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7Brain Innovation B.V., Maastricht, the Netherlands
8Department of Neurology, University Hospital of Li�ege, Li�ege, Belgium

Keywords

Disorders of consciousness, FDG-PET, fMRI,

ICA, metabolism, resting state

Correspondence

Andrea Soddu, Department of Physics and

Astronomy, Western University, 1151

Richmond Street, London, ON, N6A 3K7

Canada. Tel: 519/661 2111 ext. 82669; Fax:

519/661 2033; E-mail: asoddu@uwo.ca

Funding Information

This work was supported by a Discovery

Grant of the Natural Sciences and

Engineering Research Council of Canada

(NSERC), the Belgian National Funds for

Scientific Research (FNRS) and the Tinnitus

Prize 2011 (FNRS 9.4501.12), the European

Commission, the James McDonnell

Foundation, the European Space Agency,

Mind Science Foundation, the French

Speaking Community Concerted Research

Action (REST), the Public Utility Foundation

“Universit�e Europ�eenne du Travail”,

“Fondazione Europea di Ricerca Biomedica”.

Received: 5 May 2015; Revised: 23

November 2015; Accepted: 26 November

2015

Brain and Behavior, 2016; 6(1), e00424,

doi: 10.1002/brb3.424

Soddu A and G�omez F equally contributed to

this work.

Abstract

Introduction: The mildly invasive 18F-fluorodeoxyglucose positron emission

tomography (FDG-PET) is a well-established imaging technique to measure

‘resting state’ cerebral metabolism. This technique made it possible to assess

changes in metabolic activity in clinical applications, such as the study of severe

brain injury and disorders of consciousness. Objective: We assessed the possi-

bility of creating functional MRI activity maps, which could estimate the rela-

tive levels of activity in FDG-PET cerebral metabolic maps. If no metabolic

absolute measures can be extracted, our approach may still be of clinical use in

centers without access to FDG-PET. It also overcomes the problem of recogniz-

ing individual networks of independent component selection in functional mag-

netic resonance imaging (fMRI) resting state analysis. Methods: We extracted

resting state fMRI functional connectivity maps using independent component

analysis and combined only components of neuronal origin. To assess neu-

ronality of components a classification based on support vector machine

(SVM) was used. We compared the generated maps with the FDG-PET maps

in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome

patients and four locked-in patients. Results: The results show a significant

similarity with q = 0.75 � 0.05 for healthy controls and q = 0.58 � 0.09 for

vegetative state/unresponsive wakefulness syndrome patients between the FDG-

PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the

conjunction analysis show decreases in frontoparietal and medial regions in

vegetative patients with respect to controls. Subsequent analysis in locked-in

syndrome patients produced also consistent maps with healthy controls.

Conclusions: The constructed resting state fMRI functional connectivity map

points toward the possibility for fMRI resting state to estimate relative levels of

activity in a metabolic map.
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Introduction

Consciousness is thought to represent an emergent prop-

erty of cortical and subcortical neural networks (Tononi

and Edelman 1998; Laureys 2005; Dehaene et al. 2006;

Seth et al. 2011). Clinical research in severely brain injured

patients with disorders of consciousness (DOC) is trying

to understand the neural causes and failing mechanisms of

consciousness (Laureys et al. 2004; Owen et al. 2009; Lau-

reys and Schiff 2012). One of the most severe DOC, the

vegetative state (VS, also called unresponsive wakefulness

syndrome (UWS) (Laureys et al. 2010)), manifests itself as

the persistence of arousal, wakefulness and rest cycles, res-

piration, and autonomic control, but without external

signs of awareness (Ashwal and Cranford 1995; Laureys

et al. 2010). In VS/UWS, a metabolic dysfunction as mea-

sured by 18F-fluorodeoxyglucose positron emission

tomography (FDG-PET) was found mostly in a wide fron-

toparietal network encompassing polymodal associative

cortices (Teasdale and Jennett 1974; Teasdale et al. 1983;

Kinney and Samuels 1994; Thibaut et al. 2012).

Although FDG-PET might be considered the most

robust neuroimaging technique to clinically investigate

severely brain injured patients with DOCs (Stender et al.

2014a,b), important progress has been made in investigat-

ing the blood oxygen level dependent (BOLD) signal by

functional magnetic resonance imaging (fMRI) (Laureys

and Schiff 2012). A variety of strategies has been used in

subjects with DOC such as passive paradigms using sen-

sory stimulations (Owen et al. 2005a,b; Coleman et al.

2007; Di et al. 2008) or active tasks, using for example

motor imagery (Owen et al. 2006; Boly et al. 2007; Monti

et al. 2010; Bardin et al. 2011). However, probably the

most appealing clinical approach, for simplicity and non-

invasiveness of acquisition, consists of studying fMRI rest-

ing state activity. It intends to measure the patients’

spontaneous activity while lying inside the scanner with-

out performing any specific task or being exposed to any

stimulation. During such resting state conditions, human

cortex manifests ultra-slow modulations of neuronal

activity reflected both in firing rate modulations of indi-

vidually isolated cortical neurons, as well as in modula-

tion of high frequency gamma power of local field

potentials (He et al. 2008; Nir et al. 2008). These ultra-

slow fluctuations show a remarkable coherence across

widespread functionally similar sites and show remarkable

reproducibility among subjects (Damoiseaux et al. 2006).

Recent studies on spontaneous brain activity revealed that

these robust activation patterns correlate to lower (e.g.,

motor, auditory, visual) and higher order cognitive func-

tion (e.g., internal thoughts, language) (Biswal et al. 1995;

Lowe et al. 1998; Cordes et al. 2000; Greicius et al. 2003;

Fox et al. 2005; Damoiseaux et al. 2006; Nir et al. 2006;

Fox and Raichle 2007; Vincent et al. 2007). These results

suggest that the study of higher order associative network

functionality using resting state fMRI is useful in the

absence of patients’ collaboration (Greicius et al. 2004;

Boly et al. 2009; Rombouts et al. 2009).

Data driven approaches such as independent compo-

nent analysis (ICA) (Hyvarinen et al. 2001) applied to

spontaneous activity produce a set of independent net-

works with a particular spatial distribution and a charac-

teristic frequency power spectrum (McKeown et al. 1998;

Beckmann et al. 2005; De Luca et al. 2006; Esposito et al.

2008; Perlbarg and Marrelec 2008). They offer the advan-

tage to better isolate physiological artifacts from the neu-

ronal components, and are now being commonly adopted

in this field (De Martino et al. 2007; Perlbarg et al. 2007;

Birn et al. 2008; Soddu et al. 2012). One important limi-

tation of ICA is that no rules are provided by the

methodology for the selection of the independent compo-

nents, a mandatory step if a quantitative comparison is

desired (Seghier et al. 2010). Different procedures have

been developed which are based on running a similarity

test with templates of the spatial patterns to be recognized

(Greicius et al. 2004; Esposito et al. 2005). These proce-

dures can provide satisfying results for healthy subjects or

in pathologies with a marginal effect on network spatial

patterns. However, when dealing with patients with DOC

much more attention is required as the highly deformed

brains can significantly alter the network patterns to the

extent that they can disappear (Soddu et al. 2011).

In this work we try to overcome the problem of recog-

nizing the different networks by first separating neuronal

from artifactual components. As previously introduced in

a recent work (Demertzi et al. 2014), in which it was still

intended to recognize ten different networks, a support

vector machine (SVM) classifier is used to discriminate

between neuronal or artifact related independent compo-

nents (IC). Neuronal ICs are combined in a single scalar

map (see Buckner et al. 2009; Cole et al. 2010b). This is

done by taking the square root of the absolute z maps. The

resulting map is then used as a proxy for the resting fMRI

neuronal activity. Once this fMRI scalar map has been

constructed for each single subject, the same statistical pro-

cedures as for comparing metabolic activity maps can be

used at the group level allowing quantitative comparisons

between healthy subjects and patients. The introduced

method is not intending to capture the absolute metabolic

activity that only FDG-PET can provide but gives an esti-

mate of the relative levels of activity. We expect a high cor-

relation between the calculated fMRI total neuronal

activity and the metabolic maps across subjects, as well as

consistent results when comparing VS/UWS patients ver-

sus healthy controls in the two methodologies. If both

expectations are confirmed it will evoke the possibility to
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use fMRI as a possible estimate of the relative metabolic

activity levels from MRI acquisitions only.

Materials and Methods

Procedure

FDG-PET and resting fMRI, eyes closed, were obtained in

11 VS/UWS patients (six women, mean age 50 year,

SD = 14 year, 10 with non-traumatic brain injury), four

LIS patients (three women, mean age 35 year,

SD = 13 year, two non-traumatic brain injury), see

Tables 1 and 2 for demographic and clinical data, and 16

age-matched healthy controls (six women, mean

age = 45 year, SD = 16 year) to the VS/UWS patients’

group. Patients with strongly deformed brains were

excluded. (Due to more conservative exclusion criteria

and FDG-PET availability there was an overlap of only

one VS and one LIS patient with Soddu, et al., 2012).

Informed consent was obtained from all control subjects

and from the legal representative of all patients. The study

was approved by the ethics committee of the University

and University Hospital of Li�ege in line with the Declara-

tion of Helsinki. Patients’ diagnosis was based on

repeated Coma Recovery-Scale-Revised assessment (Gia-

cino et al. 2004) prior and following scanning. FDG-PET

and fMRI scannings were within a period of 4 days,

behavioral diagnosis was the same on both days. FDG-

PET data were acquired after intravenous injection of

300 MBq of FDG on a Philips Gemini TF PET-CT scan-

ner as previously described (Bruno et al. 2012; Thibaut

et al. 2012). For both PET and fMRI acquisitions, patients

were monitored by two anesthesiologists throughout the

procedure and visual monitoring assured minimal visual

stimulation (e.g., eyes closed, dark room). In order to

reduce the influence of not accurate measured radiotracer

activity concentrations due to the relatively low image

resolution and the limited tissue sampling, phenomenon

known as partial volume effect (PVE) - particularly criti-

cal when the relative proportion of brain tissue compo-

nents is altered - a partial volume effect correction was

applied to the PET images (Quarantelli et al. 2004). Rest-

ing state BOLD data were acquired in the same popula-

tion on a 3T MR scanner (Trio Tim, Siemens, Germany)

with a gradient echo-planar sequence using axial slice ori-

entation: 32 slices, TE = 30 msec, flip angle = 78o, voxel

size = 3.0 9 3.0 9 3.0 mm3, TR = 2000 msec. 300 vol-

umes were acquired. fMRI and FDG-PET data were

aligned, coregistered and spatially normalized using SPM8

(RRID:nif-0000-00343; www.fil.ion.ucl.ac.uk/spm). FDG-

PET data were subsequently smoothed (full-width half-

maximum of 16 mm). SUV were calculated as previously

described (Laureys et al. 2000). For fMRI an initial

smoothing of 8 mm was applied before ICA using 30 ICs.

Number of components was chosen empirically based on

the experience of the authors in application of ICA to

resting state fMRI in DOC (Demertzi et al. 2014). See

also (Ylipaavalniemi and Vigario 2008) for an investiga-

tion of the reliability of solutions found with ICA algo-

rithms. ICA was performed using GIFT (Calhoun et al.

2001). Finally, fMRI motion parameters were calculated

as previously described (Soddu et al. 2012): measuring

average displacement and average speed during the full

acquisition time window.

fMRI components selection

For the neuronal component selection we applied the

same procedure as in (Demertzi et al. 2014). A group of

19 independently studied healthy controls (10 women,

mean age = 23 year SD = 3 year) was initially used for a

supervised learning machine classification between “neu-

ronal” versus “non-neuronal”. ICs samples were obtained

from the ICA decomposition (30 components) of this

control group. Data were acquired on a Siemens Magne-

ton 3T MR scanner with a gradient echo-planar sequence

using axial slice orientation: 32 slices, TE = 40 msec, flip

angle = 90°, voxel-size = 3.4 9 3.4 9 3.0 mm3, TR =
2460 msec. We combined expert knowledge and non-lin-

ear statistic (machine learning) to build an automatic

classification model. The model was based on the IC-fin-

gerprint, a low level representation of the spatio-temporal

information of each independent component. This feature

vector aims to characterize the high energy contributions

of low frequency ranges (0.01–0.1 Hz) of the time course

and the high sparsity of the spatial map, both properties

typically attributed to neuronal sources in resting state

(Cordes et al. 2000; Raichle et al. 2001; Daubechies et al.

2009). Additionally, the vector included measures of

information content and coherency, important variables

to characterize non-neuronal ICs (De Martino et al.

2007). This feature vector is robust to large geometric

deformations, because it is computed on the IC-spatial

distribution without any strong localization prior. A simi-

lar representation has been used previously in a multiclass

classification setting to characterize six types of ICs (one

neuronal and five physiologically noise related (De Mar-

tino et al. 2007)). This approach requires the expert to

visually classify components in one of these six classes.

However, previous studies showed that during the classifi-

cation process it is not always clear which specific noise

class is the most appropriate (Tohka et al. 2008). For this

reason, we simplified the labeling task by requiring the

expert to classify components in two main classes: “neu-

ronal” and “non-neuronal”. With this strategy, the classi-

fication problem was reframed from a multiclass to a
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binary classification. We also introduced the category of

labeling of “undefined components” to only keep good

quality samples for the training process. This category

was defined to account for possible limitations of the

expert to perform the labeling task (Hartendorp et al.

2012). In this work, the aim was to label a set of compo-

nents in one of the two biological categories commonly

used to classify these components, namely, “neuronal” or

“non-neuronal”. To accomplish this objective, a classifier

was trained to distinguish between these two categories.

Because the interest was to have good discrimination

between these categories, and following a conservative

approach, the training considered just “good” samples

(sure “neuronal” or “non-neuronal” samples). As it is

impossible to know a priori the true label of one “unde-

fined” component, then the classifier evaluation perfor-

mance was focused in their capacity to predict the labels

in unobserved “good” samples, with the expectation that

future samples even “undefined” would be properly

assigned to the correct category. First, the 570 ICs taken

from our independently studied group of healthy controls

(19 9 30) were labeled by an expert using one of the

three possible categories: “neuronal” (n = 224), “non-

neuronal” (n = 248) and “undefined” (n = 98). Only

samples labeled as “neuronal” and “non-neuronal” were

used during subsequent SVM classification. Two different

SVM kernels were used and compared: linear (LIN) and

radial basis function (RBF). A tuning of the SVM param-

eters was performed. The regularization parameter we

considered was log10C2{-1,0,. . .,8} (Hsu et al. 2003). The

c parameter of the SVM-RBF was varied from 0.1 to 1

with increment steps of 0.1. For the evaluation of the

classifier performance a nested leave-one-out cross-valida-

tion (LOO-CV) procedure was used to compute the

best set of SVM parameters, and additionally, to

provide an unbiased estimate of classifier generalization

ability. In this procedure, for each LOO-CV fold, we

excluded all data for a single control subject for the test

set, then we repeatedly repartitioned the remaining 18

participants into a validation set (1 control) and training

set (17 controls). We selected the optimal parameters for

the SVM on the validation set before applying it to the

test set.

fMRI total neuronal activity maps

The area under the Receiver Operating Curve (ROC) was

used as performance measurement for the parameter

selection (Bradley 1997). The classifier with highest over-

all classification rate was selected and subsequently used

to label neuronal components on the fMRI dataset of the

current study. Once the neuronal components were

selected, we built a single scalar map for each of the sub-

jects (11 VS/UWS, 4 LIS, and 16 controls) summing voxel

by voxel the square root of the absolute value of the z

maps over the neuronal components (Eq. 1, and

described in Fig. 1):

fMRITot ¼
XNneur

i¼1

ffiffiffiffiffiffi
jzij

p
(1)

where i is an index for the neuronal components. A sub-

sequent smoothing with a kernel of 16 mm was then

applied and a linear correlation value was finally obtained

between the calculated fMRI total neuronal map and the

corresponding FDG-PET map. A gray matter mask was

created by binarizing the SPM gray matter probability

with threshold of 0.1 (Eggert et al. 2012). Correlations

were calculated all over the voxels belonging to this mask

for both the calculated fMRI total neuronal and FDG-

PET maps.

For the voxel-based comparison between the VS/

UWS and control group we ran a factorial design with

two factors, machine and consciousness, each with two

levels: respectively FDG-PET and fMRI total neuronal

for the machine factor and healthy controls and VS/

UWS patients for the consciousness factor. Both FDG-

PET and fMRI total neuronal scalar maps were propor-

tionally scaled by the global signal before running the

group analysis. We considered the following contrasts:

(1) FDG-PET metabolic activity higher in healthy con-

trols with respect to VS/UWS patients; (2) FDG-PET

metabolic activity preserved in VS/UWS patients; (3)

fMRI total neuronal activity higher in healthy controls

with respect to VS/UWS patients; (4) fMRI total neu-

ronal activity preserved in VS/UWS patients; (5) con-

Table 2. Clinical features of LIS patients.

Clinical features LIS1 LIS2 LIS3 LIS4

Diagnosis Classical LIS Functional LIS Classical LIS Classical LIS

Gender (age, years) Male (20) Female (36) Female (28) Female (54)

Etiology Traumatic Cerebro vascular accident Cerebro vascular accident Traumatic

Time of fMRI (years/months) 4j 5 m 6j 2 m 5j 9 m 5j 10 m

LIS, locked-in syndrome; fMRI, functional magnetic resonance imaging.
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junction of impaired regions in patients common to

fMRI and PET and conjunction of preserved regions

common to fMRI and PET; (6) higher decrease in

FDG-PET metabolic activity with respect to fMRI

total neuronal activity; (7) higher decrease in fMRI

total neuronal activity with respect to FDG-PET meta-

bolic activity. Results were considered significant at

P < 0.05 false discovery rate corrected for multiple

comparisons.

Results

fMRI component selection

Two different kernels were used and compared for the

selection of neuronal ICs as previously applied in

(Demertzi et al. 2014), respectively, a linear (LIN) and a

radial basis function (RBF). The SVM-RBF classifier gave

a performance on the training dataset of 0.940 � 0.003%

which was significantly higher than the SVM-LIN perfor-

mance of 0.927 � 0.005% (P < 0.01). The SVM-RBF also

provided the best classification accuracy (94%) as com-

pared to visual selection in overall for neuronal ICs.

Based on these results, we selected the SVM-RBF classifier

for the task of neuronal ICs selection. fMRI total neu-

ronal activity maps were generated from a total number

of 13 � 4 neuronal ICs in healthy controls, 9 � 5 ICs in

VS/UWS patients and 10 � 5 in LIS patients. The num-

ber of selected neuronal components was not significantly

different among the groups even if a trend of fewer ICs

was observed in VS/UWS patients (P = 0.06 between

healthy controls and VS/UWS; P = 0.27 for healthy con-

trols versus LIS and P = 0.85 for LIS versus VS/UWS).

fMRI total neuronal activity versus FDG-PET
cerebral metabolism

We correlated the fMRI total neuronal activity maps

(Eq. 1 in the methods) with the corresponding FDG-PET

metabolic activity maps for all voxels belonging to gray

matter. We found for controls a significant (P < 0.001)

correlation for all voxels of q = 0.75 � 0.05, within the

range 0.63–0.83 (see Fig. 2 for the scatter plots reporting

FDG-PET metabolic vs. fMRI total neuronal activity in

healthy controls), for VS/UWS patients a significant

(P < 0.001) correlation of q = 0.58 � 0.09, within the

range 0.45–0.76, and for LIS patients a significant

(P = 0.001) correlation of q = 0.67 � 0.03 ranging from

0.63 to 0.70 (see Figures S1, S2 for the scatter plots

reporting FDG-PET metabolic vs. fMRI total neuronal

activity in, respectively, VS/UWS and LIS patients). Cor-

relations between healthy controls and VS/UWS patients

were significantly different (P < 0.001), the LIS patients

group was significantly different from controls

(P = 0.006), and was not significantly different from VS/

UWS (P = 0.10). When calculating correlations for all

voxels belonging to gray matter using FDG-PET without

performing any partial volume correction we obtained for

healthy controls, VS/UWS and LIS, respectively,

q = 0.74 � 0.05, q = 0.59 � 0.09, and q = 0.67 � 0.03,

which are not significantly different from the correspon-

dent values when performing partial value correction

(P = 0.71, P = 0.80 and P = 0.83). More relevant instead

was the smoothing we used. Correlations between FDG-

PET partial volume corrected and fMRI total neuronal

maps for the smoothing of 8 and 12 mm were, respectively,

for healthy controls (q = 0.67 � 0.05, q = 0.72 � 0.05),

Figure 1. Pictorial description of the methodology used to construct the fMRI total neuronal scalar map starting from automatically selected

neuronal independent components. Neuronal independent components were selected based on their fingerprint, which describes for each

component, spatial properties of the distribution of the Z scores as extracted from the spatial map and temporal properties as extracted from the

corresponding time course. The green line on the fingerprint represent the mean values obtained from an independent group of normal

volunteers, the red line represents the values observed in the assessed subject.
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VS/UWS (q = 0.50 � 0.09, q = 0.55 � 0.09) and LIS

(q = 0.60 � 0.03, q = 0.65 � 0.03) with P values

(P < 0.001, P = 0.1), (P = 0.048, P = 0.43) and (P = 0.021,

P = 0.36) when compared to the smoothing of 16 mm.

The FDG-PET standardized uptake value (SUV) meta-

bolic activity, when averaged over gray matter, was higher

in healthy controls with a value of 5.5 � 1.3 as compared

to VS/UWS patients with a value of 1.9 � 1.3

corresponding to a P < 0.001 and a global decrease of

35%. SUV value for LIS patients was 5.6 � 3.2, which

was significantly different from VS/UWS (P = 0.006). No

significant difference was found between LIS and controls

(P = 0.93). For the fMRI total neuronal activity (see

Fig. 3 for a comparison of the average fMRI total neu-

ronal with the average FDG-PET map in healthy controls,

before and after partial volume correction), we obtained,

respectively, 3.1 � 1.3 for healthy controls and 2.2 � 1.2

for VS/UWS patients, corresponding to a P = 0.08, indi-

cating a trend but not a significant reduction in the abso-

lute fMRI total neuronal activity. fMRI total neuronal

activity was 2.6 � 1.4 for LIS patients (P = 0.5 compared

to controls, and P = 0.6 compared to VS/UWS).

When contrasting FDG-PET metabolic activity propor-

tionally scaled by the global signal in healthy controls ver-

sus VS/UWS patients (Fig. 4A), we found that the fronto-

parietal and medial networks (precuneus, medial-frontal,

bilateral posterior parietal, superior temporal, and dorso-

lateral prefrontal cortices) together with bilateral caudate

and thalami appeared as the regions with a significant

hypometabolism in VS/UWS patients with respect to

healthy controls (P < 0.05 FDR corrected; see Table 3).

The opposite contrast giving us the regions with pre-

served FDG-PET metabolic activity in VS/UWS patients

identified the brainstem. When contrasting the fMRI total

Figure 2. Scatter plots for all the 16

healthy controls showing the correlation

between the FDG-PET after partial volume

correction versus the fMRI-total neuronal

activity for voxels belonging to gray matter.

Solid line indicates the best linear fit to the

data and on the upper left corner of each

scatter plot the linear correlation value is

reported.

(A)

(B)

(C)

Figure 3. (A) fMRI total neuronal (B) SUV obtained from FDG-PET

without partial volume correction (C) SUV obtained from FDG-PET

after partial volume correction for our group of 16 healthy controls in

four coronal slices.
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neuronal activity proportionally scaled by the global

signal in healthy controls versus VS/UWS patients

(Fig. 4B and Table 3), we also found that regions of the

lateral and medial fronto-parietal networks showed a sig-

nificant decrease in VS/UWS patients with respect to

healthy controls. Intra-parietal, temporal, and medial

orbito-frontal cortices were the regions showing the most

significant decrease. The caudate and thalamus did not

show a significant decrease. The hypothalamus appeared

as a region with preserved fMRI total neuronal activity in

VS/UWS patients. The conjunction analysis of the FDG-

PET metabolic and fMRI total neuronal activities (Fig. 4C

and Table 3), when contrasting healthy controls versus

VS/UWS patients, confirmed a significant decrease in the

fronto-parietal and medial networks regions (precuneus,

medial prefrontal cortex, temporo-parietal junction, infe-

rior frontal, and medial frontal gyrus). Finally when con-

trasting the decrease in VS/UWS patients in FDG-PET

with respect to fMRI total neuronal activity (Fig. 4D and

Table 3), a significant higher decrease in FDG-PET with

respect to fMRI total neuronal activity was observed in

the precuneus, cuneus, insula, caudate, and thalamus. A

significant higher decrease was observed in fMRI total

neuronal with respect to FDG-PET metabolic activity in

the medial prefrontal cortex and amigdala. The brainstem

also appeared in this last contrast being more preserved

for VS/UWS patients in FDG-PET than in fMRI total

neuronal. Resting state data of four LIS patients were ana-

lyzed even if not included in the group analysis. Figure 5

shows the conjunction analysis of both fMRI and PET for

healthy controls, VS/UWS, and LIS patients. Activity of

VS/UWS patients was consistently smaller compared to

both controls and LIS patients, while LIS patients were

comparable to healthy controls. For fMRI, we also calcu-

lated two motion parameters (Soddu et al. 2012) measur-

ing average displacement and average speed during the

full acquisition time window. We obtained, respectively, a

displacement of 0.43 � 0.25 and a speed of 0.12 � 0.05

for healthy controls. For VS/UWS patients we found a

displacement of 0.60 � 0.37 (P = 0.16 as compared to

controls) and a speed of 0.26 � 0.17 (P = 0.006 as com-

pared to controls), while for LIS patients we found a dis-

(A)

(B)

(C)

(D)

Figure 4. Voxel-based between-group

analysis for (A) FDG-PET describing regions

(in orange) with higher metabolic activity in

healthy controls (CTR) with respect to

vegetative state/unresponsive wakefulness

syndrome patients (VS/UWS), and regions

preserved in vegetative state/unresponsive

wakefulness syndrome patients (P < 0.05

FDR corrected). (B) fMRI total neuronal

activity as for A. (C) conjunction of FDG-

PET and fMRI total neuronal as for a. In

green regions with a higher decrease in

FDG-PET with respect to fMRI total

neuronal and in red with a higher decrease

in fMRI total neuronal with respect to FDG-

PET (for the contrast healthy controls more

than vegetative state/unresponsive

wakefulness syndrome patients). FDG-PET

was partial volume corrected.
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placement of 0.93 � 0.46 (P = 0.007 as compared to con-

trols, and P = 0.17 as compared to VS/UWS) and a speed

of 0.10 � 0.04 (P = 0.42 as compared to controls and

P = 0.09 as compared to VS/UWS). Finally, we plotted

the mean value of the fMRI total neuronal versus the

total number of neuronal components, Figure 6 consider-

ing all the subjects (healthy controls, VS/UVS and LIS

patients). The correlation was highly significant with a

value q = 0.97 and a P < 0.001. In Figure S3 we also

plotted the correlation between FDG-PET and fMRI total

neuronal versus the total number of neuronal compo-

nents in each subject. The correlation was not significant

with a value q = 0.32 and a P = 0.089.

Discussion

There is nowadays a full line of research to understand

possible relationship between the FDG-PET metabolic

Table 3. Regions with highest Z value appearing in the contrasts

healthy controls (CTR) more than vegetative state/unresponsive wake-

fulness syndrome patients (VS/UWS) and preserved in vegetative state/

unresponsive wakefulness syndrome patients for the three cases of

FDG-PET, fMRI total neuronal and conjunction analyses of FDG-PET

and fMRI. Regions with highest Z values corresponding to a higher

decrease in FDG-PET with respect to fMRI total neuronal and with a

higher decrease in fMRI total neuronal with respect to FDG-PET (for

the contrast healthy controls more than vegetative state/unresponsive

wakefulness syndrome patients). Regions are shown in talaraich

space.

Brain region X, Y, Z T (df = 51) P (FDR-corr)

FDG-PET (CTR > VS/UWS)

Superior gyrus �17, 11, 58 3.9 <0.001

Medial frontal

cortex

1, 43, 28 3.7 <0.001

Precuneus 0, �64, 36 7.0 <0.001

FDG-PET (Preserved)

Brainstem 1, �29, �18 4.7 <0.001

fMRI total neuronal (CTR > VS/UWS)

Intraparietal

cortex

�57, 52, 25 3.7 <0.001

Temporal cortex

Left/Right

62, �23, �17 3.3 <0.001

Medial

orbitofrontal

cortex

0, 45, �10 3.8 <0.001

fMRI total neuronal (Preserved)

Hipothalamus �1.8, �3.5, �7.5 3.9 <0.001

PET-fMRI conjunction (CTR > VS/UWS)

Precuneus �0, �56, 13 2.9 <0.001

Intraparietal

cortex

46, �40, 46 3.7 <0.001

Inferior frontal

gyrus

Left/Right

�54, 13, 15 2.0 <0.001

Medial frontal

gyrus

Left/Right

�48, 12, 26 2.3 <0.001

PET > fMRI (CTR > VS/UWS)

Precuneus �0.9, �65, 43 3.2 <0.001

Insula �43, 19, �3 3.6 <0.001

Caudate 13, 6, 12 5.0 <0.001

Thalamus �8, �26, 6 4.0 <0.001

PET < fMRI (CTR > VS/UWS)

Medial prefrotal

cortex

6, 40, �7 3.8 <0.001

Brainstem 4, �4, 21 3.6 <0.001

Amigdala 30, �7, 21 4.0 <0.001

FDG-PET, 18F-fluorodeoxyglucose positron emission tomography;

fMRI, functional magnetic resonance imaging.

Figure 5. Voxel-based analysis for the conjunction of FDG-PET and

fMRI total neuronal describing regions with higher metabolic activity

in healthy controls compared to vegetative state/unresponsive

wakefulness syndrome patients (in orange). The mean Z-scores and

90% confidence interval for the connectivity in the precuneus, the

medial frontal gyrus, the left lateral posterior parietal, and the left

middle frontal gyrus are visualized for healthy controls, locked in

syndrome patients (LIS) and vegetative state/unresponsive wakefulness

syndrome patients (VS/UWS) for both fMRI total neuronal and FDG-

PET activity.
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activity and the fMRI signal (Riedl et al. 2014; Aiello

et al. 2015; Nugent et al. 2015). Out of the dynamics of

the fMRI BOLD signal it is in fact possible to build in

many different ways scalar maps, which can be compared

with the metabolic activity maps. All these approaches do

not intend to give an absolute estimate of the metabolic

activity, like only FDG-PET can offer, but try to estimate

the relative levels of activity between the different regions

of the brain, reaching for certain approaches high correla-

tions between the two acquisition techniques when the

correlation is limited to gray matter (Aiello et al. 2015).

To our knowledge all the approaches presented in the lit-

erature use univariate techniques to handle the BOLD

signal and build scalar maps. On the other hand, our

technique is the very first one using a multivariate

approach as ICA to build a single scalar map, taking full

advantage of ICA as a recognized tool for the separation

of artifacts in the BOLD signal (Griffanti et al. 2014). If

our approach, like many others, might be appealing for

centers that have no access to FDG-PET, our main inter-

est in this methodology is that it allows comparison of

resting state fMRI in two different populations without

the necessity of recognizing the different networks after

IC selection (see (Demertzi et al. 2014), for a different

approach in which component selection is requested and

only subjects in which the component of interest is iden-

tified are kept for the group statistical analysis). This new

approach permits us to keep all the subjects in the group

statistical analysis as long as at least one IC is selected as

neuronal and consequently a total fMRI map can be built.

Using ICA for analyzing resting state fMRI has been

shown to give very relevant insights even in the presence

of important artifacts as are commonly found in the

BOLD signal recorded in severe brain injured patients

with DOC (Demertzi et al. 2014). Mainly for this very

relevant aspect we decided to develop an ICA based

approach to build our fMRI total neuronal activity maps.

However, identification of neuronal components to be

included in the fMRI total neuronal activity still remains

a challenging task (Cole et al. 2010a).

fMRI Component selection

A satisfactory solution for the classification of neuronal

components at the single individual level can require

expert knowledge (De Martino et al. 2007; Tohka et al.

2008), especially for highly deformed brains as commonly

observed in patients with DOC. In this work, we took

advantage of expert knowledge and non-linear statistic

(machine learning) to build an automatic classification

model suitable for this task. Characterization of the neu-

ronal contribution of the resting state signal is one of the

most relevant, yet challenging, research question (Griffanti

et al. 2014). Removal of the artifactual contribution to

the BOLD signal represents a critical step for any resting

state based analysis. ICA, which automatically decomposes

the resting state signal in sources of neuronal activity and

artifactual sources, has been proven to be very successful

(Griffanti et al. 2014). However, this approach does not

provide any information about the origin of the source, if

artifactual or non-artifactual. Therefore, additional strate-

gies to recognize artifactual components and filter them

out should be used. The methodology herein used aims

to characterize low frequency components, spatial distri-

bution and coherence as well as the properties of the time

series, among other features (Demertzi et al. 2014). This

characterization, building a multidimensional fingerprint,

was carefully selected to be independent of the spatial

pattern of the components. This aspect makes this

approach quite suitable in patients with severely affected

brains where the spatial pattern can be highly disrupted.

It is important to note that the ground truth used in

all these approaches is based on expert knowledge (Grif-

fanti et al. 2014). It is worthy to recall that any classifica-

tion strategy based or evaluated on these data may reflect

expert biases due to the labeling of the specific dataset

(Torralba and Efros 2011). Resting state signal in patients

with DOC commonly presents components in which

characterization (as artifactual or not artifactual) is highly

challenging, even for experts. Therefore, a characterization

by visual inspection may result in high levels of

uncertainty, for these components. In order to reduce

the impact of this level of variability in the maps

Figure 6. Average fMRI total neuronal activity over gray matter

voxels versus total number of neuronal components combining all

subjects, healthy controls (CTR), locked-in (LIS) syndrome patients and

vegetative state/unresponsive wakeful syndrome (VS/UWS) patients.

Solid line indicates the best linear fit to the data and on the upper

right corner the linear correlation value with its corresponding P-value

are reported.
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construction, we decided to train the classifier only using

components of “clear” origin. Therefore, we could leave

the decision about the origin of these uncertain compo-

nents to the classifier itself. By using this strategy we

expect to make a more objective characterization of the

components that eventually may contribute to estimate

metabolic activity.

fMRI total neuronal activity versus FDG-PET
cerebral metabolism

Starting from the neuronal classified components we have

constructed a single scalar fMRI total neuronal activity

map for each subject. These maps were used to compare

healthy controls and VS/UWS patients using exactly the

same procedure as for the FDG-PET metabolic activity.

First, we observed a high correlation, especially in healthy

controls, between the fMRI total neuronal and the FDG-

PET metabolic maps, indicating that it is possible to esti-

mate relative levels of metabolic activity out of resting

state fMRI. Even if in fact the relationship between func-

tional connectivity and glucose consumption is still very

far from being completely understood, important progress

has been done to explain the energetic cost of functional

connectivity (Tomasi et al. 2013). This suggests us that

the observed high correlation between the fMRI total

neuronal and the FDG-PET metabolic maps is supporting

the idea that the BOLD signal is of neuronal origin, with

the neuronal contributions isolated in the components,

which are selected as neuronal. The ‘total’ in fMRI total

neuronal indicates the fact that we use all components of

neuronal origin, without focusing on components of

some particular spatial pattern. Although the fMRI total

neuronal map does not estimate the absolute SUV FDG-

PET values, it can predict the relative weight inside the

map. Regions with higher metabolic activity are also the

regions for which the time course of the neuronal compo-

nents can better predict the BOLD signal giving higher

spatial map z values. Taking the square root of the abso-

lute z maps before summing up all neuronal components

reduces sparsity (spatial independence), which was ini-

tially requested through ICA to decompose the signal

(Daubechies et al. 2009) but which is not observed on the

FDG-PET metabolic map. One can in fact expect that the

sparsity observed at the neuronal dynamic level, which

can distinguish the different networks, is lost the moment

one averages over time as an FDG-PET metabolic activity

measure does. It also makes the distribution of the final

fMRI total neuronal activity map values more normally

distributed as observed for the FDG-PET metabolic map.

Secondly, it is clear that the smoothing we used for both

the FDG-PET and the fMRI total neuronal map is very

important for the correlation we reached at the single

subject level with the correlation getting significantly

higher with the chosen smoothing. On the contrary the

use of partial volume correction for FDG-PET does not

seem so important for our analysis. The smoothing,

which is commonly suggested when dealing with severe

brain injured patients, is in fact probably too high for the

partial volume correction having a relevant effect on the

analysis. Finally we observed a significant decrease in cor-

relation between the fMRI total neuronal activity map

and the FDG-PET map in VS/UWS and LIS patients. This

is most probably due to the difference in motion, as mea-

sured mostly by the speed parameter in VS/UWS and in

LIS. Motion is producing patches of connected regions

especially in the scalp periphery and around the ventri-

cles, which end up corrupting the neuronal contributions.

Healthy controls versus patients

The group study comparing the two methodologies in

VS/UWS patients versus healthy controls is an indication

of the possibility to predict diminished or preserved

metabolic activity out of fMRI total neuronal activity.

Regions appearing in the contrast healthy controls more

than VS/UWS patients are interpreted as regions with

higher fMRI total neuronal activity and the opposite con-

trast will give results that can be interpreted as relatively

preserved fMRI total neuronal activity. Both FDG-PET

metabolic and fMRI total neuronal maps show significant

decreases in the lateral and medial fronto-parietal net-

works. The conjunction analysis indeed revealed a signifi-

cant agreement for precuneus, mesiofrontal, bilateral

posterior parietal, superior temporal, and dorsolateral

prefrontal cortices, a set of regions which are believed to

belong to a network relevant for conscious experience

and consciousness (Laureys 2005; Dehaene et al. 2006).

Group analysis in this study was done using only the con-

trol group and the VS/UWS patient group. The group of

LIS patients (n = 4) was too small to make any significant

conclusions and was therefore not taken into account for

the analysis. However, their FDG-PET as well as fMRI

total neuronal activity values are similar to controls while

different from VS/UWS patients (see Fig. 5) for the

regions in which we observed a decreased in activity for

VS/UWS with respect to healthy controls. On the con-

trary, our technique does not seem to properly estimate

metabolic activity in the caudate and thalamus, regions

that have not been consistently found in the resting state

fMRI literature as part of one or the other neuronal net-

work (Boveroux et al. 2010). This absence of strong con-

nectivity of both the thalamus and the caudate with the

cortex, as measured by the BOLD signal in general is a

limitation in estimating metabolic activity out of func-

tional connectivity as well. However, the smoothing
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applied here in order to limit the effects of quite different

brain structures (Laureys et al. 1999; Phillips et al. 2011)

and to improve the level of similarity between fMRI and

PET maps could have mixed different regions in the tha-

lamus or in the caudate washing out possible functional

connectivity patterns. Our technique also failed (only a

trend was observed) in showing the brainstem as a pre-

served region when compared to FDG-PET and as

expected for VS/UWS patients in which autonomic con-

trol persists (Laureys et al. 2002). It is important to stress

here that if only FDG-PET can offer a quantitative mea-

sure of metabolism and our built scalar maps can only

capture, with some limitations, the relative levels of meta-

bolic activity, to our knowledge, and especially for FDG-

PET studies in patients suffering severe brain injury with

disorders of consciousness, metabolic maps are not always

used in their absolute value or the so called standardized

uptake value. PET imaging of FDG with arterial blood

sampling is in fact ethically tenuous in DOC patients, as

the patients cannot give consent to the prolonged invasive

procedure (Stender et al. 2014b) and most of the time

important approximation are adopted (Stender et al.

2014b) to extract an absolute measure. In many studies,

before entering a group comparison, metabolic maps are

normalized by either the global signal (Stender et al.

2014a) or the signal of a specific region like it could be

the cerebellum or the skull (Fridman et al. 2014), with

the first one usually not affected by the pathology and the

second one not having any metabolic activity related to

brain functioning. Then the moment that normalized

maps at the place of the absolute ones are employed, no

real advantage in using metabolic maps over scalar fMRI

generated maps will be obtained in the analysis, as long

as the relative levels of metabolic activity are properly

captured. It is also clear that for our analysis becomes

essential to have a database of healthy subjects’ fMRI

acquisitions as it is commonly done for FDG-PET when

no absolute measures are employed (Stender et al.

2014a).

Finally the high correlation between the average fMRI

total neuronal activity and the number of neuronal com-

ponents is indicating that a reduction in detection of neu-

ronal components, either because of the pathology or the

artifacted BOLD signal, will correspond to a lower aver-

age fMRI total neuronal activity. At the same time the

absence of a significant linear correlation between the cor-

relation of FDG-PET and fMRI total neuronal with the

number of neuronal components, is indicating that some

neuronal components more than others are relevant to

build up the FDG-PET map.

In conclusion, we hope that this fully automated proce-

dure of estimating fMRI total neuronal activity from func-

tional connectivity will find applications in (clinical)

neuroscience and neuropsychiatry that seek to assess rest-

ing state connectivity at the whole brain level, i.e., not

restricted to particular sensorimotor or cognitive networks.
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Supporting Information

Additional supporting information may be found in the

online version of this article:

Figure S1. Scatter plots for all the 11 VS/UWS patients

showing the correlation between the FDG-PET after par-

tial volume correction versus the fMRI-total neuronal

activity for voxels belonging to gray matter. Solid line

indicates the best linear fit to the data and on the upper

left corner of each scatter plot the linear correlation value

is reported.

Figure S2. Same as for Figure S1 for the four LIS

patients.

Figure S3. Correlation between FDG-PET, after partial

volume correction, and fMRI total neuronal versus total

number of neuronal components combining all subjects,

healthy controls (CTR), locked-in (LIS) syndrome

patients and vegetative state/unresponsive wakeful syn-

drome (VS/UWS) patients. Solid line indicates the best

linear fit to the data and on the upper right corner the

linear correlation value with its corresponding P-value are

reported.
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