pancreatic uptake of [Lys12(111In-
BnDTPA-Ahx)]exendin-4 in SPECT images could replicate the
BCM relationship among these model mice with different
glycemic states (35, 102, 103). Moreover, the pancreatic uptake
of [Lys12(111In-BnDTPA-Ahx)]exendin-4 maintained a linear
correlation with histological BCM, even among diabetic and
non-diabetic RCS-10 mice (11). The pancreatic uptake of the
probe consists of combined probe intensities of cell-surface
bindings to GLP-1R and intracellular accumulations.
Consequently, it doesn’t simply reflect cell-surface GLP-1R
expression level changes but also it can be largely affected by
probe internalization and accumulation in pancreatic tissues,
which may contribute to maintain a linear correlation with
BCM. 111In-exendin-4 SPECT/CT is therefore useful for the
non-invasive longitudinal investigation of BCM in vivo and can
help reveal the BCM preservation effects of each intervention.

The monitoring of transplanted islet grafts is another potential
application of GLP-1R-targeted imaging (111). In rodents with
intramuscular islet transplantation, [Lys40([111In]DTPA)]exendin-
3 showed non-invasive visualization of islet grafts and
quantification of islet graft volume on SPECT (13, 110). Although
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exendin-3 probe uptake in islet grafts might be affected by the
glycemic state viaGLP-1R expression (presumably due to the small
number of islets in a graft), the linear correlation between probe
uptake and islet graft volume was maintained (110). In mice that
underwent intraportal islet transplantation, 68Ga-DO3A-VS-
Cys40-exendin-4 PET visualized human transplanted islets in the
liver (112). As a clinical report of a patient with the autologous
transplanted islets in the left brachioradialis muscle, [Lys40(Ahx-
DTPA-111In)NH2]exendin-4 SPECT demonstrated focal
accumulation in the left forearm at the site of islet transplantation
(113). These results suggest the major potential of non-invasive
monitoring of islet grafts; further investigations are expected for
future clinical applications.

Lastly, GLP-1R-targeted imaging can be employed to better
select antidiabetic drugs including GLP-1R agonists. The
pancreatic uptake of [Lys12(111In-BnDTPA-Ahx)]exendin-4 is
reflected in the in vivo glucose-lowering effects of dulaglutide in
diabetic RCS-10 mice, which suggests that the pancreatic uptake
value could predict responders and non-responders to
dulaglutide therapy (11). Given that the probe’s pancreatic
uptake was significantly correlated with BCM and GLP-1R
mRNA expression, GLP-1R-targeted imaging can be a
predictive indicator of the efficacy of not only GLP-1R agonists
but also other antidiabetic drugs.
CONCLUSIONS AND FURTHER
PERSPECTIVES

The last two decades of research have achieved remarkable
advances in non-invasive b-cell imaging and BCM evaluation,
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including the discovery of probe target molecules, the
development of suitable radioisotope-labeled chemically
modified probes, and the establishment of an analysis method
for image-based signals using SPECT and PET. In particular,
exendin-4 based derivatives for SPECT and PET appear to be
promising candidates for non-invasive BCM evaluations. At least
in rodents, [Lys12(111In-BnDTPA-Ahx)]exendin-4 SPECT is a
useful tool for in vivo longitudinal BCM monitoring. Further
clinical investigation is necessary to meet the medical needs of
BCM evaluation in diabetes. Although various novel chemical
modifications and structures of exendin peptides have yet to be
investigated, further comparative studies including head-to-head
comparisons among the candidate probes and techniques are
warranted to standardize non-invasive BCM evaluation methods
using GLP-1R-targeted imaging techniques.
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Exendin-4 Analogs in Insulinoma Theranostics. J Labelled Comp
Radiopharm (2019) 62:656–72. doi: 10.1002/jlcr.3750

95. Wu H, Liang S, Liu S, Pan Y, Cheng D, Zhang Y. 18F-Radiolabeled GLP-1
Analog Exendin-4 for PET/CT Imaging of Insulinoma in Small Animals. Nucl
Med Commun (2013) 34:701–8. doi: 10.1097/MNM.0b013e3283614187

96. Dialer LO, Jodal A, Schibli R, Ametamey SM, Béhé M. Radiosynthesis and
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