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Abstract: Searching for new cancer-related biomarkers is a key priority for the early detection
of solid tumors, such as colorectal cancer (CRC), in clinically relevant biological fluids. The cell
line and/or tumor tissue secretome represents a valuable resource for discovering novel protein
markers secreted by cancer cells. The advantage of a secretome analysis is the reduction of the
large dynamic range characterizing human plasma/serum, and the simultaneous enrichment of low
abundance cancer-secreted proteins, thereby overcoming the technical limitations underlying the
direct search in blood samples. In this review, we provided a comprehensive overview of recent
studies on the CRC secretome for biomarker discovery, focusing both on methodological and technical
aspects of secretome proteomic approaches and on biomarker-independent validation in CRC patient
samples (blood and tissues). Secretome proteomics are mainly based on LC-MS/MS analyses for
which secretome samples are either in-gel or in-solution trypsin-digested. Adequate numbers of
biological and technical replicates are required to ensure high reproducibility and robustness of the
secretome studies. Moreover, another major challenge is the accuracy of proteomic quantitative
analysis performed by label-free or labeling methods. The analysis of differentially expressed proteins
in the CRC secretome by using bioinformatic tools allowed the identification of potential biomarkers
for early CRC detection. In this scenario, this review may help to follow-up the recent secretome
studies in order to select promising circulating biomarkers to be validated in larger screenings, thereby
contributing toward a complete translation in clinical practice.
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1. Introduction

Early detection through specific molecular markers is still a key step affecting the clinical
management of cancer. In fact, despite the remarkable knowledge acquired on cancer biology and on
pharmaceutical therapies, if the tumor is detected in its final stages, the outcome is still unfavorable.
In such a framework, colorectal cancer (CRC) is found. CRC is the third most commonly diagnosed
cancer in males, the second in females, whose incidence varies greatly worldwide: the highest rates
are in high-income countries (North America, Europe) and the lowest in Africa and South-Central
Asia [1,2]. This variability is due not only to genetically determined susceptibility, but an unhealthy
lifestyle (physical inactivity, unbalanced diet, smoking, obesity) and adverse environmental exposures
(such as food colorants and preservatives, antibiotics in agriculture and medicine) may also play a
crucial role in CRC development [2–4].
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Over the last 40 years CRC incidence has decreased among adults aged over 50, following
the changing patterns in risk factors and the wide application of stool-based tests and colonoscopy
screening [5]. Meanwhile, incidence rates have raised among those younger than 50 (2%/year since
1994) [2,4,6]: some of these early-onset cases could be due partly to hereditary CRC syndromes
(about 30%) or family history of CRC (about 20%), but for many of them (about 50%) the causes
are still unknown [3,4,6,7]. The CRC therapeutic protocols encompass a cocktail of oxaliplatin (oxa),
5-fluorouracil (5-FU) and folinic acid (FOLFOX) or capecitabine (XELOX), and their duration strongly
depends on CRC stage and clinical parameters of the patients [8].

Over time, many attempts have been performed to find cancer-related molecular biomarkers,
capable of early detection of CRC or other solid tumors, in clinically relevant biological fluids (such as
blood or urine) [9]. The main drawbacks are related to the heterogeneity of the biological matrix
and its very high dynamic range of concentrations among species (up to 12 orders of magnitude in
plasma/serum): such a complexity represents a challenging task (depletion of highly concentrated
species, sample pooling) when trying to reliably detect low abundance cancer-related biomarkers [10–17].
Lately, these experimental limits, along with the difficulties of translating the results into clinical
applications, have discouraged researchers from following that path [11].

When looking for such biomolecular markers, it was evident that the search should not be limited
to tumor intracellular species, but be extended to the tumor microenvironment enriched by secreted
proteins from the cancer and cancer-related cells, under specific conditions and time [18]. As a matter of
fact, the local tumor milieu is a very complex system characterized by different types of cells, apart from
tumor cells: mesenchymal stem cells, adipocytes, cancer-associated fibroblasts (CAFs), endothelial
cells, tumor-infiltrated lymphocytes, inflammatory cells and macrophages [19]; each of them is engaged
in a reciprocal interaction, by secreting specific factors while being influenced by others [20,21].
This multidirectional interplay represents a well-orchestrated network of autocrine and paracrine
signals aimed at tumor growth and at remodeling of the tumor microenvironment [22–26]. The full set
of components secreted by such a microenvironment, including extracellular matrix proteins, enzymes,
growth factors, inflammatory cytokines and exosomes and microvesicles, constitutes the cancer cell
secretome, an invaluable source of circulating biomarkers [10,27]. In addition, as cancer results from
the multiple accumulating abnormalities in the genome (such as mutations, deletions, insertions and
chromosomal translocations), this specific milieu is also characterized by degraded protein products,
coming from cancer-related mutated species, which could be extremely powerful in their diagnostic
potential [28]. Accordingly, in the last decade, secretome analysis has gained interest as the tumor
interstitial fluids (TIFs) are semi-complex mixtures, particularly enriched in cancer-related factors
but lacking high-abundance interfering species, that are effortlessly transferred to any experimental
protocol and easily mimicked by conditioned media (CM) of cancer cell cultures [9,18,29].

In this review, we attempt to shed light on current trends in proteomic applications to secretome
for biomarker discovery with a focus on CRC. In particular, the key steps of the biomarker discovery
protocols in CRC secretome are discussed, including the sample types, the sample preparation,
the mass-spectrometry (MS)-based methods (label-free quantitative proteomics and gel-based,
affinity-based and shotgun approaches) and bioinformatic analysis. Finally, the emerging data
from the most recent publications are overviewed to point out the potential of secretome analysis for
the identification of new circulating biomarker candidates.

2. Secretome Samples

2.1. Conditioned Media from CRC Cell Lines

The conditioned media (CM) from the different available CRC cell lines is the most analyzed
secretome sample. In addition to being xenograft tumor models for CRC, human colon adenocarcinoma
cell lines, such as CaCo-2, LIM1215, HCT-116 and HT-29, are used as in vitro CRC model systems to
analyze intracellular and secreted proteins from intestinal epithelial cells [30–42].
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CaCo-2 spontaneously differentiates into mature enterocytes, and at confluence, forms a polarized
monolayer with the specific functional features of differentiated absorptive epithelial cells [42]. LIM1215
represents a moderately differentiated CRC cell line but a metastatic one unlike CaCo-2 [43]. On the
contrary, HCT-116 differentiation is to be modulated; interestingly, undifferentiated HCT-116 cells
can be compared with their metastatic derivative counterpart to study the tumor phenotype [38,40].
Similarly to HCT-116, HT-29 cells under standard culture conditions are also undifferentiated, but
upon differentiation induction they acquire a polarized morphology [44].

The majority of secretome studies are focused on one or two CRC cell lines; however, there are few
integrative studies on the secretome analysis of multiple CRC cell lines recapitulating the differences
in differentiation status and thus reflecting the biological variability within CRC [45,46].

CM collection from selected CRC cell lines, upon 70–80% confluency, is performed from serum-free
cultures. After 24–48 h, depending on the experimental design, the CM is centrifuged, filtered and
further processed for secretome analysis. A critical step is to obtain CM samples without intracellular
protein contaminants, which are released in the media under cellular stress conditions. In this
regard, following the CM collection, it is recommended to check the cell viability and/or the lactate
dehydrogenase (LDH) levels: in fact, counting viable cells via conventional assays and measuring low
LDH levels (if not its absence) indicate negligible cell death and insignificant cytoplasmic contamination
in secretome preparations [44].

Alternatively, the hollow fiber culture (HFC) system could be used to reduce cell death and detect
low abundance proteins in the large volumes of collected CM [47]. This system, composed of small
fibers sealed in a cartridge shell, provides an in vivo-like 3D environment able to hold many cells in a
small volume, thereby concentrating the secreted proteins. The HCF system has been successfully
used for secretome analyses of CRC [38] and other solid cancers [48].

2.2. CRC Tissue Secretome

In comparison with CRC CM analyses, to the best of our knowledge, there are few reports on
CRC tissue secretomes [31,49–51]. As stated above, tumor tissue secretome and particularly TIFs
are promising sources of CRC biomarkers, represented by proteins secreted in vivo in the tumor
microenvironment. The advantage of TIFs, in fact, is the reduction of the large dynamic range
characterizing human plasma/serum, and the simultaneous enrichment of tumor-secreted proteins.
After collection and washing of CRC tissue specimen samples together with their normal counterparts
(adjacent normal colon mucosa), they are sliced into 1–3 mm3 pieces and incubated in physiological
medium, such as PBS, at 37 ◦C for 1 h. After high-speed centrifugation, the supernatant represents the
tissue secretome to be further analyzed [49].

Otherwise, freshly isolated CRC tissue specimens can be cultured ex vivo as explants and their
relative secretome preparations are mainly composed of TIFs proteins secreted by tumor cells [52]. In this
context, samples widely employed in discovering CRC biomarkers, are the CM of cancer-associated
fibroblasts (CAFs) isolated from fresh surgical CRC specimens and adjacent normal tissues [39,53,54].
Such a sample is suitable for analyzing the autocrine factors from CRC cells and paracrine factors from
surrounding stroma cells, mostly formed by fibroblasts. Interestingly, the interaction of stroma cells
with tumor cells, underlying the carcinogenesis and metastatic process, is mediated by soluble proteins
released in the CM of cell co-cultures.

In addition to CM from co-culturing CRC cells with stroma cells, Bozzi and colleagues performed
a secretome analysis of CRC organoid cultures of peritoneal metastatic lesions from one CRC patient.
In serum-free cell culture conditions, CRC organoids are suitable materials for the identification of
secreted biomarkers involved in cancer stem cell (CSC) self-renewal and cancer cell proliferation [55].

To study the mechanisms underlying tumorigenicity and/or drug resistance in CSCs, the proteins
secreted from the CM of stem cells were identified after their isolation from human CRC tumors;
their expansion in derived cell cultures and in vitro differentiation were also explored [56].
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3. Secretome Proteomic Approaches

Current secretome studies are mainly performed by unbiased label-free qualitative and quantitative
proteomics analyses based on LC-MS/MS methods for which secretome samples are either in-gel or
in-solution trypsin-digested (Table 1). All these procedures surely enable one to analyze multiple
experimental conditions within the same study design to ensure high reproducibility; however, it is
instrumental to consider an adequate number of biological and technical replicates for condition.

3.1. Label-Free LC-MS/MS Proteomics

A classical qualitative bottom-up proteomic gel-based workflow was used for identification of
secreted proteins in the serum-free CM from different CRC cell lines and CAFs and in CRC tissues and
their normal counterparts (Table 1). As for CM samples, after their collection, proteins are analyzed
following a typical gel-based MS protocol (SDS-PAGE/in-gel tryptic digestion/nanoLC-MS/MS). As an
example, by using this approach, Chen and colleagues analyzed two pairs of CAF/normal counterparts
from two CRC patients, running each sample twice [54]. The combination of a limited number of
biological/technical replicates coupled to a traditional gel-based proteomic approach, allowed to
unambiguously identify only 230 proteins (at a false discovery rate of 1.3%). Moreover, the comparison
of these data with a previously published dataset [53] produced poor overlapping, probably due to
the biological variability among fibroblasts isolated from different CRC patients and also different
experimental/technical conditions. On the contrary, a similar gel-based MS protocol performed on
the secretome of CRC tissues and their normal counterparts led to the identification of 2703 unique
proteins; the improvement in terms of uniquely identified species was related both to the sample type
(tissue) and the availability of a suitable number of biological replicates (n = 4). Moreover, among the
four biological replicates, the best overlapping in terms of commonly identified protein species was
observed in the four CRC tissues rather than in the four patient-matched cancer-normal colon tissues,
highlighting the importance of properly enrolling patients with matching clinicopathological features.
Importantly, these identified proteins were then compared with those found in the secretomes of five
typical CRC cell lines analyzed by the same authors and in the same experimental conditions of tissue
samples [49]. This enlightened step clarified that secretory proteins identified in CRC tissue secretomes
arose from neoplastic epithelial cells rather than the surrounding tumor environments [49].

In addition to the prefractionation by gel electrophoresis of CM samples, differential centrifugation
ultrafiltration can be used to separate secretome components into molecular weight (MW)-based
fractions (Table 1) [35,36]. Medium and high-MW (3–30 KDa and >30 KDa) secreted protein fractions
were analyzed by the classical bottom-up proteomics gel-based workflows as described above.
Interestingly, low-MW (1–3 KDa) soluble peptide fractions (peptidome) were subjected to a top-down
proteomic approach [57]. All fractions from the bottom-up and top-down approaches were analyzed
by nanoLC-MS/MS, and as expected, each approach showed distinct features in terms of identified
protein/peptide species [36].
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Table 1. Secretome studies done by using label-free proteomic approaches: identification of biomarkers for early diagnosis in colorectal cancer (CRC).

First Author
[ref] Year

Sample Types and Replicates Pre-Mass Spectrometry
(MS) Analysis 1

MS
Platform

Quantitative
Label-Free Analysis 2

Total
Identified IDs

Potential Circulating
BiomarkersCell Line (CL) CL Replicates Tumor Tissue (TT) TT Replicates

Bernhard
[31] 2013 LIM1215 n = 2 (each in

triplicate)
TIF from LIM1215
xenografts in mice n = 2 - LC-MS/MS - 39 LIM1215

5 LIM1215 TIF
CDH17 3, LGALS3BP,

PTK7

Imperlini
[34] 2013 CaCo-2,

HCT-GEO
n = 2

(technical) - - 10% SDS-PAGE LC-MS/MS SpC 176
CLU, ANXA5, PPIB,
GPI, LGALS3BP, and

SERPINE2 3

Greening
[35] 2013 LIM1215 n.r. - -

differential centrifugal
ultrafiltration

4–12% SDS-PAGE or
RP-HPLC

LC-MS/MS SpC and TIC 987

COL12A1, COL4A2,
LAMA3/5, LAMB1-3,
LAMC1 3/2, CSPG4,

GPC1/4, HSPG2

Greening
[36] 2013 LIM1215,

LIM1863 n = 2 - -
differential centrifugal

ultrafiltration
RP-HPLC

LC-MS/MS SpC 474
FGFBP1, PLXDC2,
DDR1, GPA33 3,

MACC1, SMAGP

Fanayan [45] 2013 panel of 21
CRC CL n.r. - - 4–12% SDS-PAGE LC-MS/MS SpC ∼2500

SPTBN1, MSH2,
MLH1, APC, NPM1,

DEK, EZR, EGFR,
MET, CDKN2A,
SPTAN1, XPO4,

LASP1, CEACAM5,
CEACAM6 3

Emmink [56] 2013 CSC n = 3 - - NuPAGE Novex LC-MS/MS SpC 1254 ALDH1A1, BLMH

De Boeck
[53] 2013 - - CAF n = 2 4–20% SDS-PAGE LC-MS/MS - 412

TNC 3, LAMA2/4/5,
MMP-2/3 3, CTSH,

GCP-2, CCL11, SDF-1,
HGF 3, TIMP-4,

SERPINA8, CALR

Shin [37] 2014 HCT-116,
HCT-8

n = 3
(technical) - - - LC-MS/MS - 898

TENA, PLOD3,
FBLN4, SERPH, IPO5,

PCBP2, NAP1L1,
PTK7, RPSEP,

TRFM 3, ASNS

Chen [54] 2014 - - CAF n = 2 (each in
duplicate) 10% SDS-PAGE LC-MS/MS - 230 -
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Table 1. Cont.

First Author
[ref] Year

Sample Types and Replicates Pre-Mass Spectrometry
(MS) Analysis 1

MS
Platform

Quantitative
Label-Free Analysis 2

Total
Identified IDs

Potential Circulating
BiomarkersCell Line (CL) CL Replicates Tumor Tissue (TT) TT Replicates

de Wit [49] 2014

HT-29,
CaCo-2,

HCT-116,
SW480,
SW1398

- CRC tissue n = 4 4–12% SDS-PAGE LC-MS/MS - 2361 CL
2703 TT

AQR, COL12A1,
DDX5, DNMT1,
EXOSC8, FUBP1,

HNRPDL, KHSRP,
LCN2, MCM3,

MCM5 3, MCM6,
NID1, RANGAP1,

RRM1, SF3A3, SLK,
SPTBN2, SSRP1,

SUPT16H, TRIM28

Karagiannis
[46] 2014 panel of 12

CRC CL n = 3 - - - LC-MS/MS SpC 2979

GREM1, NME1,
IGFBP7, CA9, LOXL2,

VCAN, AZGP1,
SRPX2, OLFM4 3

Bukhari [44] 2015 HT-29 - CRC patient plasma
n = 41 CRC

patients
n = 20 controls

IP
2DE MALDI-TOF-MS/MS - 3 VIM 3, KRT1,

PPP1R16B

Lin [38] 2015 HCT-116, E1 n = 3
(technical) - - MLAC enrichment SWATH-MS peak area extraction 568

GDF15, SPARC,
SERPINE1, PLOD3,

LAMB1 3

Bozzi [55] 2017 - - Organoids n = 2 - LC-MS/MS - 229 -

Basu [41] 2019 LS174T n.r. - - - LC-MS/MS n.r. n.r.

CALCA, HADHB,
MUC2, BGN, SMOC2,

CTSD 3, VCAN,
SEMA3B, ADPRHL2

1 The absence of a pre-MS analysis indicates a shotgun proteomic approach. 2 The absence of a quantitative method indicates a just qualitative label-free proteomic approach. 3 Validated
by an independent experiment. n.r.: not reported in the paper.



Medicina 2020, 56, 443 7 of 19

3.2. Label-Free LC-MS/MS Shotgun Quantitative Proteomics

In addition to the reproducibility and robustness of secretome studies, label-free proteomic
quantitative analysis guarantees elevated accuracy through spectral counting (SpC) and/or precursor
ion intensity (total ion counts, TIC) methods (Table 1). To quantify all species present in secretome
samples it is appropriate to perform both SpC and TIC methods as reported by Greening and colleagues;
these approaches, in fact, complement each other because SpC and TIC procedures provide accurate
estimations for high- and low abundance proteins, respectively [35].

As for reproducibility and accuracy of secretome analysis, the label-free LC-MS/MS shotgun
quantitative proteomics can be considered a high-performing protocol; in particular, the CM from CRC
cell lines is subjected to in-solution tryptic digestion and subsequently analyzed, at least in triplicate,
using, in general, a bidimensional chromatography (cation exchange, SCX and reversed phase, RP)
coupled to MS/MS.

As reported by Karagiannis and colleagues, this system led to 2979 unique proteins identified
with a minimum of two peptides and FDR < 0.1%, and with a high reproducibility (>60%) among the
triplicates [46]. Moreover, an innovative aspect of the quantitative approach performed by Karagiannis
et al. regarded the introduction of an internal control, consisting of a panel of four known extracellular
proteases. Their protein abundance was estimated both by ELISA and SpC: the statistically significant
correlation among the two methods provided a validation of the label-free quantitative analysis [46].

In this context, label-free quantitative sequential windowed acquisition of all theoretical fragment
ion (SWATH)-MS technology has been recently reported as a highly reproducible and sensitive
method for CRC biomarker discovery [38,48]. SWATH-MS is a data independent acquisition (DIA)
method that combines shotgun and selected reaction monitoring (SRM) analyses; it consists of the
collection of high-resolution fragment ion maps of all detectable peptides present in the analytical
sample. These peptides within specified precursor mass and retention time ranges are systematically
unbiased fragmented [58]. SWATH-MS data analysis requires the in-advance creation of a spectral
library in data dependent acquisition (DDA) of all the detectable peptides in the samples [59].
This technology was successfully applied to compare glycosecretomes of HCT-116 cell line with its
metastatic derivative E1 [38]. Multilectin affinity chromatography (MLAC), in fact, is a suitable method
to enrich glycoproteins into secretome samples, thereby enhancing the detection of low abundance
CM-secreted proteins [38]. Recently, the study of glycosecretome has been gaining popularity because
of the potential involvement of glycosylation modifications along the secretory pathway in intestinal
epithelial cell differentiation. In this context, Link-Lenczowski and colleagues qualitatively and
quantitatively analyzed chemical labeled-N-oligosaccharides from undifferentiated and differentiated
CaCo-2 cells by using hydrophilic interaction liquid chromatography (HILIC)-high performance
liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization-time of flight-MS
(MALDI-ToF-MS) approaches, respectively [42].

3.3. Quantitative Proteomics by Labeling Methods

In addition to label-free approaches, metabolic (stable isotope labeling by amino acids,
SILAC) [60,61] and chemical labeling (dimethyl labeling, iTRAQ) [62,63] were also applied for
quantitative CRC secretome analysis (Table 2).
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Table 2. Secretome studies via labeling quantitative proteomic approaches: identification of biomarkers for early diagnosis in CRC.

First Author
[ref] Year

Sample Types and Replicates
Labeling Method Pre-MS Analysis 1 MS Platform Total

Identified IDs
Potential Circulating

BionarkersCell Line (CL) CL Replicates Tumor Tissue (TT) TT Replicates

Barderas [32] 2013 KM12SM
KM12C n.r. - - SILAC 12.5% SDS-PAGE LC-MS/MS 2087

PODXL 2,
CD137L/TNFSF9 2,
VGF 2, SH3KBP1 2,

CTSS 2, LUM 2,
NEO1 2, SERPINI1 2

Zeng [33] 2013 HT-29
NCM460 n.r. - - SILAC 12% SDS-PAGE LC-MS/MS 496 HT29

381 NCM460
VIM 2, IGFBP6 2,

GRN 2

Qiao [39] 2015 HT-29 SW620
LoVo n = 3 CAF n = 2 iTRAQ - 2D LC-MS/MS 1114 COL6A3 2

Wang [50] 2016 - - TIF from AOM-DSS
mice n = 4 iTRAQ IPG-IEF LC-MS/MS and

LC-MRM-MS 776

COPA, HSP90AB1,
GSS, VWA5A, SET,

PRDX5, COTL1,
S100A9, LRG1 2,
TUBB5 2, IGJ 2

Xie [51] 2016 - - TIF from ApcMin/+
mice n = 3 iTRAQ - LC-MS/MS and

LC-MRM-MS 1174
CELA1 2, CEL2A 2,
CTRL 2, CTRB1 2,
TRY2 2, TRY4 2

Chen [40] 2018 HCT-116 n = 2 - - SILAC and dimethyl
labeling - 2D LC-MS/MS 772 LMAN2, PROS1,

IGFBP6, LOXL2

Link-Lenczowski
[42] 2019 CaCo-2 n = 3 - -

anthranilic acid and
2-aminobenzamide

labeling
HILIC- HPLC MALDI-TOF-MS 77–82 H4N5F1 glycans

1 The absence of a pre-MS analysis indicates a shotgun proteomic approach. 2 Validated by an independent experiment. n.r.: not reported in the paper.
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In the SILAC-based quantitative proteomics strategy, CRC cell lines are grown on heavy-
(13C6-Lys/13C6-Arg) and light (12C6-Lys/12C6-Arg)-labeled medium under standard conditions until
the confluency is reached. If two types or two different conditions of CRC cell lines are quantitatively
compared, it is important to swap the labeled medium to avoid any bias in the labeling. As described
above for CM collection, cells are washed and then cultured in the corresponding light- and
heavy-labeled serum-free medium; CM are generally harvested after 48 h, concentrated and quantified.
Protein extracts from heavy- and light-labeled cells are mixed in molar ratio of 1:1 and subjected to
gel-based or shotgun proteomic analyses [32,33,40].

As for chemical labeling, the typical workflow includes the following steps similar to the metabolic
one: (a) trypsin digestion of CM; (b) peptide labeling with heavy or light isotopes of a chemical
compound; (c) mixing (1:1) of light/heavy peptide samples; and (d) proteomic analysis.

For all labeling methods, specific software, such as Proteome Discoverer and Maxquant, is used to
calculate peptide ratios by comparing the intensities of the light- and heavy-labeled precursors at high
resolution. In addition, light- and heavy-peptides unpaired in the mass spectra should be checked in
the quantitative analysis [40].

In comparison to other classical quantitative proteomic approaches, SILAC-based strategy
guarantees higher robustness and accuracy, but also flexibility with current experimental designs.
In this case, however, an adequate number of experimental replicates improves the accuracy of
quantitative data. The need for high reproducibility is a concept more and more crucial for secretome
datasets compared to intracellular ones due to the lower abundance and complexity of secreted proteins
to be quantified.

3.4. Affinity-Based Proteomics

Given that the cancer secretome is a reservoir of tumor-associated antigens (TAAs), affinity
strategy coupled to MS-based proteomics could be a promising approach for capturing immunogenic
biomarkers directly from sera of CRC patients, but its intrinsic limit is related to the specificity of
the antibody development. In fact, there has only been one recent report on the immune-affinity-MS
approach for biomarker discovery in the CRC field [44]. Bukkhari and colleagues generated a polyclonal
antibody repertoire against the secretome of HT-29 cell line. This affinity reagent (as immobilized
anti-Sc antibody) was used for immunoprecipitate TAAs, whose identification in CRC patient sera
compared to the normal sera was performed by a classical gel-based proteomic approach.

3.5. Bioinformatic Analysis of Secretome Datasets

The most widely used bioinformatic tools for qualitative secretome analysis of MS/MS datasets
are Mascot (http://www.matrixscience.com) [64], SEQUEST [65] and X!Tandem (https://www.thegpm.
org/TANDEM/) [66].

In addition, to identify successfully degraded protein products, coming from cancer-related
mutated species, and hence to provide a functional connection between genomic and proteomic data
in cancer, specific bioinformatics resources, containing comprehensive variant proteins, need to be
queried. For example, the Cancer Proteome Variation Database (CanProVar, http://canprovar2.zhang-
lab.org) [67,68] contains more than 150,000 cancer-related variations and almost 10,000 cancer-related
differentially expressed proteins associated with 26 cancers. Another freely-available tool is the Single
Amino Acid Polymorphism Database (dbSAP, http://119.3.41.228:8080/dbSAP/index.html) [69] that
integrates data from eight distinct databases and contains more than 16,000 unique variant peptides
supported by more than 400,000 MS spectra. Finally, it is possible to query the database of differentially
expressed proteins in human cancer (dbDEP 3.0, https://www.scbit.org/dbdepc3/) [70] based on MS
data that contains information on amino acid variations, post-translational modifications and drugs.

Another major step during the experimental design of secretome studies is the biological and
functional characterization of identified secreted proteins. Subsequent to MS analysis, secretome

http://www.matrixscience.com
https://www.thegpm.org/TANDEM/
https://www.thegpm.org/TANDEM/
http://canprovar2.zhang-lab.org
http://canprovar2.zhang-lab.org
http://119.3.41.228:8080/dbSAP/index.html
https://www.scbit.org/dbdepc3/
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protein datasets are analyzed by using different bioinformatic tools to gain insights into their structural
and functional annotations.

Firstly, secretory features of identified proteins are investigated by using SignalP (http://www.
cbs.dtu.dk/services/SignalP/) [71], SecretomeP (http://www.cbs.dtu.dk/services/SecretomeP) [72] and
TMHMM (http://www.cbs.dtu.dk/services/TMHMM) [73] tools; they are able to predict whether a
protein is classically (SignalP) or non-classically (SecretomeP) secreted and presence of transmembrane
helices (TMHMM). For each tool, specific cutoffs have to be considered in order to classify a protein as
secreted species; otherwise, for those of exosomial origin, their putative protein annotations can be
determined by querying databases such as ExoCarta (http://www.exocarta.org) [74] and Vesiclipedia
DB (http://www.microvesicles.org/) [75].

In addition to determination of secretory pathways among the experimental dataset, clustering
of secreted species into functional annotation terms is usually conducted in secretome studies.
To accomplish this, over-represented proteins are identified in datasets through enrichment analysis in
Gene Ontology (GO) annotations for molecular function and biological process. GO information is
retrieved from different databases such as IPA database (Ingenuity® Systems, www.ingenuity.com) [76]
and UniProt DB (www.uniprot.org) [77] and from GO resources (http://geneontology.org) [78,79], and is
then analyzed by using several bioinformatic tools such as DAVID (http://david.abcc.ncifcrf.gov/) [80,81],
GeneMania (http://www.genemania.org/) [82], PANTHER (http://www.pantherdb.org) [83,84] and
BiNGO (http://www.psb.ugent.be/cbd/papers/BiNGO/Home.html) [85]. Predicted protein–protein
interactions are investigated using STRING (www.string-db.org) [86], whereas Cytoscape (www.
cytoscape.org) [87] tool is used for network analysis.

The identification of over-/under-represented proteins in CRC secretome versus control by using
bioinformatic tools, together with the overlap analysis with previously published similar datasets,
allowed the selection of potential biomarkers for early CRC detection.

4. Biomarker Discovery for CRC Early Diagnosis by Secretome Proteomics

As carcinogenesis is a long process, early tumor detection requires highly sensitive and specific
screening tests whose efficacy relies on the proper biomarkers, mainly in the case of asymptomatic
tumors such as CRC [88]. In this context, carcinoembryonic antigen (CEA) and carbohydrate antigen
19-9 (CA 19-9) are the most adopted blood-based biomarkers in current CRC clinical practice, although
they are not suitable for early diagnosis [88,89]. Hence, the pre-selection of potential circulating
biomarkers is still an ongoing task and secretome proteomic studies fulfill this requirement, thereby
overcoming the technical limitations underlying the direct search in clinically relevant biofluids [9].

As stated above, secreted protein biomarkers from CM of CRC cell lines could be detectable
candidates in blood. The results from the most recent secretome proteomic studies, including protein
biomarkers already related to CRC detection, are shown in Tables 1 and 2 and discussed below.

We previously reported the secretome signatures of two CRC cell lines (CaCo-2 and HCT-GEO),
and among the identified proteins, more than a half were classified as secretory by in silico analysis [34].
Based on the results, we suggested that HCT-GEO CM is enriched by pro-invasive factors, whereas
CaCo-2 CM was characterized by adhesion proteins [34].

Likewise, Greening and colleagues compared the protein profile of LIM1215 CM with or without
sulindac treatment (a chemopreventive nonsteroidal antinflammatory drug) [35]; downregulated
proteins in the dataset represented sulindac-sensitive species that were enriched in the CRC secretome.
Among the downregulated extracellular matrix (ECM)-remodeling-associated proteins, the authors
identified collagens, the basement membrane laminin receptors and several proteoglycans [35].
In another report, the same authors analyzed LIM1215 and LIM1863 secretopeptidomes, and identified,
after in silico analyses, secreted proteins implicated in tumor progression and angiogenesis; cell–cell
recognition and signaling; and tumor invasiveness and metastasis [36].

A wider secretome proteomic analysis was performed by Fanayan and colleagues, who considered
21 CRC cell lines (LIM1215, LIM1863, LIM1899, LIM2099, LIM2405, LIM2463, LIM2537, LIM2550,
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LIM2551, HCT-15, HCT-116, HT-29, CaCo-2, HCA-7, LOVO, LS174T, SW480, SW620, SW1222, SW1463
and T84). These authors identified about 2500 non-redundant proteins, and using bioinformatic analysis
they selected 15 putative CRC-related protein biomarkers, including carcinoembryonic antigen-related
cell adhesion molecule 6 (CEACAM6/CD66c) [45]. Interestingly, CEACAM6/CD66c was tested as a
CRC stemness marker in CRC patients [90], and recently, the CEACAM6 transcript was validated as a
blood marker for CRC screening, along with the transcripts of LGALS4, TSPAN8 and COL1A2, also to
discriminate false-positive fecal immunochemical test (FIT) subjects [91].

Karagiannis and colleagues analyzed and compared the secretomes of 12 different CRC cell
lines (SW1116, SW480, LS174T, LS180, WiDR, SW620, RKO, LoVo, HCT-116, DLD1, Colo320HSR
and Colo205), thereby identifying secreted proteins involved in cell adhesion machinery during
cancer progression, especially during phenotypic reprogramming such as epithelial-to-mesenchymal
transition (EMT) [46]. A profile of enriched biomarkers of CRC progression was obtained by using a
multi-step bioinformatic analysis [46]. Among the selected biomarkers, the levels of olfactomedin-4
(OLFM4) showed a significant correlation with CRC when measured in the sera of CRC patients versus
controls. Interestingly, among the proposed biomarkers, there was also carbonic anhydrase IX (CA9),
a well-known high expressed isoenzyme in solid tumors [92,93].

By comparing the secretomes of HCT-8 and HCT-116 cell lines with a previous characterized
CRC tissue proteome [94–96], Shin and colleagues selected 11 secreted candidate biomarkers (Table 1).
Interestingly, melanotransferrin (TRFM) plasma levels were found significantly higher in CRC patients
compared with healthy controls by using Western blot [37]. This striking result was then confirmed by
ELISA in a wider CRC patient group, highlighting for TRFM a very high positive predictive value and
very high specificity, and suggesting its suitability for early-stage diagnosis in CRC [37].

Given the positive correlation between immunoglobulin-like cell adhesion receptor L1 (L1CAM)
expression and CRC tumorigenesis [97], Basu and colleagues recently found, in L1CAM-overexpressing
CRC cells, more than 10-fold increased levels of nine secreted proteins [41]. Among these, they confirmed
that increased levels of cathepsin D (CTSD) enhance the motility, tumorigenesis and liver metastasis of
CRC cells by activation of Wnt/β-catenin signaling. In particular, high levels of CTSD were found in
the invasive front of CRC tumor tissues, thereby suggesting CTSD as a promising biomarker for CRC
progression [41].

Barderas and colleagues compared the secretome of the KM12C cell line with that of its metastatic
counterpart KM12SM, and after bioinformatic analysis they selected 80 potentially secreted and
differentially expressed proteins linked to metastatic processes in CRC. Among them, eight proteins
were validated in metastatic cells by western blot [32]. The authors also demonstrated by functional
experiments that some of them were implicated in cellular adhesion, migration/invasion and metastatic
spreading towards the liver in vivo. Interestingly, neuroserpin (SERPINI1), growth/differentiation
factor 15 (GDF15) and calcium-binding protein A8/A9 (S100A8/A9) showed potential as biomarkers
for CRC diagnosis. In fact, these candidates were validated by ELISA in serum, and they allowed to
discriminate CRC patients from healthy controls with high sensitivity and specificity [32].

To investigate the influence of an in vitro-mimicked tumor microenvironment on the protein
expression profile, Zeng and colleagues compared the secretomes of HT-29 cell line and of a normal
human colon mucosal epithelial cell line (NCM460) alone and in co-cultures [33]. They selected
insulin-like growth factor-binding protein 6 (IGFBP6), vimentin (VIM) and acrogranin (GRN) as
proteins potentially implicated in the CRC progression and validated them by Western blot, ELISA
and immunofluorescence (Table 2). Indeed, the authors pointed out that the changes in the levels of
these three proteins correlated with different NCM460/HT29 co-culture ratios resembling different
stages of CRC [33]. Interestingly, VIM, besides being a key regulator of cell adhesion and cell–cell
interactions [98], has a well-known role in the EMT process in many types of cancer [99], while IGFBP6
is particularly implicated in the IGF1-mediated EMT [33,99,100]. Additionally, Bukhari and colleagues
proposed VIM as CRC circulating biomarker by using an affinity proteomic approach as described
above. This approach allowed the identification of potential plasmatic cancer biomarkers that might
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be responsible for CRC development and progression; among these proteins, very high levels of VIM
were found in CRC patient sera compared to in healthy controls, and there was a significant correlation
of these levels with CRC, thereby supporting the predictive value of VIM for monitoring subjects at
increased risk of CRC [44].

Until now, there have been few reports on CRC glycosecretome that represent suitable sources of
biomarkers using glycoprotein enrichment to detect low abundance secreted proteins in the CM of
CRC cell lines. In this context, Bernhard and colleagues analyzed the glycosecretome in LIM1215 CM
and in the TIF of tumors derived by the same cell line xenografted in immunodeficient mice. These
authors found three secreted species shared between the two type of samples (Table 1). Among these
proteins, cadherin-17 (CDH17) was also validated by Western blot in cell lysates, CM, TIFs and in the
plasma of xenografted mice, thereby suggesting its potential as a CRC biomarker [31]. A different
set of glycoproteins was highlighted by Lin and colleagues when they compared the glysecretome
of HCT-116 cell line with its metastatic derivative. A special focus was set on laminin β-1 (LAMB1),
over-secreted in the metastatic cell line, which was significantly higher in the sera of CRC patients
compared with healthy controls. Moreover, ROC analyses showed that LAMB1 discriminated CRC
patients from controls better than CEA [38]. In a recent glycosecretome study, Link-Lenczowski and
colleagues highlighted the N-glycosylation changes between two differentiation stages of CaCo-2 cell
line. In particular, they found an enhanced fucosylation in differentiated cells and suggested that
H4N5F1 glycans might be a biomarker of intestinal epithelial cell differentiation [42].

Some authors focus their attention on CSCs, and hence, on their secretome to fish for the
proper CRC biomarkers. At this regard, when Emmink and colleagues compared the secretomes
of CSCs and of isogenic differentiated tumor cells (DTCs), isolated from three different metastatic
CRCs, most CSC secreted proteins were involved in cell survival, antioxidant activities and proteome
integrity maintenance processes [56]. Among them, aldehyde dehydrogenase 1 (ALDH1A1) and
bleomycin hydrolase (BLMH) conferred to CSCs resistance against maphosphamide and bleomycin,
respectively [56].

In the search for CRC stemness markers, De Boeck and colleagues compared the secretomes of
CAFs from two CRC patients with mesenchimal stem cells (MSCs) from bone marrow of healthy
individuals [53]. The in silico analysis of the unique species, exclusively identified in CRC CAFs,
suggested their involvement in the regulation of cellular movements and cell-to-cell signaling and
interactions, and in the inflammatory responses and cancer progression (Table 1). The authors evaluated
also the MSC secretome after TGF-β1-induced differentiation, a treatment triggering the conversion of
MSCs into CAF precursors: accordingly, they found 16 secreted species shared with CAF secretome
including chemokines and growth factors [53].

Qiao and colleagues analyzed the secretomes of five CRC CAFs and of three CRC cell lines and
focused on the proteins which were exclusively secreted by CAFs. Among these proteins, COL6A3
was also analyzed by immunohistochemistry (IHC) analysis on a tissue microarray (TMA) containing
90 pairs of CRC and normal counterpart tissues [39]. This analysis showed that COL6A3 protein levels
were significantly higher in the stromal cells of CRC tissues than in the normal counterparts (Table 2).
Moreover, COL6A3 expression in cancer stroma was correlated to a poor outcome with a significant
prognostic value. An ELISA assay also permitted a comparison of COL6A3 plasma concentrations
in CRC patients and healthy individuals. This analysis showed COL6A3 upregulation in the CRC
patients and demonstrated a very high prediction value, sensitivity and specificity of COL6A3 as
plasmatic biomarker of CRC [39].

As for the tissue samples, de Wit and colleagues analyzed the secretomes of CRC tissues paired
with their normal counterparts from four CRC patients and the secretomes of five CRC cell lines
(Table 1). By performing a multistep bioinformatic analysis where previously reported datasets were
taken into consideration [101,102], 21 potential biomarkers were selected for early detection of CRC [49].
This selection included many nuclear proteins involved in DNA replication, cell division and other
CRC-related processes. Among them, CRC overexpression of minichromosome maintenance complex
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component 5 (MCM5) was validated by immunohistochemical staining in a TMA containing 82 colon
adenomas and 82 CRCs [49].

Wang and colleagues, instead, generated an inflammation-related CRC mouse model and
analyzed the protein profile of TIFs from mouse colon tissues during four stages of CRC development.
They focused on 11 tumor growth-related proteins analyzed by multiple reaction monitoring (MRM) in
the TIF samples (Table 2). Among these proteins, leucine-rich alpha-2-glycoprotein 1 (LRG1), tubulin
beta-5 chain (TUBB5) and immunoglobulin J chain (IGJ) were confirmed to be stage-dependently
increased in the serum of the mice [50]. Moreover, LRG1 and TUBB5 were also verified as potential
biomarkers in the sera of patients with different CRC stages [50].

Similarly, Xie and colleagues used a widely accepted Apc−/+ mouse model of CRC whose
pathological phenotype largely overlaps with human familial adenomatous polyposis and sporadic
CRC [103]. The authors compared the TIF secretomes from Apc−/+ and WT mice of the different ages
and identified 46 proteins with tumor progression-dependent expression profiles [51]. As reported
in Table 2, the authors particularly focused their attention on six serine proteases and validated their
levels by MRM assay, both in TIFs and in mouse sera. Importantly, levels of chymotrypsin-like elastase
1 (CELA1) and chymotrypsin-like protease (CTRL) were also validated by IHC in human TMAs
containing 80 pairs of CRC tissues and their normal counterparts. Most importantly, the levels of
CELA1, CTRL, chymotrypsin-like elastase 2A (CEL2A) and trypsin 2 (TRY2) were measured by MRM
in the sera of CRC patients versus healthy controls and these proteins showed significantly higher
expression in CRC sera. In particular, the best diagnostic performance was showed by the combination
of CELA1 and CTRL which demonstrated a very high sensitivity and specificity [51].

5. Conclusions

There have been many advances in recent years in the search for tumor biomarkers using
proteomic approaches, thereby allowing one to deeply analyze secretomes in several types of biological
samples. In this context, proteomics emerged as a promising platform for the biological interpretation
of secretome signatures underlying carcinogenesis, cancer progression and metastatic processes and for
the identification of new cancer-related biomarkers with prognostic, diagnostic and predictive values.

The rationale of this review was to critically summarize the state-of-art of recent knowledge
about the CRC secretome for biomarker discovery in terms of innovative technological and diagnostic
performances. In fact, we provided a comprehensive overview of recent studies searching for CRC
cell lines and tissue secretomes; particular attention was given to methodological aspects, technical
limitations and relative precautions to avoid any bias, and to functional aspects of biomarker selection
for validation in CRC patients. Moreover, we focused only on studies that selected and independently
validated protein markers for early detection of CRC.

This review highlights the great potential of cell line secretomes as valuable resources for
identifying novel cancer-related secretory proteins. This aspect takes advantage of the possibility
to use immortalized or primary cell lines as models representatives of the different grades of CRC
differentiation and progression.

In technological terms, our review showed that secretome signatures of given CRC samples
comprise several proteins, mainly secreted species, whose expression profiles, determined by label-free
or labeling methods, need to be independently validated for further detection in CRC patients. In this
scenario, we reported the findings of the recent secretome studies in order to help clinicians in
candidate biomarker selection. ELISA and IHC are frequently the methods of choice for biomarker
validations in serum/plasma and tissue samples, respectively. In addition to a limited number of CRC
patients, the validations by antibody-based methods have some limitations related to the specificity of
antibodies utilized and to the semi-quantitative analysis. Alternatively, DIA-MS approaches, such as
SRM, MRM and SWATH-MS, are emerging as suitable methods for selection and verification of very
promising diagnostic biomarkers, thereby allowing absolute quantitation and also increased sample
size as required by rigorous clinical screening.
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As for biomarker discovery for CRC early diagnosis by secretome proteomics, this comprehensive
overview points out the lack of common potential circulating biomarkers among the studies listed
in Tables 1 and 2. In addition to the heterogeneity of both sample types and experimental proteomic
protocols, such a result could be explained by the different criteria adopted within each secretome
study for the candidate selection. Hence, we cannot rule out the existence of a common set of putative
circulating biomarkers if the complete datasets were compared. At this regard, bioinformatic analysis
represents a mandatory step able to provide biological insights and to allow an integration/overlap with
already published datasets, thereby favoring the selection of potential circulating biomarkers. To this
aim, secretome databases should be freely-available and regularly updated based on the published
untargeted proteomic studies. Despite these current limits, few candidates were successfully validated
in CRC patients’ plasma, thereby raising hopes toward a complete translation in clinical practice.
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