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Abstract: Progressive supranuclear palsy (PSP) is characterized by a rapid and progressive clinical
course. A timely and objective image-based evaluation of disease severity before standard clinical
assessments might increase the diagnostic confidence of the neurologist. We sought to investigate
whether features from diffusion tensor imaging of the entire brain with a machine learning algorithm,
rather than a few pathogenically involved regions, may predict the clinical severity of PSP. Fifty-three
patients who met the diagnostic criteria for probable PSP were subjected to diffusion tensor imaging.
Of them, 15 underwent follow-up imaging. Clinical severity was assessed by the neurological
examinations. Mean diffusivity and fractional anisotropy maps were spatially co-registered,
normalized, and parcellated into 246 brain regions from the human Brainnetome atlas. The predictors
of clinical severity from a stepwise linear regression model were determined after feature reduction
by the least absolute shrinkage and selection operator. Performance estimates were obtained using
bootstrapping, cross-validation, and through application of the model in the patients who underwent
repeated imaging. The algorithm confidently predicts the clinical severity of PSP at the individual
level (adjusted R2: 0.739 and 0.892, p < 0.001). The machine learning algorithm for selection of
diffusion tensor imaging-based features is accurate in predicting motor subscale of unified Parkinson’s
disease rating scale and postural instability and gait disturbance of PSP.

Keywords: diffusion tensor imaging; progressive supranuclear palsy; UPDRS-III; LEDD; severity

1. Introduction

Progressive supranuclear palsy (PSP) is one of the most common causes of neurodegenerative-
parkinsonism after Parkinson’s disease (PD). Both share several similar clinical symptoms (bradykinesia,
rigidity, dysarthria, dysphagia, and dementia), although resting tremor is rare in PSP [1]. Because
of substantial overlaps in clinical symptoms and inadequate accuracy of current tests, differential
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diagnosis from PD is challenging [2]. PSP is generally characterized by a rapid and progressive clinical
course. Therefore, an objective evaluation of disease severity at an early stage might significantly
improve the diagnostic confidence of the neurologist.

Neuroimaging examination, such as structural magnetic resonance imaging (MRI) studies, is often
prescribed on the suspected patients in order to rule out concomitant neurological disorders. Structural
MRI-based signs can be detected in the brain of patients with PSP. For example, characteristic midbrain
atrophy (“hummingbird” sign) on the midsagittal plane and rounded midbrain peduncles (“Mickey
Mouse” sign) on the axial plane [3] were noticed. Unfortunately, they can only appear in advanced
disease stages. Although they could be diagnostically useful, these measures or their ratios on the
midbrain or pons were not found to be related to age, disease duration, or clinimetric scores and rarely
result in meaningful change in patient management [4]. In recent years, diffusion tensor imaging
(DTI) has been extensively used in the study of damages in white matter tracts [5]. Although DTI
parameters, such as fractional anisotropy (FA) and mean diffusivity (MD), are deemed to reflect clinical
rating systems, to be translated into clinical practice the measurements still need extensive method
standardization [4].

From a pathological standpoint, PSP is a tauopathy characterized by diffuse deposits of globose
neurofibrillary tangles, tufted astrocytes, and coiled bodies and threads in different brain areas [1].
The pathological alterations in PSP are not limited to the midbrain but do actually affect various regions
including cerebellum, brainstem, deep nuclei, cerebral white and grey matter. Therefore, it might
require a comprehensive assessment of the microstructural damage in the whole brain, in order to
predict the clinical severity.

Previous radiomic studies on oncology already included multiple imaging features into a regression
model for the prediction of treatment outcome [6,7]. Here, we designed a tailored machine learning
algorithm in which the predictors of clinical severity were selected from a multivariable linear regression
model. The aim is to examine if the metrics derived from DTI can be related to the severity of patients
with PSP in order to support a timely clinical diagnosis.

2. Materials and Methods

This retrospective study is a re-analysis of images collected from three prospective studies during
2008–2017. All studies were reviewed and approved by the Institutional Review Board of Chang Gung
Memorial Hospital (Approval No. 97-0510B, 98-3626A, 100-3761A3 and 201600426B0) and conducted
following the Declaration of Helsinki. All participants provided written informed consent following a
detailed explanation in the prospective studies.

2.1. Study Patients

All of the study patients were enrolled from the neurology clinics and had a clinical diagnosis
of probable PSP according to the diagnostic criteria of either (1) National Institute of Neurological
Disorders and Stroke (NINDS) and the Society for PSP (NINDS_PSP criteria, between July 2008 and
August 2011) and (2) Litvan et al. [1] between June 2012 and December 2017. All the participants
underwent MRI examinations using a 3T scanner. Both DTI and structural images (T1 weighted
magnetization-prepared rapid acquisition gradient echo sequence, T1-MPRAGE) were acquired.
Diagnoses of PSP were made by three senior neurologists (CS Lu, and YH Weng, and WY Lin, with 28,
21, and 8 years of experience, respectively). The following patients were excluded: presence of brain
abnormalities including hydrocephalus or encephalomalacia that may impair cognitive function on
MRI and/or 18fluorodeoxyglucose-positron emission tomography (18FDG-PET) studies; history of
intracranial surgery such as thalamotomy, pallidotomy, and/or deep brain stimulation; and major
physical or neuropsychiatric disorders; general MRI exclusion criteria. The study sample consisted of
53 patients (21 men and 32 women, mean age: 65.7 ± 6.5 years; mean disease duration: 5.4 ± 3.2 years).
Of them, 15 patients (8 men and 7 women; mean age: 65.9 ± 5.7 years) underwent follow-up imaging
examinations and served as an additional validation cohort.
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Based on their clinical features [8], the study patients were divided into four different subgroups,
as follows: (1) pure akinesia with gait freezing (PSP-PAGF), (2) parkinsonism (PSP-PD), (3) Richardson’s
syndrome (PSP-RS), and (4) corticobasal syndrome (PSP-CBS). Results on the following clinical severity
scales were obtained from all participants: (1) motor subscale of unified Parkinson’s disease rating
scale (UPDRS-III), (2) postural impairment and gait disorder staging (PIGD) as the summary score
of item 13, 14, 15, 29, 30 in the assessment of UPDRS, (3) modified Hoehn and Yahr staging (MHY)
and (4) the intake of levodopa equivalent daily dose (LEDD). The general characteristics of the study
participants are summarized in Table 1 and Supplementary Table S1 for the validation cohort.

Table 1. General characteristics of the study patients and clinical scores of progressive supranuclear
palsy (PSP) patients.

Protocol A Protocol B Protocol C Total

TE/TR (ms) 83/7800 96/8200 108/5700
Voxel size 2 × 2 × 2 2 × 2 × 2 2 × 2 × 3
Directions 64 64 30

PSP
Number of patients 19 11 23 53
Sex (men/women) 7/12 6/5 8/15 21/32

Age (years) 63.9 ± 6.0 64.2 ± 6.6 67.8 ± 6.5 65.7 ± 6.5
Disease duration (years) 5.6 ± 2.3 4.2 ± 2.6 5.9 ± 3.9 5.4 ± 3.2

Subtype (PAGF/PD/RS/CBS) 5/8/5/1 7/4/0/0 15/3/2/3 27/15/7/4
UPDRS-III (motor) 29.6 ± 13.9 # 45.8 ± 17.0 32.0 ± 17.3 36.5 ± 17.7

PIGD 10.8 ± 4.1
(NA = 3) 9.6 ± 4.1 10.8 ± 3.3 10.5 ± 3.7

(NA = 3)

MHY 4.0 ± 1.1 3.7 ± 1.1 3.8 ± 0.9 3.9 ± 1.0

<3 2 1 1 4
3 5 4 9 18
4 3 3 6 12
5 9 3 7 19

LEDD (mg/day) 708.9 ± 311.8 615.0 ± 253.6 758.3 ± 426.6 724.5 ± 343.9

Data are presented as counts or means ± standard deviations, as appropriate. Protocol A was used from July
2008 to April 2010; protocol B from January 2010 to August 2011; protocol C from June 2012 to December 2017.
Abbreviations: TR, repetition time; TE, echo time; PAGF, pure akinesia with gait freezing; PD, Parkinson’s disease;
RS, Richardson’s syndrome; CBS, corticobasal syndrome; UPDRS-III, motor subscale of Unified Parkinson’s Disease
Rating Scale; PIGD, postural instability and gait disorder staging; MHY, modified Hoehn and Yahr staging; LEDD,
levodopa equivalent daily dose; # indicates significant differences between protocol A and protocol C (p = 0.01).
NA, Not available.

2.2. Image Acquisition

Imaging was performed on a 3T MR scanner (Magnetom Trio; Siemens, Erlangen, Germany).
A total of 160 contiguous axial T1-weighted images were acquired with T1-MPRAGE using the
following parameters: TR/TE = 2000 ms/2.63 ms; flip angle = 9◦; field of view = 224 mm × 256 mm,
matrix size = 224× 256–resulting in a voxel size of 1 mm× 1 mm× 1 mm. Three senior neuroradiologists
(YL Chen, SH Ng, and YM Wu, with 28, 20, and 10 years of experience, respectively) blinded to clinical
data independently interpreted all MR images. Diffusion images were acquired with three different
imaging protocols. Two diffusion—weighting values (b-values)—0 and 1000 s/mm2—were used in the
final analysis. Imaging parameters are shown in Table 1.
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2.3. Image Processing

Images were processed as previously described by Ng and coworkers [9] using MATLAB (MATLAB
2015a; Math Works, Inc., Natick, MA, USA). Briefly, individual diffusion tensor parametric maps
(MD and FA) were calculated from diffusion-weighted images with Diffusion Kurtosis Estimator
software [10]. Using structural T1 images, a parenchymal mask was created to remove the signal from
the cerebrospinal fluid. Both MD and FA maps were spatially co-registered, normalized, and parcellated
into 210 cortical and 36 subcortical brain regions according to the Human Brainnetome Atlas [11] using
the Statistical Parametric Mapping software (SPM8, 2009) [12]. The 90th, 50th, and 10th percentiles of
each parcellated region of interest were recorded from diffusion tensor parametric maps, resulting in a
total of 1476 features.

2.4. Statistical Analysis and Feature Reduction Process

All calculations were performed using the SAS statistical package, version 9.4 (SAS Institute Inc,
Cary, NC, USA). The clinical severity scale was used as the ground truth and was entered into the
regression model, which included UPDRS-III, PIGD, MHY and LEDD. All participants were used as the
training cohort. The results were further validated using leave-one-out and five-fold cross-validation.
In addition, the second imaging dataset from the 15 returned patients served as an additional blind
validation data set.

The number of features was reduced in two procedures. First the L1-norm regularized least
absolute shrinkage and selection operator (LASSO) regression with 1000 times bootstrapping was
performed, in order to reduce the number of features to less than sample size (53, the number of the
participants). To clarify the potential effect on the predictability of the models, age, sex, disease duration
and imaging protocols were examined, together with the features from diffusion metric, by LASSO.
The features which were selected by more than 20% of the bootstrapping models (i.e., ≥200 times) were
entered into the second analysis. As a result, approximately 22 to 32 features from the original image
features survived in each clinical severity scale.

Secondly, linear regression with stepwise selection was used to identify the features that were
finally used to predict each clinical severity scale. The number of features that entered into each
regression model is limited to one fifth of the participants’ number [13,14], which leads to 11 features
in each regression model. The coefficient of these 11 features in the final model was determined by
linear regression with 1000 times bootstrapping.

The robustness of the regression model was expressed by the mean absolute error and the mean
adjusted R2. We further validated our findings in the subgroup of patients who underwent serial MRI
imaging (using the same image processing method). The extracted features were entered into the model
developed in the initial analysis. For model PIGD, three missing data of the assessment mentioned in
Table 1 were excluded in the analysis. The difference of mean absolute error among the cross validation
in baseline (leave-one-out, five-fold) and the subgroup of patients was examined by using Friedman
test with p < 0.05 was regarded as significant. Figure 1 is a flowchart of the study procedure.

3. Results

The number of selected features after LASSO that were allowed to enter the regression model was
inferior to the sample size (i.e., 32, 29, 24, and 22 for UPDRS-III, PIGD, MHY, and, LEDD respectively).
Only diffusion metrics were selected into the final models. The final number of features in each
prediction model was limited to 11 (approximately 53/5). The results of regression analysis revealed
a strong correlation between diffusion imaging parameters and clinical severity (Figure 2) for all
measures (A: UPDRS-III; B: PIGD; C: MHY; and D: LEDD). We were able to predict the clinical severity
scores by using a combination of FA and MD values extracted from multiple regions of interest,
i.e., not limited to areas known to be related to PSP pathogenesis. All of the predictions for the four
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different subtypes were within the 95% confidence interval, the only exception being UPDRS-III from
one patient of PSP-PD (that fell shortly outside this interval).J. Clin. Med. 2020, 9, x FOR PEER REVIEW 5 of 13 
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Figure 2. Prediction of severity measures: results of regression analysis. The graphs plot the observed
versus predicted values for each severity measure at the individual level. (Panel (A)): UPDRS-III;
(Panel (B)): PIGD; (Panel (C)): MHY; (Panel (D)): LEDD. UPDRS-III, motor subscale of Unified
Parkinson’s Disease Rating Scale; PIGD, postural instability and gait disorder staging; MHY, modified
Hoehn and Yahr staging; LEDD, levodopa equivalent daily dose.
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Figure 3 visualizes the involved regions for each severity tool (color representing the
unstandardized coefficient in the regression model from each predictive region, row A: UPDRS-III;
row B: PIGD; row C: MHY; row D: LEDD). The following five areas were identified as mainly associated
with UPDRS-III: (1) left rostral area of parahippocampus; (2) caudal dorsolateral precentral gyrus;
(3) globus pallidus; (4) sensory part of thalamus; and (5) right postcentral superior parietal lobule.
The following five areas were found to be related to the PIGD: (1) dorsal granular part of insula;
(2) dorsolateral area of middle temporal gyrus; (3) inferior frontal junction of middle temporal gyrus;
(4) caudal dorsolateral area of precentral gyrus; and (5) inferior frontal sulcus of inferior temporal
gyrus. As far as MHY is concerned, the following five areas were identified: (1) left ventrolateral area
of middle frontal gyrus; (2) right caudal part of inferior parietal lobule; (3) left nucleus accumbens;
(4) left lateral area of the superior parietal lobule; and (5) right rostral temporal part of thalamus.
Finally, the following five areas of the right hemisphere were identified as mainly associated with
LEDD: (1) right medial area of superior temporal gyrus; (2) right medial amygdala; (3) right caudal
part of cingulate gyrus; (4) left posterior parahippocampus gyrus; and (5) right ventromedial putamen.
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Figure 3. Predictive regions visualized using 3D rendering. The predictive regions for each severity
measure were visualized using the unstandardized coefficient in the regression model and overlapped
on a T1 template (average T1 scans obtained from 152 individuals examined in the Montreal Neurological
Institute). Row (A): UPDRS-III; row (B): PIGD; row (C): MHY; row (D): LEDD. UPDRS-III, motor subscale
of Unified Parkinson’s Disease Rating Scale; PIGD, postural instability and gait disorder staging; MHY,
modified Hoehn and Yahr staging; LEDD, levodopa equivalent daily dose.

The predictive equations for each clinical assessment can be calculated in Table 2 by the combination
of diffusion metrics from multiple brain regions and the unstandardized coefficients. Table 3 summarizes
the statistical results of the regression model for each assessment at training and validation. In all
assessments, the adjusted R2 varied from 0.739 to 0.892 in both model training and cross-validations.
The mean absolute error of the estimation varied between 5.6% (UPDRS-III) and 40.1% (LEDD).
The complete nomenclature-including diffusion metrics, percentile values, modified cytoarchitecture,
and Montreal Neurological Institute (MNI) [15] coordinates are reported in Supplementary Table S2.
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Table 2. Predictive variables in regression model for each assessment.

UPDRS-III = PIGD = MHY = LEDD =

− 100.6 + 1.2 + 6.0 + 450.9
+ 48.7 ×MD50_PhG_L_6_1 + 1.5 ×MD90_INS_R_6_5 − 2.8 ×MD50_MFG_L_7_5 + 2833.7 × FA90_STG_R_6_1
+ 51.2 ×MD10_PrG_L_6_2 + 210.7 × FA10_MTG_R_4_3 − 6.7 × FA90_IPL_R_6_4 − 571.6 ×MD50_Amyg_R_2_2
+ 28.3 × FA90_GP_L − 49.9 × FA90_MTG_R_4_3 + 9.5 × FA50_NAC_L + 325.4 ×MD50_CG_R_7_6
+ 65.2 ×MD10_Tha_L_8_3 − 26.0 × FA90_MFG_R_7_2 − 3.8 × FA90_SPL_L_5_3 − 369.4 ×MD90_PhG_L_6_3
− 23.9 × FA90_SPL_R_5_4 + 4.1 ×MD90_PrG_R_6_2 − 10.5 × FA90_Tha_R_8_4 − 2074.1 × FA10_VM_Put_R
+ 98.2 × FA90_STG_R_6_1 + 28.4 × FA50_ITG_R_7_2 − 4.9 ×MD10_IFG_R_6_4 + 2949.2 × FA50_OrG_R_6_2
− 35.9 ×MD10_Amyg_L_2_1 − 13.7 × FA90_MTG_R_4_4 + 6.1 × FA50_ITG_R_7_2 + 1487.9 ×MD10_PrG_L_6_4
+ 72.8 ×MD10_Tha_L_8_8 + 9.3 × FA90_PoG_L_4_3 + 18.6 × FA10_ITG_L_7_6 − 1568.8 ×MD10_PoG_L_4_3
− 18.0 ×MD90_IPL_L_6_2 − 5.5 ×MD10_Amyg_R_2_1 + 2.0 ×MD10_PrG_L_6_4 − 1112.0 × FA90_PCL_R_2_1
+ 35.0 × FA90_VM_Put_R + 3.7 ×MD90_MVOcC_L_5_3 − 0.6 ×MD50_Amyg_L_2_1 + 421.3 ×MD50_PoG_R_4_3
− 38.1 × FA90_MFG_L_7_6 + 44.6 × FA10_ITG_L_7_6 − 2.6 × FA90_MFG_L_7_6 + 5248.2 × FA10_SPL_R_5_4

The table illustrates the predictive variables and the corresponding unstandardized coefficients for each assessment. UPDRS-III, motor subscale of unified Parkinson’s disease rating scale;
PIGD, postural instability and gait disorder staging; MHY, modified Hoehn and Yahr staging; LEDD, levodopa equivalent daily dose. MD, mean diffusivity; FA, fractional anisotropy;
Dependent variables were as follows: STG, superior temporal gyrus; Amyg, amygdala gyrus; CG, cingulate gyrus; PhG, parahippocampal gyrus; VM_Put, ventromedial putamen; OrG,
orbital gyrus; PrG, precentral gyrus; PoG, postcentral gyrus; PCL, paracentral lobule; SPL, superior parietal lobule; GP, globus pallidus; Tha, thalamus; IPL, inferior parietal lobule; MFG,
middle frontal gyrus; NAC, nucleus accumbens; ITG, inferior temporal gyrus; INS, insular gyrus; MTG, middle temporal gyrus; MVOcC, msedioventral occipital cortex.
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Table 3. Statistics of regression model for each assessment.

UPDRS-III PIGD MHY LEDD

Training
Adjusted R2

(95% CI)
0.88

(0.83~0.93)
0.80

(0.72~0.88)
0.85

(0.79~0.91)
0.77

(0.69~0.85)

F Test 395 194 284 176
Cohen f2 3.43 1.78 2.60 1.46

Power 1.00 1.00 1.00 1.00

LOOCV
Mean Adjusted R2 0.884 ± 0.005 0.799 ± 0.010 0.845 ± 0.006 0.772 ± 0.008

MAE 6.1 ± 5.0 1.7 ± 1.6 0.4 ± 0.3 180.8 ± 119.9
MAE in % 5.6 ± 4.6 8.2 ± 7.8 8.0 ± 5.8 32.9 ± 42.6

Five-fold CV
Mean Adjusted R2 0.892 ± 0.016 0.818 ± 0.033 0.856 ± 0.024 0.739 ± 0.047

MAE 6.37 ± 0.89 1.845 ± 0.689 0.413 ± 0.056 223.0 ± 48.2
MAE in % 5.9 ± 0.8 9.2 ± 3.4 8.2 ± 1.1 40.1 ± 8.2

Follow-up Validation
MAE 16.8 ± 25.6 a 4.3 ± 3.9 b 1.0 ± 0.8 c 313.8 ± 220.6 d

MAE in % 15.5 ± 23.7 21.4 ± 19.7 20.5 ± 16.0 33.9 ± 17.9

Adjusted R2 and F values are reported at the end of each regression model. UPDRS-III, motor subscale of unified
Parkinson’s disease rating scale; PIGD, postural instability and gait disorder staging; MHY, modified Hoehn and
Yahr staging; LEDD, levodopa equivalent daily dose in unit of mg/day. The averaged adjusted R2 and mean
average errors between forecasted and observed values were obtained from leave-one-out/five-fold validation.
Abbreviations: CI, confidence interval; MAE, mean absolute error; LOOCV, leave one out cross validation; Five-fold
CV, five-fold cross validation. Reported adjusted R2 were all significant (p < 0.001). Comparison of MAE among
LOOCV, five-fold CV and follow-up validation in subject who returned for this study. a, p = 0.936; b, p = 0.001; c, p =
0.006; d, p = 0.282.

Follow-up MRI examinations were performed in a subset of patients who served for blind
validation purposes (Figure 4). An approximately less than three-fold increase in the estimation error
was observed for all measures. However, the model initially developed in the entire cohort still retained
its ability to predict UPDRS-III (mean absolute error: 15.5%) and, to a lesser extent, LEDD (mean
absolute error: 33.9%). Figure 4 plots the predicted (using the initially developed model) versus
observed scores in the subset of patients who underwent follow-up imaging.

4. Discussion

4.1. Main Findings

In this study, we developed a machine learning algorithm based on DTI to predict the clinical
severity of PSP. Our model was found to be accurate for all of the clinical measures under consideration.
Performance estimates of the prediction model were obtained using bootstrapping (1000 replications),
leave-one-out/five-fold cross-validation, and through application of the model in the subset of patients
who underwent repeated imaging. Notably the highest adjusted R2 was of 0.892 from UPDRS-III.

4.2. Clinical Impact

Despite continuing efforts, the identification of reliable imaging biomarkers for predicting PD
severity remains elusive [16]. During the traditional diagnostic workout, MRI is generally performed
to rule out concomitant neurological disorders. The use of our machine learning algorithm may allow
a timely evaluation of disease severity before standard clinical assessments. This possibility may
especially be advantageous in high-volume tertiary centers with long waiting lists. In this regard,
traditional clinical evaluations in patients with movement disorders are known to be time-consuming
and prone to fluctuations of symptoms over time.
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Figure 4. Prediction of severity measures: results of regression analysis in the validation subset.
The graphs plot the observed versus predicted values for each severity measure at the individual
level in the validation subset (n = 15). (Panel (A)): UPDRS-III; (Panel (B)): PIGD; (Panel (C)): MHY;
(Panel (D)): LEDD. UPDRS-III, motor subscale of Unified Parkinson’s Disease Rating Scale; PIGD,
postural instability and gait disorder staging; MHY, modified Hoehn and Yahr staging; LEDD, Levodopa
equivalent daily dose.

In contrast, DTI data may be obtained rapidly (less than 15 min in our study) and are increasingly
becoming a routine part of current MRI protocols. Notably, our data revealed a consistent association
between microstructural damage reflected on DTI and clinical severity scales, most noticeably in the
motor area (UPDRS-III and PIGD), even when the age, sex, disease duration and different imaging
protocols were controlled. The rapid progression of the disease, assessed timely and accurately by our
technique, might improve the diagnostic confidence of the neurologist, where an appropriate treatment
course can be designed based on the response.

4.3. Regions Related to Motor Function

Basal ganglia are commonly considered as the main region involved in the pathogenesis of
movement disorders. However, there is no obvious relation between the extent of damage in the basal
ganglia and clinical severity. This observation is not unexpected given that the execution of movements
requires inputs from multiple brain areas. Motor abnormalities occurring in patients with PSP are
likely the results of an extensive involvement of various motor-related areas—including thalamus,
precentral gyrus, middle temporal gyrus, and middle frontal gyrus.

In the current study, we found that DTI parameters measured in the thalamus were associated with
UPDRS-III (sensory region) and MHY (rostral temporal part). Structural atrophy in the thalamus has
been associated with an impaired motor function and seems to be one of the hallmarks to distinguish
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PSP from both PD and MSA [17]. Activation of these thalamic regions has been reported in pain, sleep,
execution, attention, and noticeably-motion-related vision [18]. Similarly, the regions identified within
globus pallidus and the sensory thalamus may be linked to the execution and/or planning of different
action tasks [19]. Our data indicate that the severity of motor damage may be assessed by measuring
the diffusion metric in multiple parcellated regions as selected from the whole brain.

4.4. Regions Related to Psychomotor Interactions

The clinical manifestations of PSP predominantly—but not exclusively—affect motor function.
It is widely recognized that a proper motor execution requires adequate sensorimotor feedback,
visuo-spatial perception, and motor learning. In the current study, the parahippocampus gyrus
was found to contribute significantly to the prediction of both UPDRS-III and LEDD. This region is
involved in memory and/or semantic language function [20], and its impairment has been related to
memory decline in patients with PD [21]. A previous connectome analysis demonstrated numerous
connections from the parahippocampus to subcortical regions—including thalamus, basal ganglia,
hippocampus, and amygdala [11]. Besides its role in memory, the parahippocampus may therefore
serve as a local functional hub linked to various operating nodes within the motor neural network.
Our data may prompt further investigations into the role played by psychomotor functions in the
clinical manifestations of PSP.

An accurate prediction of LEDD may be hampered by numerous factors that can influence drug
dosage—including age, sex, disease duration, genetic background, and pathological status. Here, we
found that regions associated with LEDD were related to face recognition (medial superior temporal
gyrus) [22], emotions of fear or disgust (amygdala) [23], and emotion processing—especially in the
reward/pain domain (caudal cingulate gyrus) [24]. Difficulties in recognizing negative emotions are part
of the cognitive impairment occurring in patients with PSP [25], who are characterized by an impaired
metabolism in this part of caudal cingulate gyrus [26]. The functions from our neuroimaging findings
are in accordance with clinical observations showing apathy and impaired emotion processing of facial
expressions in PSP [25]. The general prediction rule outlined in our study—based on a combination of
cortical and subcortical neural networks—suggests that PSP is characterized by alterations in emotion
and cognitive processing [27]. Consequently, a comprehensive evaluation of these patients cannot be
limited to the sole assessment of motor function.

4.5. Validation of the Prediction Model

Notably, 15 of the 53 study patients performed a follow-up MRI examination and served as an
additional validation cohort. Many conditions can contribute to the deviations in our prediction,
for example, the patient condition at clinical evaluations, the disease courses or response to the
treatment during the follow-up period, as well as the scanner fluctuation at acquisition and the
subsequent post-processing procedures [28]. The difference in MAE of UPDRS III and LEDD obtained
in this patient subset did not reach significance (p = 0.936 and 0.282, respectively) when compared
with those from the cross validation analysis—suggesting that our prediction rule might be reliable
and consistent in both assessments.

It can be observed that the prediction of LEDD in the validation cohort slightly deviated from the
forecast-being characterized by the lowest adjusted R2 in the original model (leave-one-out/five-fold
cross validation = 0.772 ± 0.008/0.739 ± 0.047). The response of patients with PSP to levodopa may be
either absent or transient. However, there may be differences in the clinical spectrum of disease—with
patients with PSP-RS showing poorer response than those with PSP-P [29]. The predominant inclusion
of patients with PSP-P (as in our study) may lead to an underestimation of the predictive value.
Notably, it has been previously suggested that common criteria for defining the response of patients
with PSP to levodopa may not be entirely accurate and thus need further examination [30]. Similarly,
our findings related to LEDD require additional validation in larger studies.
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4.6. Technical Consideration and Additional Issues

Previous DTI analyses have been focused on white matter damage and frequently relied on
complicated algorithms for accurate fiber tracking [31]—ultimately being unsuitable for routine clinical
use. Notably, our current approach for predicting severity scores was not based on white matter
tractography or connectivity analysis. We rather performed a reconstruction of the diffusion tensor
followed by image normalization and parcellation—a method that can be easily implemented in a
clinically-oriented environment with the use of freeware software SPM [12] or FSL (Functional magnetic
resonance imaging of the brain Software Library [32]).

The inclusion of large amount of features might potentially result in model overfitting. To remove
features unassociated with the outcome, several approaches have been developed, for example,
principal component analysis [33] and independent component analysis [34]. However, it could be
difficult to adjust the performance estimates when using these data-driven approaches [33,35]. The least
absolute shrinkage and selection operator (LASSO) is a dimension-reduction technique which balances
the bias and variance to minimize the mean squared error of the predictive model [36]. Features
survived after LASSO procedure has been shown to be stable in the predictive performance when
compared with other feature selection methods [37]. Here, we implemented a L1-norm regularized
LASSO procedure to reduce the number of features that could be entered into the regression model.
The result showed that the number of the features survived LASSO (22 to 32 for different clinimetrics)
was less than the sample size (53 patients). The final number of the features in each predictive model
was further reduced to 1/5 of the sample size at stepwise regression. This procedure was believed to be
able to minimize the identification of spurious correlations [36].

PSP was a neurodegenerative disease caused by four-repeat (4R) tauopathy and region-specific tau
deposits. It was postulated that the increase of amyloid-β (Aβ) might trigger tau pathology leading to
the eventual neuronal death [38]. However, an appropriate tau-ligand positron emission tomography
(PET) seems yet to be developed. Although the ATN characterization (biomarker of Ab-amyloid,
Tau and Neurodegeneration or Neuronal injury) and of post-mortem evidence are not available to
our study, it is less likely that these PSP patients could be amyloid positive according to the different
clinical presentations, underlying neuropathological findings and our DTI imaging characteristics.

Because the subgroups of PSP patients was considered as different clinical presentations which
might be related to region-specific tau deposits [39], it would require increasing number of patients in
each subgroup to reliably verify our result. The combination DTI with appropriate tau-PET might
be a powerful and complimentary approach to give precise diagnosis and prognosis of PSP. In the
future study, it would be interesting to investigate this disease with specific radioactive tracers that is
appropriate and clinically available to the general practice.

4.7. Limitations

Because of the retrospective nature of the study, the specific scale of PSP assessment is not available
and the images of the participants were collected from three MRI imaging protocols, in an effort to
increase the number of participants. However, the UPDRS-III and PIGD are used for the general
evaluation of the clinical severity. Our result showed that the predictive models can be valid for
different imaging protocols.

Owing to the data-driven approach, we cannot infer any direct causal relationship between the
observed brain alterations and clinical severity measures. The question as to whether these associations
are truly causal needs to be addressed in larger longitudinal investigations.

Because PSP is a rare disease, we were only able to include 53 patients in our analysis. Therefore,
we did not divide a specific portion of the participants as a k-folds hold-out validation cohort. However,
we did used a subset of data from 15 returned patients as an additional validation. A methodological
point that merits comment is that diffusion metrics in volumes of interest are generally reported as
means. It is difficult to forecast whether such parameters would increase (or decrease) under certain
disease states. Consequently, the 90th, 50th, and 10th percentiles of each variable were recorded in this
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study. Being unrelated to the morphometric features of the ROI (e.g., length, area, and volume)—these
values contributed to the accuracy of the normalization algorithm.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/1/40/s1, Table
S1: general characteristics of patients included in the validation cohort. Table S2: nomenclature of the features for
each assessment in the predictive model.

Author Contributions: Conceptualization, C.-C.T. and J.-J.W.; formal analysis, X.-A.Z. and J.-S.C.; funding
acquisition, J.-J.W.; investigation, Y.-L.C., S.-H.N., C.-S.L. and Y.-C.L.; methodology, X.-A.Z. and C.-C.T.; resources,
Y.-L.C., S.-H.N. and C.-S.L.; writing—original draft, X.-A.Z. and C.-C.T.; writing—review and editing, J.-J.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Taiwanese Ministry of Science and Technology (grant MOST
106-2314-B-182-018-MY3, MOST 106-2911-I-182-505, MOST 107-2911-I-182-503), the Healthy Aging Research
Center (grants EMRPD1H0411, EMRPD1H0551, and EMRPD1H0431, EMRPD1I0501, EMRPD1I0471), and the
Chang Gung Memorial Hospital (grants CIRPD1E0061-3, CMRPD3D0011-3, CMRPD1C0291-3, CMRPD1G0561-2,
and CMRPG2B0251).

Acknowledgments: This study was supported by the Imaging Core Laboratory of the Institute for Radiological
Research and the Center for Advanced Molecular Imaging and Translation. The authors wish to acknowledge
Wey-Yil Lin, Yi-Hsin Weng and Yi-Ming Wu for their support to the patients, the Neuroscience Research Center
(Chang Gung Memorial Hospital) and the Healthy Aging Research Center (Chang Gung University) for their
invaluable support.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Litvan, I.; Agid, Y.; Jankovic, J.; Goetz, C.; Brandel, J.; Lai, E.; Wenning, G.; D’olhaberriague, L.;
Verny, M.; Chaudhuri, K.R. Accuracy of clinical criteria for the diagnosis of progressive supranuclear
palsy (Steele-Richardson-Olszewski syndrome). Neurology 1996, 46, 922–930. [CrossRef]

2. Cubo, E.; Stebbins, G.T.; Golbe, L.I.; Nieves, A.V.; Leurgans, S.; Goetz, C.G.; Kompoliti, K. Application of the
unified parkinson’s disease rating scale in progressive supranuclear palsy: Factor analysis of the motor scale.
Mov. Disord. Off. J. Mov. Disord. Soc. 2000, 15, 276–279. [CrossRef]

3. Massey, L.A.; Micallef, C.; Paviour, D.C.; O’Sullivan, S.S.; Ling, H.; Williams, D.R.; Kallis, C.; Holton, J.L.;
Revesz, T.; Burn, D.J.; et al. Conventional magnetic resonance imaging in confirmed progressive supranuclear
palsy and multiple system atrophy. Mov. Disord. 2012, 27, 1754–1762. [CrossRef] [PubMed]

4. Whitwell, J.L.; Hoglinger, G.U.; Antonini, A.; Bordelon, Y.; Boxer, A.L.; Colosimo, C.; van Eimeren, T.;
Golbe, L.I.; Kassubek, J.; Kurz, C.; et al. Radiological biomarkers for diagnosis in PSP: Where are we and
where do we need to be? Mov. Disord. 2017, 32, 955–971. [CrossRef] [PubMed]

5. Lo, C.Y.; Wang, P.N.; Chou, K.H.; Wang, J.; He, Y.; Lin, C.P. Diffusion tensor tractography reveals abnormal
topological organization in structural cortical networks in Alzheimer’s disease. J. Neurosci. 2010, 30,
16876–16885. [CrossRef]

6. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; Van Stiphout, R.G.; Granton, P.; Zegers, C.M.;
Gillies, R.; Boellard, R.; Dekker, A. Radiomics: Extracting more information from medical images using
advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [CrossRef]

7. Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology
2015, 278, 563–577. [CrossRef]

8. Ling, H. Clinical approach to progressive supranuclear palsy. J. Mov. Disord. 2016, 9, 3–13. [CrossRef]
9. Chen, L.; Liu, M.; Bao, J.; Xia, Y.; Zhang, J.; Zhang, L.; Huang, X.; Wang, J. The correlation between apparent

diffusion coefficient and tumor cellularity in patients: A meta-analysis. PLoS ONE 2013, 8, e79008. [CrossRef]
10. Tabesh, A.; Jensen, J.H.; Ardekani, B.A.; Helpern, J.A. Estimation of tensors and tensor-derived measures in

diffusional kurtosis imaging. Magn. Reson. Med. 2011, 65, 823–836. [CrossRef]
11. Fan, L.; Li, H.; Zhuo, J.; Zhang, Y.; Wang, J.; Chen, L.; Yang, Z.; Chu, C.; Xie, S.; Laird, A.R.; et al. The human

brainnetome atlas: A new brain atlas based on connectional architecture. Cereb. Cortex 2016, 26, 3508–3526.
[CrossRef] [PubMed]

12. Penny, W.D.; Friston, K.J.; Ashburner, J.T.; Kiebel, S.J.; Nichols, T.E. Statistical Parametric Mapping: The Analysis
of Functional Brain Images; Elsevier: Amsterdam, The Netherlands, 2011.

http://www.mdpi.com/2077-0383/9/1/40/s1
http://dx.doi.org/10.1212/WNL.46.4.922
http://dx.doi.org/10.1002/1531-8257(200003)15:2&lt;276::AID-MDS1010&gt;3.0.CO;2-Q
http://dx.doi.org/10.1002/mds.24968
http://www.ncbi.nlm.nih.gov/pubmed/22488922
http://dx.doi.org/10.1002/mds.27038
http://www.ncbi.nlm.nih.gov/pubmed/28500751
http://dx.doi.org/10.1523/JNEUROSCI.4136-10.2010
http://dx.doi.org/10.1016/j.ejca.2011.11.036
http://dx.doi.org/10.1148/radiol.2015151169
http://dx.doi.org/10.14802/jmd.15060
http://dx.doi.org/10.1371/journal.pone.0079008
http://dx.doi.org/10.1002/mrm.22655
http://dx.doi.org/10.1093/cercor/bhw157
http://www.ncbi.nlm.nih.gov/pubmed/27230218


J. Clin. Med. 2020, 9, 40 13 of 14

13. Austin, P.C.; Steyerberg, E.W. The number of subjects per variable required in linear regression analyses.
J. Clin. Epidemiol. 2015, 68, 627–636. [CrossRef] [PubMed]

14. Vittinghoff, E.; McCulloch, C.E. Relaxing the rule of ten events per variable in logistic and cox regression.
Am. J. Epidemiol. 2007, 165, 710–718. [CrossRef] [PubMed]

15. Evans, A.C.; Collins, D.L.; Mills, S.; Brown, E.; Kelly, R.; Peters, T.M. 3D statistical neuroanatomical models
from 305 MRI volumes. In Proceedings of the 1993 IEEE Conference Record Nuclear Science Symposium
and Medical Imaging Conference, San Francisco, CA, USA, 31 October–6 November 1993; pp. 1813–1817.

16. Bluett, B.; Banks, S.; Cordes, D.; Bayram, E.; Mishra, V.; Cummings, J.; Litvan, I. Neuroimaging and
neuropsychological assessment of freezing of gait in Parkinson’s disease. Alzheimers Dement (NY) 2018, 4,
387–394. [CrossRef] [PubMed]

17. Halliday, G.M. Thalamic changes in Parkinson’s disease. Parkinsonism Relat. Disord. 2009, 15 (Suppl. 3),
S152–S155. [CrossRef]

18. Fox, P.T.; Lancaster, J.L.; Laird, A.R.; Eickhoff, S.B. Meta-analysis in human neuroimaging: Computational
modeling of large-scale databases. Annu. Rev. Neurosci. 2014, 37, 409–434. [CrossRef]

19. Gerardin, E.; Sirigu, A.; Lehericy, S.; Poline, J.B.; Gaymard, B.; Marsault, C.; Agid, Y.; Le Bihan, D. Partially
overlapping neural networks for real and imagined hand movements. Cereb. Cortex 2000, 10, 1093–1104.
[CrossRef]

20. Zeidman, P.; Maguire, E.A. Anterior hippocampus: The anatomy of perception, imagination and episodic
memory. Nat. Rev. Neurosci. 2016, 17, 173–182. [CrossRef]

21. Christopher, L.; Duff-Canning, S.; Koshimori, Y.; Segura, B.; Boileau, I.; Chen, R.; Lang, A.E.; Houle, S.;
Rusjan, P.; Strafella, A.P. Salience network and parahippocampal dopamine dysfunction in memory-impaired
Parkinson disease. Ann. Neurol. 2015, 77, 269–280. [CrossRef]

22. Olson, I.R.; Plotzker, A.; Ezzyat, Y. The Enigmatic temporal pole: A review of findings on social and emotional
processing. Brain 2007, 130, 1718–1731. [CrossRef]

23. Yang, Y.; Fan, L.; Chu, C.; Zhuo, J.; Wang, J.; Fox, P.T.; Eickhoff, S.B.; Jiang, T. Identifying functional
subdivisions in the human brain using meta-analytic activation modeling-based parcellation. Neuroimage
2016, 124, 300–309. [CrossRef] [PubMed]

24. Dai, Y.J.; Zhang, X.; Yang, Y.; Nan, H.Y.; Yu, Y.; Sun, Q.; Yan, L.F.; Hu, B.; Zhang, J.; Qiu, Z.Y.; et al.
Gender differences in functional connectivities between insular subdivisions and selective pain-related brain
structures. J. Headache Pain 2018, 19, 24. [CrossRef] [PubMed]

25. Ghosh, B.C.; Rowe, J.B.; Calder, A.J.; Hodges, J.R.; Bak, T.H. Emotion recognition in progressive supranuclear
palsy. J. Neurol. Neurosurg. Psychiatry 2009, 80, 1143–1145. [CrossRef] [PubMed]

26. Klein, R.C.; de Jong, B.M.; de Vries, J.J.; Leenders, K.L. Direct comparison between regional cerebral
metabolism in progressive supranuclear palsy and Parkinson’s disease. Mov. Disord. 2005, 20, 1021–1030.
[CrossRef] [PubMed]

27. Pontieri, F.E.; Assogna, F.; Stefani, A.; Pierantozzi, M.; Meco, G.; Benincasa, D.; Colosimo, C.; Caltagirone, C.;
Spalletta, G. Sad and happy facial emotion recognition impairment in progressive supranuclear palsy in
comparison with Parkinson’s disease. Parkinsonism Relat. Disord. 2012, 18, 871–875. [CrossRef] [PubMed]

28. Chen, Y.L.; Lin, Y.J.; Lin, S.H.; Tsai, C.C.; Lin, Y.C.; Cheng, J.S.; Wang, J.J. The effect of spatial resolution on
the reproducibility of diffusion imaging when controlled signal to noise ratio. Biomed. J. 2019, 42, 268–276.
[CrossRef]

29. Hoglinger, G.U.; Respondek, G.; Stamelou, M.; Kurz, C.; Josephs, K.A.; Lang, A.E.; Mollenhauer, B.; Muller, U.;
Nilsson, C.; Whitwell, J.L.; et al. Clinical diagnosis of progressive supranuclear palsy: The movement
disorder society criteria. Mov. Disord. 2017, 32, 853–864. [CrossRef]

30. Constantinescu, R.; Richard, I.; Kurlan, R. Levodopa responsiveness in disorders with parkinsonism: A review
of the literature. Mov. Disord. 2007, 22, 2141–2148. [CrossRef]

31. Zhang, H.; Schneider, T.; Wheeler-Kingshott, C.A.; Alexander, D.C. NODDI: Practical in vivo neurite
orientation dispersion and density imaging of the human brain. Neuroimage 2012, 61, 1000–1016. [CrossRef]

32. Jenkinson, M.; Beckmann, C.F.; Behrens, T.E.; Woolrich, M.W.; Smith, S.M. FSL. Neuroimage 2012, 62, 782–790.
[CrossRef]

33. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R.
Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jclinepi.2014.12.014
http://www.ncbi.nlm.nih.gov/pubmed/25704724
http://dx.doi.org/10.1093/aje/kwk052
http://www.ncbi.nlm.nih.gov/pubmed/17182981
http://dx.doi.org/10.1016/j.trci.2018.04.010
http://www.ncbi.nlm.nih.gov/pubmed/30211293
http://dx.doi.org/10.1016/S1353-8020(09)70804-1
http://dx.doi.org/10.1146/annurev-neuro-062012-170320
http://dx.doi.org/10.1093/cercor/10.11.1093
http://dx.doi.org/10.1038/nrn.2015.24
http://dx.doi.org/10.1002/ana.24323
http://dx.doi.org/10.1093/brain/awm052
http://dx.doi.org/10.1016/j.neuroimage.2015.08.027
http://www.ncbi.nlm.nih.gov/pubmed/26296500
http://dx.doi.org/10.1186/s10194-018-0849-z
http://www.ncbi.nlm.nih.gov/pubmed/29541875
http://dx.doi.org/10.1136/jnnp.2008.155846
http://www.ncbi.nlm.nih.gov/pubmed/19762901
http://dx.doi.org/10.1002/mds.20493
http://www.ncbi.nlm.nih.gov/pubmed/15858809
http://dx.doi.org/10.1016/j.parkreldis.2012.04.023
http://www.ncbi.nlm.nih.gov/pubmed/22595619
http://dx.doi.org/10.1016/j.bj.2019.03.002
http://dx.doi.org/10.1002/mds.26987
http://dx.doi.org/10.1002/mds.21578
http://dx.doi.org/10.1016/j.neuroimage.2012.03.072
http://dx.doi.org/10.1016/j.neuroimage.2011.09.015
http://dx.doi.org/10.1098/rsta.2015.0202
http://www.ncbi.nlm.nih.gov/pubmed/26953178


J. Clin. Med. 2020, 9, 40 14 of 14

34. Beckmann, C.F.; Smith, S.M. Probabilistic independent component analysis for functional magnetic resonance
imaging. IEEE Trans. Med. Imaging 2004, 23, 137–152. [CrossRef] [PubMed]

35. Lu, Y.; Cohen, I.; Zhou, X.S.; Tian, Q. Feature selection using principal feature analysis. In Proceedings
of the 15th ACM International Conference on Multimedia, Augsburg, Germany, 25–29 September 2007;
pp. 301–304.

36. Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58,
267–288. [CrossRef]

37. Yin, P.; Mao, N.; Zhao, C.; Wu, J.; Sun, C.; Chen, L.; Hong, N. Comparison of radiomics machine-learning
classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on
3D computed tomography features. Eur. Radiol. 2019, 29, 1841–1847. [CrossRef] [PubMed]

38. Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fà, M.; Amato, A.; Palmeri, A.; D’Adamio, L.; Grassi, C.;
Devanand, D.; Honig, L.S. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid
cascade. J. Alzheimer’s Dis. 2018, 64, S611–S631. [CrossRef]

39. Morris, E.; Chalkidou, A.; Hammers, A.; Peacock, J.; Summers, J.; Keevil, S. Diagnostic accuracy of 18 F
amyloid PET tracers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Eur. J.
Nucl. Med. Mol. Imaging 2016, 43, 374–385. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMI.2003.822821
http://www.ncbi.nlm.nih.gov/pubmed/14964560
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1007/s00330-018-5730-6
http://www.ncbi.nlm.nih.gov/pubmed/30280245
http://dx.doi.org/10.3233/JAD-179935
http://dx.doi.org/10.1007/s00259-015-3228-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Patients 
	Image Acquisition 
	Image Processing 
	Statistical Analysis and Feature Reduction Process 

	Results 
	Discussion 
	Main Findings 
	Clinical Impact 
	Regions Related to Motor Function 
	Regions Related to Psychomotor Interactions 
	Validation of the Prediction Model 
	Technical Consideration and Additional Issues 
	Limitations 

	References

