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Abstract

Work within next generation networks considers additional network convergence possibilities and 

the integration of new services to the web. This trend responds to the ongoing growth of end-user 

demand for services that can be delivered anytime, anywhere, on any web-capable device, and of 

traffic generated by new applications, e.g., the Internet of Things. To support the massive traffic 

generated by the enormous user base and number of devices with reliability and high quality, web 

services run from redundant servers. As new servers need to be regularly deployed at different 

geographical locations, energy costs have become a source of major concern for operators. We 

propose a cost aware method for routing web requests across replicated and distributed servers that 

can exploit the spatial and temporal variations of both electricity prices and the server network. 

The method relies on a learning automaton that makes per-request decisions, which can be 

computed much faster than regular global optimization methods. Using simulation and testbed 

measurements, we show the cost reductions that are achievable with minimal impact on 

performance compared to standard web routing algorithms.

Keywords

autonomous systems; learning automata; energy; web; datacenter; QoS

1. Introduction

The Internet traffic continues increasing driven by multiple factors, including the 

proliferation of web of things [1], popularization of wearable computers, business 

globalization, and new technologies for machine-to-machine communications, high speed 

network access, and content delivery. With the rise of affordable personal gadgets like smart 

phones, the number of network devices and connections became 2.3 per-capita in 2016 and 
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it is estimated that it will reach 3.5 per-capita in 2021, with 58% of the global population 

gaining access to the Internet [2]. Despite the benefits, the growth of the network increases 

global energy consumption and brings many side-effects, such as green house emissions. 

Datacenters (DC) have become a mission critical computing infrastructure for the 

Information Communication Technology (ICT) sector. It has been estimated that the energy 

that will be consumed by DCs in the United States by 2020 will be 140 billion kWh 

(kilowatts-hour), which is equivalent to the power generated by 50 power plants. This 

amount of energy will cause 150 tones of carbon pollution [3]. With varying electricity 

prices, DC operators seek to reduce their total cost of ownership to increase the return on 

investment.

In the U.S., the wholesale electricity market is administered by Regional Transmission 

Organizations (RTO) and Independent System Operators (ISO) across 10 regions. Electricity 

price rates are spatially different across U.S. electricity markets and are decided based on the 

generation methods, availability, demand, and transmission costs over the grid. The 

RTO/ISO administers the electricity generation and transmission over the grid. Normally, 

electricity that is generated with low-cost generation methods, e.g., using coal or nuclear 

power, results in low prices. However, when demand is high, or increase rapidly, the extra 

demand needs to be fulfilled using higher cost generation methods, natural gas, that results 

in higher prices [4,5]. These features make electricity prices to vary greatly among not only 

across different regions, but also with time.

In the web industry, service delay is a prime quality factor. Web requests must receive 

service with the quality-of-service (QoS) level stated in the service level objective. This is 

only possible through the use of redundant server clusters, to provide proper availability, 

scalability, and fault tolerance. For example, content servers are commonly replicated at the 

edge of the network—to be as close as possible to the end-clients. Servers need to be 

replicated across geographical locations to cater to more clients and to reduce service delay. 

This deployment strategy allows operators to better deal with the unpredictable nature of the 

web traffic. A server consumes a minimal amount of energy when it is powered on, but its 

energy demand increases proportionally to its workload. Response times also increase along 

with the supplied load. It is possible to regulate to some extent the electricity costs of an 

organization that operates DCs at different regions through web traffic routing. However, it 

is most important to preserve the desired QoS in this operation as the network state and 

current servers’ load will affect response times. Therefore, there is a potential tradeoff 

between response times and the energy consumption involved in routing web requests to 

different DCs. The solution to the problem is not trivial as the network state is normally 

unpredictable. Both the delay involved in a network state collection from distributed servers 

and the computing overhead prevent the use of a high frequency optimization of web routing 

by convex optimization or linear methods. We propose a solution based on learning 

automata—the Cost Aware S-model Reward Penalty Epsilon (CA-S) method seeks to reduce 

the average cost in serving web requests with replicated web servers deployed on different 

geographical regions. We formulate a cost objective that includes energy costs and revenue 

loss. The latter factor captures the impact that high delay can cause to users and the operator.
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The learning automaton makes routing decisions for each incoming request by assessing 

response times and energy prices at the different server locations through action selection 

probabilities. Then, it probabilistically forwards the request to the server that minimizes the 

cost. Our contributions are:(i) a learning automata-based method for routing web requests 

considering both the differences in energy prices across locations and the revenue loss 

potentially produced by high response times; (ii) a simulation study of the performance 

impact of learning parameters, and; (iii) an implementation of the method for Apache Traffic 

Server and testbed evaluation in CloudLab [6]. We have compared our results to common 

baseline methods: minimum cost flow algorithm and round robin algorithm. Our 

experimental results show that the total average cost of serving web responses could be 

reduced up to 33% when compared to the minimum cost flow dynamic server selection 

algorithm and up to 49.2% compared to the common round robin method.

2. Literature Review

The problem of datacenter energy optimization has received good attention in the literature. 

We review representative works with a focus on energy optimization through request or 

workload re-routing with energy consideration.

2.1. Load Balancing by Spatial Pricing

The U.S. electricity market has been analyzed in detail with prices from 30 locations [7] and 

it has been proved that 40% savings are possible with dynamic price-aware routing through a 

simulation study using Akamai’s content delivery network (CDN) traffic traces. A two-level 

technique to reduce the electricity cost in multi location DC has been proposed [8]. The 

spatial variations in electricity prices were exploited at the first level and scheduling 

strategies were proposed at the second level to distribute the requests among heterogeneous 

servers available at the selected DC.

The stratus system proposed in [9] used a Voronoi graph partition algorithm to select a DC 

for servicing the requests. The service time, cost of the energy consumption and carbon 

emission were considered as metrics to be optimized in selecting a DC. A distributed cloud 

framework to reduce power consumption in the cloud based on dynamic speed scaling of 

processors was proposed [10]. Temporal and spatial variations in electricity prices were 

exploited to balance the load across the clusters and to reduce the energy consumption.

The total electricity cost reduction is formulated as a constrained mixed-integer problem and 

solved using Brenner’s polynomial algorithm [11] with a simulation study using prices from 

three locations of Google Internet datacenters. The energy consumption was optimized using 

a global load balancing policy and at a server level management by switching on/off using a 

mathematical analysis study [12]. A corrective marginal cost algorithm was proposed to 

solve the total energy cost by using a nonlinear integer programming optimization model 

[13]. A Big Data analytic framework was proposed to minimize the total energy cost and 

delay for running big data analytic jobs on geographically distributed big data sets using a 

stochastic optimization method [14]. A recent work [15], proposes a solution to the cloud 

service providers who procure electricity from deregulated electricity market to optimize 
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total electricity cost and bandwidth cost by dynamically routing the requests to DCs where 

electricity is cheaper.

2.2. Routing Work Loads to Renewable Energy Powered DCs

A global load balancing of web requests to DCs where the renewable energy is maximum or 

the energy is cheaper was proposed [16]. Renewable energy can be stored using 

uninterrupted power supplies (UPS) to be later used during power fluctuations to reduce 

energy costs. The power stored in UPS can be also used to reduce the peak power demand 

cost—known as peak shaving during the peak utilization hours [17]. Two algorithms were 

proposed [18] to reduce the use of brown energy to zero by shifting workloads to the DCs in 

regions where the energy cost is low and by switching off servers at lightly loaded DCs. The 

receding horizon control (RHC) algorithm for homogeneous settings and the averaging fixed 

horizon control algorithm (AFHC) for heterogeneous settings were proposed.

A fuzzy logic-based load balancing method was proposed to route the workload among 

geographically distributed datacenters to reduce electricity costs by considering renewable 

energy availability, brown energy consumption and average electricity cost at DC locations 

[19]. A reactive global load balancing and auto scaling of servers were proposed to reduce 

electricity cost and brown energy usage by routing requests to sites with higher renewable 

energy and lower costs [20]. A cost function that comprises a linear combination of energy 

cost and lost revenue due to SLA violation is used to route the job requests. A distributed 

geographical load balancer was proposed [21], in which the jobs are routed to DCs using 

“follow the renewable routing” policy to DCs where the proportion of brown energy to total 

energy production is at a minimum.

A two-time-scale load balancing algorithm, TLB-ARMA, was proposed to route web 

requests to a DC where the electricity price is minimum and powered by wind energy [22]. 

The air temperature was measured at the beginning of scheduling intervals to compute 

cooling efficiency and to predict the wind power. A constant number of servers were 

maintained to avoid power wastage in frequent on/off of servers. The most recent work [23] 

proposes a renewable aware load balancing policy using a combination of Reinforcement 

Learning and Neural Networks to optimize Big Data Analytic jobs across geographically 

distributed datacenters.

An energy-aware pricing in the three-tiered cloud service market was proposed [24] to 

minimize the total energy cost of the system by promoting integration of renewable energy 

in the system. The square root staffing law policy was used to maintain required number of 

servers in the on state to provide better QoS and to increase the revenue to the Infrastructure-

as-a-Service (IaaS) providers. A Global load balancing policy was used to distribute 

workloads of software-as-a-service providers (SaaS) to IaaS providers across spatially 

different electricity markets while reducing the cost incurred to SaaS providers, eventually to 

reduce prices of cloud services to end users.
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3. Problem Definition

Assume an enterprise that manages multiple datacenters (DC) located at different regions. 

Each location operates under the control of a local Regional Transmission Organization 

(RTO), so that electricity pricing varies from location to location and possibly also with 

time, depending on the specific policy in use. A total of N servers take part in running a 

common web application across L locations. In the notation that follows, we use superscripts 

to denote location and subscripts to indicate elements within a location. Each location has ni 

servers, 1 < i < L. If p j
i (t) is the average power (in kW) consumed by server j at DC i and 

obtained at time t since a specific epoch t0, the average energy cost per hour is:

Ei(t) = ∑
j = 1

ni

p j
i (t)γi(t), (1)

where γi(t) is the electricity price (rate) at DC i at t which remains constant during the last 

evaluation period (i.e., since the epoch t0 to t). The average power p j
i (t) may include pro rata 

the contribution of indirect sources, such as lighting, cooling, and other servers. The average 

energy cost per server and per hour related to running the web application and observed at 

time t is:

x(t) = 1
N ∑

i = 1

L
Ei(t) . (2)

While the general problem is to minimize the energy cost x(t), it is also crucial to consider 

that long request response times can have a detrimental impact on enterprise revenue. A 

simple example is an electronic commerce application where a slow system directly impacts 

transaction rates and, therefore, revenue. However, a similar rationale could be applied to 

other services. In addition to content quality, system responsiveness can affect the user 

perception of service quality and therefore impact the size of the user base over time. The 

exact definition of revenue loss due to response delay depends on application specifics and 

the needs of the enterprise. We formulate a basic expression for the purposes of our study 

assuming that revenue loss increases linearly with the average response time observed at 

each DC i:

Di(t) = δ di(t), (3)

where δ is the revenue loss factor and di(t) is the average response time observed at location 

i. The average revenue loss of the system per server between the epoch and t is therefore:

y(t) = 1
N ∑

i = 1

L
Di(t) . (4)

The combined cost is then described as:
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z(t) = x(t) + y(t) . (5)

The problem is how to achieve the optimal cost through routing web request to the N servers 

available. Iterative or direct methods may not be efficient enough to deal with the highly 

dynamic nature of this system where the electricity prices, energy demand and response time 

are all variable. We need a rapid decision-making system to make autonomous routing 

decisions based on the performance of the previous decisions in a dynamically changing 

environment. This provides us motivation to approach the problem with a learning method.

4. Routing with Learning Automata

To better explain the proposed method, we first provide a brief overview of how Learning 

Automata can be applied to a routing problem. A Learning Automaton (LA) is an 

autonomous decision-making entity that learns to make decisions so as to bring optimal 

performance in the environment in which it is operating [25,26]. It implements a specific 

case of reinforcement learning [27]. An LA makes stochastic selection of an action from the 

list of available actions and observes its performance; if it sees favorable performance from 

the selected action, then it increments the selection probability of that action and adjusts the 

probabilities of other actions; if the selected action produces unfavorable response, then it 

penalizes the action by decreasing its selection probability. It starts with zero knowledge 

about the environment and learns on its own to select optimal actions. An action represents a 

server selection for handling a web request. An automaton is described by a quintuple 

ϕ, s, X, G, A , where X is the set of inputs i.e., X ∈ 0, 1 ; ϕ is the set of internal states 

ϕ1, ϕ2, …, ϕm  s is the output set s1, s2, …, sn  with n ≤ m; G:ϕ s denoting the output 

function and A is the algorithm that computes the state ϕ(t + 1) from state ϕ(t) depending on 

the response X it received from the environment. Figure 1 depicts the interaction of LA with 

its environment.

The LA are classified as P-model, Q-model and S-model based on the responses it receives 

from the environment [25]. In P-model LA, the responses from the environment are mapped 

into binary values 0 and 1; in the Q-model, the responses are mapped into a finite number of 

values in the interval [0,1] and in the S-model, they are mapped into continuous values in the 

interval [0,1]. The LA are also classified based on the learning parameters used to update the 

selection probabilities.

1. Reward Penalty (RP): The learning parameter b = a and the selection 

probability of the server is rewarded or penalized equally when the selected 

server resulted in favorable or unfavorable performance.

2. Reward Inaction (RI): When b = 0, there will be no penalty for unfavorable 

response from the selected server (No action) and the server will be rewarded for 

favorable response.

3. Reward Penalty-ϵ (RP-ϵ): b << a, the selected action is penalized very little for 

unfavorable response.

Velusamy and Lent Page 6

Future Internet. Author manuscript; available in PMC 2019 November 08.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



The constants a and b are known as reward and penalty parameters, respectively.

The LA are broadly classified into fixed structure stochastic automata (FSSA) and variable 

structure stochastic automata (FSSA). In FSSA, the action probabilities are fixed i.e., 

transition probabilities are time invariant, whereas, in FSSA, the actions’ probabilities are 

updated based on the performance. The LA are classified as ergodic and non-ergodic 

according to their Markovian property. The ergodic LA does not lock itself into choosing 

any one action and it converges with probability distribution independent of initial 

distribution [28], whereas the non-ergodic LA has absorbing states and converges to an 

action which has minimum penalty probability with probability 1 [29]. The ergodic LA are 

suitable for non-stationary environments [28,30] and non-ergodic LA are apt for stationary 

environments. Both RP and RP-ϵ have ergodic Markovian properties and RI has non-ergodic 

properties. As many works from the literature illustrate the use of ergodic automata in 

network and communication applications [31–37], we are inspired to use the S-model 

Reward Penalty-ϵ, for making routing decisions in web applications. The servers operating 

in spatio-temporal electricity market and unpredictable web traffic patterns represent a non-

stationary environment and justify the need for a VSSA with ergodic properties.

5. Cost-Aware S-Model Reward Penalty Epsilon (CA-S) Learning 

Automaton

A proxy server operates as a front end for a given web service. The service is handled by a 

set of origin servers and each server may be deployed at a different DC location. The proxy 

receives web requests from the users and forwards them to the origin servers following 

certain criteria. The reply from each origin server is sent to the proxy, which forwards the 

content to the client. The CA-S LA supporting the proxy’s decisions allows for achieving an 

adaptive and autonomous selection of servers based on observed costs that are mapped to 

selection probabilities.

Servers start with equal probability. When the LA receives a response from an origin server, 

it notes the request response time and the origin server’s power level to calculate a combined 

cost that serves to either increase (reward) or decrease (penalize) its selection probability. In 

the S-model LA, the actions are rewarded or penalized in a proportional amount to the 

performance. The amount of reward is larger for a higher favorable response and smaller for 

a lower favorable response. In the same way, the amount of penalty is larger for higher 

unfavorable performance and smaller for lower unfavorable response. The performance of 

the server is given by the combined cost of energy and revenue loss. The LA computes the 

normalized cost value of the current server to make the reward or penalty proportional. The 

calculation of the normalized cost and the reinforcement equations used to update the 

selection probabilities are explained next.

The combined cost z(t), as defined by Equation (5), is computed for all of the servers after 

each transaction, using the response time (delay) and energy cost as explained in Section 3. 

Even though the response is received from the selected server, the costs are updated for all 

server entries to accommodate the time varying electricity prices at each location. The 
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exponential average cost prev_cost at an instance t is calculated from the current cost z(t) as 

follows:

prev_cost(t) = α * z(t) + (1 − α) * prev_cost(t − 1), (6)

where α is the weight given to the most recent value. The cost obtained from the selected 

server at a location (index) v at time t is normalized as βv(t):

βv(t) =
prev_costv(t) − m1(t)

m2(t) − m1(t) , where

m1(t) = min prev_cost1(t), prev_cost2(t), ⋯, prev_costr(t) and

m2(t) = max prev_cost1(t), prev_cost2(t), ⋯, prev_costr(t) .

(7)

The normalized value βv of prev_cost determines the amount of reward or penalty. If the 

selected server gives the minimum delay and minimum energy cost among all servers then 

βv will be zero and it will receive a larger reward; if the selected server gives the largest 

prev_cost, it will be penalized more because βv will be larger. The selection probabilities of 

the servers are updated as follows:

Pi(t + 1) = Pi(t) + a(1 − β) 1 − Pi(t) − bβ Pi(t), f or i = v,

Pi(t + 1) = Pi(t) − a(1 − β)Pi(t) + bβ 1
N − 1 − Pi(t) , ∀i ≠ v .

(8)

The constants a and b are the learning parameters. The use of βv in reinforcement equations 

makes the learning rate adaptive to the servers’ responses. Figure 2 explains the action flow 

executed by the LA when making a server selection and the learning flow when a response 

arrives. Optionally, automaton decisions can be further modulated with a random walk 

process, which occurs with probability Prw, to reduce the risk of reaching a local minima.

6. Evaluation of Parameter Selection Using Simulation

The performance of the proposed system may be affected by different learning parameters: 

reward factor a, penalty factor b, memory weight factor α, and random walk probability Prw. 

In addition, operational factors, such as the number of servers N, total traffic intensity λ, 

electricity rates (price) γi prevalent at each location i and the selected revenue loss factor δ 
determine the specific system behavior.

We use simulation to evaluate the impact of these factors. The advantage of the approach is 

that it provides a common and repeatable evaluation platform that allows for achieving high 

statistical accuracy. The simulation is event-driven and models the request generation as an 

exponential process with parameter λ (i.e., the total traffic intensity arriving at the system). 

The user requests are initially routed to a server (forward proxy server) that decides the 

actual origin server to handle each arriving request. The simulation keeps track of the 
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communication dynamics of both requests and replies. Requests have a fixed length of 100 

bytes. Reply lengths are exponentially distributed with an average size of 100 Kb.

The proxy is connected to the origin servers through connections of different delay. To 

simplify the simulation model, we assumed that a single server was used at each location. 

Delays from the proxy to the origin servers were distributed linearly from 10 ms to 1 s. The 

transmission rate of all the links was set to 2 Mbps. As a reference, the response time 

obtained with two or more servers is approximately 1.5 s. Each server has a single core and 

requests are served according to the first-come-first-serve model. We further assume that all 

the servers are of identical characteristics, consuming 100 W while idle and 150 W while 

transmitting or receiving data. Electricity prices (γ) were also linearly distributed among the 

different sites from 5 c/kWh to 15 c/kWh. The revenue loss factor was fixed at δ = 0.1 to 

produce comparable values for energy and delay costs.

6.1. Parameters a and b

Figure 3 depicts the average cost per node and per hour for a 8-node system (8 locations) 

and memory factor α = 0.75 for different values of learning parameters a and b. The average 

cost is calculated by the simulator by averaging the observed costs of 100 runs each handling 

30,000 requests. The standard deviation of the mean was very small in all cases, so we have 

opted for not including the confidence interval in the charts for visual clarity. The three plots 

on the left part of the figure depict the case with Prw = 0.1. The three charts on the right 

correspond to the case Prw = 0.5. We have used the same scale on the figures to better 

appreciate the differences. Each of the plot rows in the figure shows the results of different 

traffic intensity: low λ = 0.5, medium λ = 2, high λ = 4. The maximum utilization is in the 

range 5–6 req/s for the 8-node system that we considered.

The results show high parameter sensitivity for both a and b. The best values for b depend on 

the selected value for a and vice versa. We observed good performance with values for a 
around 0.01 with detrimental effects both by using smaller or greater values. With a = 0.01, 

we observed that b = 0.001 provided reasonable low cost for different values of λ. On the 

other hand, increasing the chances of random walk (right-hand side plots) did not produce 

major improvements. It is interesting to note that the optimization opportunities reduce with 

traffic intensity. With the lowest traffic rate, the cost range was around 8 c, whereas, with the 

highest traffic rate, the rate was about 2 c. Increasing the chances of random walk also 

reduce the cost range. For example, increasing Prw to be near 1 for the low traffic case 

removes the optimization opportunities achieving the maximum cost of 0.16 for any value of 

a and b.

6.2. Parameter Prw

Figure 4 provides further evidence of the impact of the use of pure random decisions in the 

system. We can observe that the cost impact of Prw is minimal for medium traffic. For low 

traffic, we observe that the system is better off by not using pure random decisions. 

However, for high traffic, small values of Prw may bring some performance improvement. 

Considering that the automaton can only be effective by receiving proper feedback, we note 
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that, with the delays caused by high traffic congestion, the use of pure random actions can 

provide benefits over a regular automata with stale information.

6.3. Parameter α

The memory weight α has little effect under low to medium traffic intensity (see Figure 5). 

For high traffic intensity, decisions are better off by using smaller weights, in other words, it 

is better to consider the latest cost rather than the cost average to modify the action selection 

probabilities as the information contained in the average can quickly become stale under 

congestion.

6.4. Number of Servers

Figure 6 depicts the average node cost per hour as a function of the number of servers. 

Increasing the number of servers benefits the cost metric because, under the same traffic 

intensity, each server handles a lower request rate, therefore requiring less energy for the 

evaluation period). Certainly, adding servers does increase the system cost as depicted on the 

right-hand chart of Figure 6.

7. Testbed Evaluation

We have conducted experiments on CloudLab [6]. The topology consists of six servers of 

type 220g1 as shown in Figure 7. All servers are equipped with two Intel E5–2630 v3 8-core 

central processing units (CPUs) at 2.40 GHz (Haswell EM64T), 128 GB error-correcting 

code memory (ECC), a dual-port Intel X520-DA2 10 Gbps network interface card (NIC) and 

two 1.2 TB disks. All machines run Linux Ubuntu 16.04. Apache2 web server was installed 

on the nodes s1, s2, s3, s4 to operate as origin servers. All of the nodes provide power 

monitoring capabilities. We have obtained the power usage of origin servers using the 

Intelligent Platform Management Interface Tool (ipmitool). Apache Traffic Server 7.1.2 was 

installed on the node proxy, which serves as a reverse proxy server between client and the 

origin servers. To emulate Internet (wide area network) delays, we introduced the following 

random artificial delays to the links connecting origin servers to proxy using Network 

Emulator (Netem): 10.0 ± 2.0, 0 (no delay), 20.0 ± 5.0, and 5.0 ± 2.0 ms, respectively.

We implemented our method for web request routing (CA-S) as a policy function with the 

balancer plug-in of the traffic server. The LA implemented as the policy function will 

measure the delay in serving responses, read the power utilization of servers and compute 

the total cost after each transaction. It then updates the selection probabilities of the servers 

and selects a server at random for the next incoming request. An application (tx_power) 
written in C++ at each origin server queries the power usage from ipmitool at one-second 

intervals and sends the power values in watts to both proxy and the client node cl using 

PUB/SUB messaging service of ZeroMQ. An application written in C++ (rx_power) 
running on the proxy node subscribes to all the origin nodes and receives the power values. 

It then writes these values into a memory shared with the traffic server. The PUB/SUB 

messages are transmitted out of band with the HTTP requests. A python application running 

from the client node cl sends HTTP requests for static files of various sizes to the origin 

servers via proxy node in Poisson distribution. The requests are sent from 20 requests/s to 
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300 requests/s in steps of 20 requests/s. Each experiment runs for a duration of 10 min and 

was repeated several times. The service times and power utilization are recorded at the client 

node for plotting the results.

The probabilities are updated after each transaction based on the performance of servers 

when each of them has been selected for a transaction. The server which serves the requests 

with the minimum combined cost will have the highest probability in the long run. The 

server having the highest probability will have the most number of chances to serve the 

requests. However, once its performance starts deteriorating, it will not hold the highest 

probability and the probability of the server having the next best performance starts 

increasing. As the LA used in this work possesses ergodic Markovian properties, it does not 

lock itself into any one server, and optimal performance could be achieved in spite of 

dynamic changes in the electricity prices and with the variations in response times. To better 

illustrate the roles of the raw electricity costs and revenue loss due to high response times, 

we have introduced an additional parameter k into the objective function: z(t) = kx(t) + (1 − 

k)y(t). Depending on the value selected for k, the modified goal function simulates the use of 

different electricity rates (keeping γ fixed) or different choices for δ.

8. Results

We have conducted several experiments to test the sensitivity of the algorithm to some of the 

parameters used in the algorithm. Unlike the simulation, the CloudLab environment offers 

realism, but also some limitations—for example, the current method employed for energy 

monitoring requires the implementation of a process that adds overhead to the servers. We 

have tested the performance of our proposed approach using two price scenarios, with two 

values of k (0.2 and 0.9), two values of α (0.1 and 0.9) and different values for the penalty 

parameter b.

8.1. Baseline Methods

We consider the round robin (RR) and the minimum cost flow (MC) server selection 

methods to produce baseline performance. The RR is a static policy in which servers are 

selected in turn and each server handles an equal number of requests. It is a widely used 

method for load balancing and request forwarding, in particular, when servers are 

homogeneous and workload is uniform [38–42]. It is commonly used in the web industry 

because of its low complexity.

A second baseline method is adopted from [11]. In that work, the optimization of electricity 

costs for a distributed DC system in a multi-electricity market was handled by mixed integer 

linear programming. The optimization problem was converted into the minimum cost flow 

problem given the challenges involved. Brenner’s algorithm was used to find the minimum 

cost flow for a network of five front-end web portal servers connected to Google’s data 

centers in three locations. In that work, the front-end web servers act as sinks and the DCs 

act as sources with the links that connect them carrying the electricity costs. The process 

consists of the following steps. First, the amount of workload for each data center is 

computed based on the link costs (electricity price). Second, the required number of servers 

to be provisioned is computed from the assigned workload for each DC by considering the 
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delay and the number of active servers as constraints. Our MC implementation has no 

constraints. We find the minimum cost flow of a network of four data centers connected to 

one front-end server (proxy) through links carrying a combined cost of energy and revenue 

loss (delay). The combined cost is computed after each transaction as described in Equation 

(5), and the server having the least cost among all servers is chosen greedily for the next 

incoming request.

In the proposed CA-S algorithm, the LA observes the current electricity price rates, power 

consumption of all servers, and response time from the selected server (for each transaction). 

It then updates the selection probability of the current server proportionally to its 

performance by comparing its cost to the costs of other servers through the learning process. 

To make a new server selection, it makes a stochastic selection. By updating the selection 

probabilities based on the observed performance, it achieves a server selection that is 

adaptive to the environment. The amount of reward or penalty to the selected server is based 

on how far the cost is from the minimum and maximum observed costs. Thus, by 

continuously tracking the state of the environment, the LA makes adaptive decisions and 

approaches optimally.

Even though the MC method measures the costs in a similar way to CA-S, i.e., after each 

transaction, it may continue selecting the same server. For example, at certain time, the best 

server may respond with higher delay than usual because of the nature of a given request 

(e.g., the query may require the execution of a certain complex computation or a large data 

transfer). In that case, MC may move to a non-optimal server and will continue to send 

requests to that server until the cost exceeds the cost of the unusual request. In the long run, 

MC will produce suboptimal performance.

8.2. Impact of the Offered Load and the Price Scenario

Table 1 shows the electricity price rates for each of the four servers used in our tests under 

each of the two scenarios. The rates are given in cents per kWh. The selected values 

correspond to typical average electricity rates that are currently in use in different states in 

the U.S [43].

In price scenario-I, servers s1 and s2 are located in regions with the lowest electricity prices. 

As server s2 lack any configured delay, it is commonly the optimal server, at least under low 

load, with the selected values. In contrast, in price scenario-II, servers s3 and s4 have lower 

prices than the first two servers. Server s4 is configured with lower delay than s3 and hence 

it is the optimal server for most requests generated in this scenario. Measurements for the 

total average electricity cost and the average delay are plotted in Figures 8 and 9 for k = 0.9 

(i.e., revenue losses due to high response times are given higher importance than raw energy 

costs). Figure 8a,b shows that the proposed approach performed similar to the MC method 

and outperformed RR in both price scenarios with α = 0.1. Figure 8c,d shows that CA-S has 

out performed both RR and MC in price scenario-I and performed similarly to MC and 

better than RR in price scenario-II for α = 0.9.

From Figure 9a–d, it is clear that CA-S has outperformed both RR and MC with lower 

average delays for both values of α in price scenario-I and performed similar to MC or 
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better than RR in price scenario-II. In price scenario-I, as the fastest server also has the 

lower price, the average delay was optimal. In price scenario-II, server s4 has the lowest 

price with a configured delay of 5.0 ms ± 2.0 ms. The proposed method selects s4 most of 

the time when attempting to optimize the combined cost, producing an increase on the 

average delay. We have verified the number of requests serviced by each server in both cases 

using traffic server logs.

Figure 10 depicts the combined cost incurred by the different algorithms used in this study 

under price scenario-I. The proposed CA-S method performed better than RR for both 

values of α and both values of k, except for high values of λ (see Figure 10a). In this price 

scenario, the CA-S method performed generally better than MC for λ values up to 

approximately 200 req/s. When λ = 0.9 and k = 0.9, the CA-S method produced better costs 

than MC. When giving higher importance to the current cost (i.e., α = 0.9), the most recent 

variations of both energy and delay costs are better tracked and the rewards and penalties 

update the action probabilities faster. Thus, higher values of α makes the selection better 

adaptive, which yields lower costs. These results are consistent with our observations 

obtained in simulation for low to medium traffic rates. We also observed that a high value of 

k in price scenario-I produced lower costs.

Figure 11 describes the combined cost incurred by using all of the three algorithms under 

price scenario-II. The CA-S method performed better than RR for both values of α and for 

both values of k. Again, CA-S performed better than MC for λ values up to 200, but, after 

that point, performance decreases as shown in Figure 11a. As indicated by Figure 11b,d, 

CA-S performed about the same as the MC method. The high value of k helps the LA to 

optimize energy costs with more importance than delay. Server s4 was therefore selected 

more frequently. As s4 has an artificial delay associated with it, the combined cost increased 

and hence performance decreased. As shown in Figure 11c, it shows superior performance 

than MC. A small value of k (0.2) reduces the importance given to energy cost increasing the 

selection probability of s2 and s4. In addition, a high value of α helps to update the selection 

probabilities.

The Minimum Cost flow algorithm (MC) performed better than RR in both price scenarios 

and equal to CA-S in price scenario-II for k = 0.9 in both alpha values. This is because MC 

selects a server based on the performance similar to CA-S by using the feedback 

mechanism. However, it does not have a learning ability and no stochastic selection. When 

MC finds a server with minimum cost, it tries to send every request to the same server until 

the cost of the server becomes larger than the other server. As the performance of the other 

servers is unknown, MC tries to compare the cost of the current server to stale values. The 

approach works well under stationary conditions, where all servers produce about the same 

performance. However, when energy costs and delays can dynamically vary, the MC method 

underperforms.

RR is a common baseline method in the literature that, because of its low overhead, is 

commonly used for real-time request forwarding. However, we experimentally observed that 

it produces suboptimal performance in general due to its lack of dynamism. On the other 
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hand, this method would work well with stationary assumptions with servers offering similar 

capabilities.

8.3. Parameter b

Figure 12 shows experimental evidence of the performance of CA-S using different choices 

for the learning automaton (see Section 4): SRP (b = a = 0.078), SRI (b = 0), and SRP-ϵ (b 
<< a, a = 0.078, b = 0.006). The results suggest that SRP is the best choice given its 

performance compared to the other two models.

9. Conclusions

We have proposed a dynamic method for web request routing among replicated and 

geographically distributed servers that operate under the authority of different electricity 

markets. The Cost Aware S-model Reward Penalty Epsilon (CA-S) method effectively 

exploits the spatial-temporal price and performance differences of the servers available to 

reduce the average total cost as compared to conventional methods. The proposed CA-S 

method continuously balances energy costs and revenue losses that are associated with high-

latency web responses when routing web requests. We have reported on the sensitivity of the 

CA-S to the various parameters used by the algorithm through both simulation and 

experimentation in CloudLab. We considered the two test scenarios. In one scenario, the 

server with the lowest delay had the lowest electricity cost rate. The opposite case was 

represented in the second scenario. Our results indicated that CA-S provides in general 

better performance than related methods (round robin and minimum cost flow) regardless of 

the test scenario. Our future work explores the issues related to the use of multiple proxies at 

distributed locations to remove the possibility of a single point of failure.
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Figure 1. 
Stochastic learning automaton.
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Figure 2. 
Flow chart of the proposed algorithm for dynamic web request routing with the Cost-Aware 

S-Model Reward Penalty Epsilon (CA-S) automaton.
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Figure 3. 
Impact of learning parameters a and b.
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Figure 4. 
Impact of pure random decisions Prw.
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Figure 5. 
Impact of memory weight parameter α.
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Figure 6. 
Cost impact of the number of servers; per node hourly cost (left); system hourly cost (right).
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Figure 7. 
Experimental topology deployed in CloudLab.
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Figure 8. 
Electricity cost with CA-S tested in CloudLab.
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Figure 9. 
Average delay with CA-S tested in CloudLab.
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Figure 10. 
Combined cost with CA-S in price scenario-I.
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Figure 11. 
Combined cost with CA-S in price scenario-II.
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Figure 12. 
Influence of penalty parameter b.
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Table 1.

Price scenarios (given in cents per kWh).

Scenario s1 s2 s3 s4

I 4.70 4.8 14.47 13.75

II 13.75 14.47 4.8 4.7
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