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OSaSUD: a dataset of stroke unit 
recordings for the detection of 
Obstructive Sleep apnea Syndrome
andrea Bernardini  1,3 ✉, Andrea Brunello2,3 ✉, Gian Luigi Gigli1,4, Angelo Montanari2,4 & 
Nicola Saccomanno  2,3 ✉

Polysomnography (PSG) is a fundamental diagnostical method for the detection of Obstructive Sleep 
Apnea Syndrome (OSAS). Historically, trained physicians have been manually identifying OSAS 
episodes in individuals based on PSG recordings. Such a task is highly important for stroke patients, 
since in such cases OSAS is linked to higher mortality and worse neurological deficits. Unfortunately, 
the number of strokes per day vastly outnumbers the availability of polysomnographs and dedicated 
healthcare professionals. The data in this work pertains to 30 patients that were admitted to the stroke 
unit of the Udine University Hospital, Italy. Unlike previous studies, exclusion criteria are minimal. As 
a result, data are strongly affected by noise, and individuals may suffer from several comorbidities. 
Each patient instance is composed of overnight vital signs data deriving from multi-channel ECG, 
photoplethysmography and polysomnography, and related domain expert’s OSAS annotations. The 
dataset aims to support the development of automated methods for the detection of OSaS events 
based on just routinely monitored vital signs, and capable of working in a real-world scenario.

Background & Summary
Obstructive Sleep Apnea Syndrome (OSAS) is one of the most common sleep-related breathing disorders1. 
It is caused by an increased upper airway resistance during sleep, that leads to periods of partial or complete 
interruption of airflow, bringing to reductions in blood oxygen content; these events are typically interrupted 
by arousals from sleep, with the result that OSAS commonly manifests itself with excessive daytime sleepiness 
due to sleep fragmentation; however, its most relevant health-related burden is represented by a higher risk of 
cardio- and cerebrovascular accidents such as myocardial infarction and ischemic stroke2.

OSAS is usually diagnosed by means of polysomnography (PSG)3, which requires overnight recording of 
at least the following parameters: airflow, blood oxygen saturation, thoracic and abdominal movements. In 
addition, other parameters are typically considered, such as: snoring, electrocardiography, electroencephalog-
raphy, electrooculography, and surface electromyography of the mylohyoid and tibialis anterior muscles4,5. Such 
recordings are then manually tagged by a trained physician against the presence of apneic events5. As a result, 
performing a PSG is a labour-, time-, and money-consuming process.

The detection and treatment of OSAS are particularly important in stroke patients6. Stroke is defined as 
an episode of neurologic dysfunction due to infarction or focal collection of blood within the central nervous 
system7, and represents the second cause of death and the third cause of disability worldwide8. The optimal 
inpatient setting for acute stroke patients is represented by specialized semi-intensive care wards, named stroke 
units9. In a stroke unit, all patients undergo continuous monitoring of many vital parameters such as noninva-
sive blood pressure, multi-lead electrocardiography, photoplethysmography-derived blood oxygen saturation, 
and thoracic impedance-derived respiratory rate. OSAS is highly prevalent in stroke patients, with up to 91.2% 
of individuals being affected and 44.6% experiencing a severe condition10. The latter cases are prone to higher 
mortality, worse neurological deficits, worse functional outcome after rehabilitation, and a higher likelihood of 
uncontrolled hypertension11,12. Identifying and treating them is thus of fundamental importance.
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Unfortunately, performing a PSG in an electrically hostile environment, such as a stroke unit, on neurolog-
ically impaired patients is a difficult task13,14, with the result that signals are often affected by noise; in addition, 
the number of strokes per day vastly outnumbers the availability of polysomnographs and dedicated healthcare 
professionals. Therefore, a simple and automated recognition system to identify OSAS cases among acute stroke 
patients is highly desirable. The continuous multiparametric recording of vital signs that is routinely performed 
in stroke units represents a relevant data source for a comprehensive assessment of a patient’s health status. 
However, such data represents an insufficient amount of information for traditional, manual sleep scoring15.

The dataset presented in this work (named OSASUD, Obstructive Sleep Apnea Stroke Unit Dataset) is aimed 
at supporting the development of automated methods for the identification of OSAS episodes based on sim-
plified monitoring system data. It is composed of overnight recordings of 30 patients that were admitted to 
the stroke unit of the Udine University Hospital, Italy. For each patient, recordings of multi-channel ECG and 
photoplethysmography (PPG) are reported, together with derived data including heart rate, oxygen saturation, 
pulsatility index, respiratory rate, and premature ventricular contractions.

In the literature, several OSAS datasets have already been published with a similar goal, the most impor-
tant ones being Physionet’s Apnea-ECG Database (35 training +35 test patients)16, SVUH/UCD St. Vincent’s 
University Hospital/University College Dublin Sleep Apnea Database (25 patients)17, HuGCDN2014 Database 
(77 patients)18, and MIT-BIH Polysomnographic Database (18 patients)19. Nevertheless, they are all far from 
representing a real-world situation: their data are recorded in ideal conditions and on highly selected patients, 
with stringent exclusion criteria concerning the presence of cardiac, respiratory, and other comorbidities. As a 
result, models developed according to them are hardly generalizable to real-life scenarios, where they would be 
of actual use.

Another source of sleep-related data, although not focused at apnea detection tasks, is the National Sleep 
Research Resource, which provides a repository20 of sleep study datasets, including the Sleep Heart Health Study 
(5804 subjects) and the MrOS Sleep Study (2911 subjects).

Our setting is quite different. The patients we consider show a considerably complex clinical situation, and 
the presence of comorbidities is the rule rather than the exception. In addition, recordings are affected by noise 
and missing data, as is typical in real-world monitoring systems. For these reasons, we believe that publicly 
sharing our dataset would represent a valid support for further advancing the research into OSAS detection.

Methods
Figure 1 depicts the overall workflow of the study. Each patient underwent simultaneous overnight PSG and 
vital signs (ECG and PPG) recording. The collected PSG data was then annotated by a trained sleep physician 
against the presence of apnea and hypopnea events, at one second granularity. The PSG data and annotations 
were then temporally aligned with and matched against the recorded vital signs. The final dataset was assembled 
considering the physician’s annotations and a relevant subset of the collected data. In the following, the different 
phases of the workflow are thoroughly described.

Participants. The study consists of 30 patients who were admitted to the stroke unit of the Clinical Neurology 
Unit of the Udine University Hospital for a suspected cerebrovascular event (ischemic stroke, transient ischemic 
attack, or hemorrhagic stroke) from August 2019 to July 2020. Exclusion criteria were the following: age <18 
years, insufficient compliance to standard monitoring and/or PSG, aphasia of sufficient severity to limit com-
prehension of the study protocol and/or expression of informed consent, high risk of alcohol/drug withdrawal 
syndrome. Diabetes mellitus, atrial fibrillation, cardiac disease, obesity, and other medical conditions not listed 
above were not considered as exclusion criteria. Table 1 reports detailed information regarding each patient. As 
can be seen, the data is quite heterogeneous considering age, gender, AHI, and quality of the recordings.

Ethics declaration. All participants gave written informed consent prior to their participation to the study. 
The regional Ethics Committee (Comitato Etico Unico Regionale) of Friuli-Venezia Giulia, Italy approved the 
anonymous publication of data recordings.

Patient

Vital signs monitoring 
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Fig. 1 Workflow of the study.
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Data collection. Each patient underwent simultaneous overnight PSG and vital signs recording. Recordings 
were performed during the first days after clinical onset (average 1.31.1 days, range 0–5), while patients were still 
monitored in the Stroke Unit. Table 2 summarizes all collected signals.

A level 3 PSG without video recording was performed using an Embletta MPR polysomnograph (Natus 
Medical Inc., Pleasanton, CA, USA), keeping track of the following channels: nasal airflow, blood oxygen satu-
ration, snoring, body position, thoracic and abdominal movements, and ECG. Nasal airflow was derived from 
a dedicated pressure transducer connected to a nasal cannula; sampling rate was 20 Hz, whereas high-pass and 
low-pass filters were set at 0.1 and 15 Hz respectively. Blood oxygen saturation was measured by means of trans-
mission PPG with red-infrared light-emitting diode and sensor positioned on the opposite sides of a finger. 
The sampling rate for the PPG curve was 75 Hz; arterial oxygen saturation and heart rate were measured from 
the PPG signal with a 3 Hz sampling rate. Snoring intensity was estimated by means of nasal airflow wave-
form analysis, with a 10 Hz sampling rate. Body position was recorded with an internal three-axis accelerom-
eter with a 10 Hz sampling rate; position data were also used to detect major body movements. Thoracic and 
abdominal movements were recorded by means of two independent respiratory inductance plethysmography 
single-use sensor bands; the thoracic band was positioned midway between the manubrium of the sternum 
and the xyphoid process, whereas the abdominal band was placed midway between the xyphoid process and 
the umbilicus. The sampling rate was 10 Hz for both channels, with high-pass and low-pass filters set at 0.1 and 
15 Hz respectively. ECG was recorded with a single-use Ag-AgCl electrode on the acromial head of each clavicle, 
akin to a lead I with proximal electrode positioning21. The ECG signal was recorded with a 500 Hz sampling rate 
and high-pass and low-pass filters set at 0.3 and 70 Hz respectively. Files were analyzed with Embla RemLogic 
software, version 3.4.1.2371 (Natus Medical Inc., Pleasanton, CA, USA). Recordings were exported as EDF files22 
with no gain adjustment or additional filtering; annotations were exported as separate TXT files with times-
tamps for each event.

Vital signs were collected by means of a Mindray iMec15 monitor connected to a Mindray Benevision CMS 
II central monitoring system (Mindray Bio-Medical Electronics Co., Ltd., Shenzhen). The following parameters 
were recorded: 12-lead ECG waveform (standard leads: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V621) with 
single-use Ag-AgCl electrodes, ECG-derived heart rate, ECG-derived premature ventricular contraction (PVC) 

Patient Age Gender BMI
Recording 
(hours) # apneas # hypopneas

(hypo)apnea duration 
(sec) AHI

1 48 Male 30.8 7.0 142 136 22 ± 8 40

2 77 Male 35.3 11.9 29 93 20 ± 8 10

3 61 Male 33.2 7.1 242 208 25 ± 10 63

4 66 Male 26.9 9.0 52 42 34 ± 15 10

5 33 Male 35.9 9.1 42 280 23 ± 12 35

6 68 Male 45.0 4.1 87 150 20 ± 4 58

7 71 Male 30.8 9.2 72 203 16 ± 3 30

8 76 Female 25.0 9.0 3 10 17 ± 3 1

9 78 Female 29.4 9.5 24 53 18 ± 5 8

10 69 Male 27.8 11.4 265 207 21 ± 6 41

11 70 Male 26.7 8.4 10 28 21 ± 6 4

12 65 Male 25.0 8.4 24 9 20 ± 7 4

13 70 Male 33.1 9.5 22 220 19 ± 5 26

14 85 Female 25.1 10.3 9 78 31 ± 10 9

15 63 Male 35.3 9.2 235 162 29 ± 8 43

16 70 Male 31.9 9.0 269 62 34 ± 14 37

17 75 Female 24.8 8.1 96 129 22 ± 8 28

18 71 Female 16.8 10.0 38 6 15 ± 2 4

19 68 Female 28.2 9.5 10 82 21 ± 6 10

20 77 Male 24.6 9.8 335 132 26 ± 10 48

21 74 Male 26.1 9.8 216 61 22 ± 7 28

22 63 Male 29.1 8.0 7 6 26 ± 8 2

23 87 Female 20.4 9.5 1 2 19 ± 4 0

24 73 Male 32.0 9.8 28 181 26 ± 14 21

25 81 Female 32.0 10.6 41 428 19 ± 5 44

26 76 Female 22.3 9.0 425 115 23 ± 10 60

27 71 Female 27.7 7.6 50 21 19 ± 5 9

28 69 Female 27.3 7.4 8 89 29 ± 8 13

29 44 Male 26.6 7.8 2 32 17 ± 4 4

30 70 Male 40.1 8.2 263 336 19 ± 8 73

Table 1. Description of the patients considered in the study.
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rate, thoracic impedance waveform measured from lead II electrodes, thoracic impedance-derived respiratory 
rate, PPG waveform recorded with red-infrared light-emitting diode and sensor positioned on the opposite sides 
of a finger, PPG-derived pulse rate, PPG-derived blood oxygen saturation, PPG-derived perfusion index, oscillo-
metric arm cuff blood pressure (systolic, diastolic, and mean). Sampling frequencies were 80 Hz for ECG, PPG, 
and thoracic impedance waveforms, 1 Hz for heart rate, PVC rate, pulse rate, blood oxygen saturation, perfusion 
index, and respiratory rate, and 1/hour for blood pressure. Recording bandwidths (−3 dB) were 0.5–40 Hz for 
the ECG channels and 0.2–2 Hz for thoracic impedance, both with a 60 Hz notch filter. All data were exported 
from the central monitoring system storage disk as comma-separated value (CSV) files.

Data annotation. All PSG data were reviewed with Embla RemLogic software, version 3.4.1.2371 (Natus 
Medical Inc., Pleasanton, CA, USA), that allows for signal processing, inspection and annotation. The dataset was 
annotated by a trained sleep medicine physician in accordance with the American Academy of Sleep Medicine 
sleep scoring rules15, and tagged against the presence of central/obstructive/mixed apnea and hypopnea events 
(which we refer to as anomalies), each identified by its specific time interval. Figure 2 shows a partial recording 
with its annotations, opened in Embla RemLogic.

Data transformation. Since patients’ data were simultaneously recorded by means of two different devices 
(the Embletta polysomnograph and the Mindray monitoring system), they needed to be temporally aligned. 
This is quite natural, as different devices may have slightly different clocks which they use to timestamp the data 
(i.e., the same timestamp, on different devices, might refer to slightly different real-world time instants). Given a 
patient, to determine the time shift between its two sets of recordings, we proceeded as follows. We considered 
Embletta’s and Mindray’s oxygen saturation and heart rate recordings, downsampling Embletta’s data from 3 Hz 
to 1 Hz by means of averaging. We calculated the correlation between the two heart rate time series at different 
time offsets. We then repeated the same process for the two oxygen saturation time series. As a result, we obtained 
two different shift estimates. Starting from the smallest estimate, we ultimately fine-tuned the shift value by hand 
looking at different parts of the signals, obtaining the final alignment. Figure 3 shows the situation for the heart 
rate signal of one of the considered patients, before and after the alignment process.

Thanks to the alignment process, we were then able to correctly associate the PSG data and related apnea 
annotations performed by the physician to the Mindray data. Next, values of oxygen saturation below 50 or 
above 100 were considered to be artifacts, and assigned to null. The same approach was taken for values of heart 

Source Signal
Sampling 
rate (Hz) Sensor type and placement Preprocessing

Embletta

Nasal airflow 20 Pressure transducer connected to a nasal 
cannula

high-pass 0.1 Hz and 
low-pass 15 Hz filters

Snoring 10 Derived from nasal airflow waveform data none

PPG 75 Red-infrared light-emitting diode and sensor 
positioned on the opposite sides of a finger none

Oxygen saturation 3 Derived from PPG data none

Body position 10 Three-axis accelerometer none

Thoracic movement 10
Respiratory inductance plethysmography 
band, positioned midway between the 
manubrium of the sternum and the xyphoid 
process

high-pass 0.1 Hz and 
low-pass 15 Hz filters

Abdominal movement 10
Respiratory inductance plethysmography 
band, positioned midway the xyphoid process 
and the umbilicus

high-pass 0.1 Hz and 
low-pass 15 Hz filters

ECG 500 Ag-AgC1 electrodes on the acromial head of 
each clavicle

high-pass 0.3 Hz and 
low-pass 70 Hz filters

Heart rate 3 Derived from ECG data none

Mindray

ECG 80 Ag-AgC1 electrodes, 12-lead (I, II, III, aVR, 
aVL, aVF, V1, V2, V3, V4, V5, V6)

high-pass 0.5 Hz and 
low-pass 40 Hz filters; 
60 Hz notch filter

Heart rate 1 Derived from ECG data none

Premature ventricular 
contractions 1 Derived from ECG data none

Thoracic impedance 80 Measured with lead II ECG Ag-AgC1 
electrodes

high-pass 0.2 Hz and 
low-pass 2 Hz filters; 
60 Hz notch filter

Respiratory rate 1 Derived from thoracic impedance data none

PPG 80 Red-infrared light-emitting diode and sensor 
positioned on the opposite sides of a finger none

Pulse rate 1 Derived from PPG data none

Oxygen saturation 1 Derived from PPG data none

Perfusion index 1 Derived from PPG data none

Blood pressure 1/3600 Oscillometric arm cuff none

Table 2. Summary of the signals collected for the study.
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rate below 20 or above 200, and respiratory rate below 5 or above 40. Whenever oxygen saturation was set to 
null, we also set perfusion index to null. To the value of premature ventricular contractions we set an upper 
bound equal to the corresponding heart rate. As for PSG data related to airflow, snoring, body position, thoracic 
and abdominal movements, we standardized each signal individually for each patient. This allows us to improve 
their comparability, since different calibrations are expected to be used for different recording sessions. Finally, 
data were de-identified in order to preserve the privacy of the participants. Observe that no signal filtering was 
applied in this phase.

Data Records
The dataset OSASUD consists of a Pandas23 DataFrame with 18 columns and 961357 rows, saved in Pickle for-
mat (file dataset_OSAS.pickle24). Table 3 provides an overview of the columns. Observe that we consider only a 
subset of the originally recorded data. The reason is two-fold: (i) some signals are redundant, for instance, the 
PPG and ECG waveforms. In such cases, given the aim of our dataset, we favour Mindray data; and, (ii) some 
signals are only used for auxiliary tasks, for example, this is the case of thoracic impedance, from which respira-
tory rate is derived.

As a result, each row is characterized by an anonymous identifier of the patient and a timestamp that keeps 
track of the time instant at which the data was recorded, at one second granularity. As for the other columns, 
they report:

•	 the ECG-derived heart rate, respiratory rate, and premature ventricular contractions per minute;
•	 the PPG-derived oxygen saturation (in %) and perfusion index (in %);

Fig. 2 Polysomnographic recording tagged with different apnea events by means of Embla RemLogic software.

Fig. 3 Embletta (original and aligned) and Mindray heart rate signals (5-minute interval).
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•	 the physician’s annotation, that distinguishes between regular breathing behaviour (string ‘NONE’), hypo-
pnea (string ‘HYPOPNEA’), and different kinds of apnea (strings ‘APNEA-CENTRAL’, ‘APNEA-OBSTRUC-
TIVE’, ‘APNEA-MIXED’);

•	 a boolean attribute that coarsely distinguishes between regular and anomalous breathing behaviour (it equals 
True if and only if the annotation is not ‘NONE’);

•	 a waveform PPG signal, composed of 80 values (given the 80 Hz sampling rate);
•	 three ECG waveform signals referring to the leads I, II, and III, each composed of 80 values (again, given the 

80 Hz sampling rate);
•	 the signals recorded by PSG, referred to nasal airflow (20 values, given the 20 Hz sampling rate), snoring (10 

values), body position (10 values), thoracic and abdominal movements (10 values each).

Note that, given a patient, its data are contiguous from the start to the end of her/his overnight recording. In 
the event in which values were missing for a time instant, they were replaced by null (constant numpy.NaN25) in 
order to maintain timestamp contiguity.

technical Validation
For each patient, we determined the amount of null values in PPG and ECG waveforms, and their derived attrib-
utes. Results are presented in Table 4. Annotations are always present (with ‘NONE’ as the default value), as well 
as PSG-recorded signals.

As for the non-null values, the acquired PPG and ECG waveforms, their derived data, and the PSG-recorded 
signals were carefully inspected by a trained physician jointly with the PSG-based apnea events annotation 
phase. From the inspection, it resulted that several recordings were affected by artifacts, either caused by the 
presence of comorbidities (e.g., atrial fibrillation) or sudden movements performed by the patients. Such arti-
facts are unavoidable and common during recordings in a clinical setting, especially in an electrically hostile 
environment such as an intensive care unit. Given our dataset’s purpose of modelling a real-world scenario, we 
chose to keep all the data, without removing noisy or null segments.

Figure 4 presents the value distribution for each patient and ECG- and PPG- derived attributes. Null values 
have been ignored. Each box extends from the first to the third quartile values of the data, with a line at the 
median. Whiskers extend to the smallest and largest observations which are not outliers (considering 1.5 times 
the interquartile range).

A final validation of the dataset comes from the successful development of a deep learning model for OSAS 
event prediction based on the considered data, recently presented in the literature26.

Usage Notes
We have successfully read the dataset loading it by means of Python’s Pickle and Pandas packages. As each row 
of the Pandas DataFrame contains one second-worth of data pertaining to a given patient, in order to produce 
a machine learning training dataset to support the detection of OSAS based on data recorded by ECG and PPG, 
we suggest the following processing.

For each patient, concatenate all of its rows column-wise, so to obtain the full time series pertaining to 
each of the data columns. Since no filtering was performed on the waveform signals, we also suggest to apply a 
Butterworth bandpass filter of order 2, with 5 Hz highpass frequency and 35 Hz lowpass frequency on the ECG 

Column Name Format Description

patient String Participant ID

timestamp_datetime Datetime YYYY-MM-DD HH:MM:SS Date and time (at one second granularity) of the recorded data

HR(bpm) Float64 ECG-derived heart rate

SpO2(%) Float64 PPG-derived oxygen saturation, in %

PI(%) Float64 PPG-derived perfusion index

RR(rpm) Float64 ECG-derived respiratory rate (per minute)

PVCs(/min) Float64 ECG-derived premature ventricular contractions (per minute)

event String A string among: ‘NONE’, ‘HYPOPNEA’, ‘APNEA-CENTRAL’, 
‘APNEA-OBSTRUCTIVE’, ‘APNEA-MIXED’

anomaly Boolean True = anomaly present (either apnea or hypopnea), False = no 
anomaly present (i.e., event = ‘NONE’)

signal_pleth Array of Float64 80 samples of waveform PPG signal

signal_ecg_i Array of Float64 80 samples of waveform ECG signal, lead I

signal_ecg_ii Array of Float64 80 samples of waveform ECG signal, lead II

signal_ecg_iii Array of Float64 80 samples of waveform ECG signal, lead III

PSG_Abdomen Array of Float64 10 samples of abdominal movement signal

PSG_Flow Array of Float64 20 samples of nasal airflow signal

PSG_Position Array of Float64 10 samples of body position signal

PSG_Snore Array of Float64 10 samples of snoring signal

PSG_Thorax Array of Float64 10 samples of thoracic movement signal

Table 3. Description of the columns in the dataset.
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and PPG waveform time series. At this point, divide each time series based on a s-second windowing approach, 
possibly with a certain degree of overlap between the windows. As a result, each instance is characterized by 
five s-second windows related to the ECG and PPG derived data, three (s·80)-second windows concerning the 
waveform data, and two s-second windows containing the apnea event labels, respectively coded as a string or 
a boolean value. Finally, possibly remove those windows in which all predictors exhibit more than a specific 
degree (e.g., 50%) of null values. Note that, since raw waveforms have been included in the dataset, derived data 
other than those already provided can be easily calculated. This is the case for instance of features pertaining to 
the QRS complex, or to the pulse transit time.

We encourage using the dataset for the development of automated (either statistical or machine 
learning-based) solutions, for instance in the following scenarios:

•	 a model can be trained to predict the presence or absence of breathing anomalies based on the attribute 
anomaly, or to derive a more detailed classification by means of the attribute event. Note that, given the nature 
of the dataset, contrary to most previously published data sources, predictions at one-second granularity are 
possible, i.e., a model can be trained to determine the exact start and end time of each OSAS event;

•	 observe that sleep-disordered breathing occurring in the acute setting of cerebrovascular disease may present 
different features from sleep-disordered breathing in the general population. This database offers researchers 
a tool to train or test models for the identification of respiratory events in this specific subset of patients. In 
addition, given the real-world connotation of our dataset, it could be used to develop and embed models in 
current monitoring systems, with the aim of identifying sleep-disordered breathing in acute stroke patients, 
without resorting to mass PSG screening;

•	 an unsupervised model trained to detect unexpected signal variations emerging from the background var-
iability may be considered, with the idea that such variations may act as a biomarker of clinical instability;

•	 thanks to the inclusion of detailed polysomnographic data, the dataset may also support studies aimed at 
uncovering qualitative and quantitative relationships between PSG-, PPG-, and ECG-derived information.

Patient HR(bpm) SpO2(%) PI(%) RR(rpm) PVCs(/min) signal_pleth signal_ecg_i signal_ecg_ii signal_ecg_iii

1 0.0 8.3 8.5 0.0 0.0 8.2 0.0 0.0 0.0

2 0.0 6.1 6.1 0.0 0.0 6.1 0.3 0.0 53.8

3 0.0 0.2 0.4 2.7 0.0 0.0 0.0 0.0 0.0

4 0.3 0.2 0.3 0.7 0.3 0.2 1.4 0.2 1.4

5 1.9 3.6 3.6 1.6 1.9 3.4 1.5 1.4 1.5

6 0.9 1.6 1.9 0.1 0.9 0.0 0.0 0.0 0.0

7 0.0 11.1 11.2 1.2 0.0 10.9 0.0 0.0 0.0

8 0.0 12.1 12.1 0.0 0.0 11.8 0.0 0.0 0.0

9 0.3 13.4 13.5 0.4 0.3 13.3 0.3 0.3 0.3

10 5.8 17.8 17.9 5.9 5.8 17.5 5.8 5.8 5.8

11 0.0 22.1 22.2 0.0 0.0 21.5 0.0 0.0 0.0

12 0.0 0.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0

13 0.0 1.9 2.0 0.2 0.0 1.8 0.0 0.0 0.0

14 0.0 2.6 2.7 0.1 0.0 2.5 0.0 0.0 0.0

15 0.2 19.1 19.1 0.6 0.2 19.0 0.0 0.0 0.0

16 0.0 11.9 12.1 4.4 0.0 11.1 0.0 11.8 11.8

17 0.0 65.7 65.8 0.2 0.0 65.6 0.0 0.0 0.0

18 0.0 37.3 37.4 0.0 0.0 37.0 0.0 0.0 0.0

19 0.0 16.8 16.9 0.0 0.0 16.7 0.0 0.0 0.0

20 0.0 3.9 3.9 11.0 0.0 3.8 0.0 0.0 0.0

21 0.1 0.1 0.3 0.3 0.1 0.0 0.0 0.0 0.0

22 0.0 22.4 22.5 12.4 0.0 21.7 0.0 0.0 0.0

23 0.0 0.8 0.8 11.9 0.0 0.8 0.0 0.0 0.0

24 0.0 12.2 12.3 0.0 0.0 11.9 0.0 0.0 0.0

25 0.0 18.4 18.4 0.2 0.0 18.2 0.0 0.0 0.0

26 0.0 12.7 12.7 0.0 0.0 12.6 0.0 0.0 0.0

27 0.0 15.1 15.2 0.2 0.0 14.9 0.0 0.0 0.0

28 0.0 72.7 72.7 0.0 0.0 72.6 0.0 0.0 0.0

29 0.0 9.9 10.0 0.0 0.0 9.8 0.0 0.0 0.0

30 0.0 0.5 0.6 0.0 0.0 0.0 0.0 0.0 0.0

Table 4. Null values in PPG and ECG waveforms, and their derived attributes.
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It should be noted that our work still presents some limitations: first of all, the sample size is relatively small. 
Second, all recordings have been performed at a single center. Moreover, all included patients share some homo-
geneous characteristics regarding ethnicity, region of origin and reason for admission. Additionally, we per-
formed PSG with a class III device, which does not include EEG channels. Therefore, we could not obtain a 
proper sleep staging nor identify arousals: periods of wake after sleep onset and hypopneas associated with 
arousals but without significant desaturation may have been missed. Finally, all recordings have been performed 
once within the first days after disease onset, with no follow-up recordings or later acquisitions for comparison.

Fig. 4 Value distribution for the ECG- and PPG- derived attributes in the dataset (excluding null values).
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Code availability
To allow for an easier usage of our data, a Python Jupyter Notebook is also included with the dataset (file 
preprocess_dataset.ipynb24). The notebook has been tested with the following packages versions: pandas = 1.3.3, 
numpy = 1.20.3, pickle = 4.0. The code performs a series of data pre-processing operations, that include:

• loading the Pickle file that encodes the dataset as a Pandas DataFrame;
• printing some validation results, including the values presented in Table 1;
• generating a sample machine learning-ready dataset, in the form of a set of Numpy arrays.

The code provided significantly contributes to relieve the burden of data pre-processing, which typically 
absorbs a major part of time in the development and testing of machine learning solutions.
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