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We propose an automated framework for predicting gestational age (GA) and neurodevelopmental mat-
uration of a fetus based on 3D ultrasound (US) brain image appearance. Our method capitalizes on age-
related sonographic image patterns in conjunction with clinical measurements to develop, for the first
time, a predictive age model which improves on the GA-prediction potential of US images. The frame-
work benefits from a manifold surface representation of the fetal head which delineates the inner skull
boundary and serves as a common coordinate system based on cranial position. This allows for fast and
efficient sampling of anatomically-corresponding brain regions to achieve like-for-like structural com-
parison of different developmental stages. We develop bespoke features which capture neurosonographic
patterns in 3D images, and using a regression forest classifier, we characterize structural brain develop-
ment both spatially and temporally to capture the natural variation existing in a healthy population
ðN ¼ 447Þ over an age range of active brain maturation (18–34 weeks).

On a routine clinical dataset ðN ¼ 187Þ our age prediction results strongly correlate with true GA
ðr ¼ 0:98; accurate within� 6:10 daysÞ, confirming the link between maturational progression and neur-
osonographic activity observable across gestation. Our model also outperforms current clinical methods
by ±4.57 days in the third trimester—a period complicated by biological variations in the fetal population.
Through feature selection, the model successfully identified the most age-discriminating anatomies over
this age range as being the Sylvian fissure, cingulate, and callosal sulci.

� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Accurate gestational age (GA) estimation forms an integral part
of obstetric prenatal care. It defines the estimated date of delivery
(EDD), and can influence the success or safety of a clinical interven-
tion. Moreover, it is essential for the screening of fetal abnormali-
ties. The anomaly scan, which is routinely offered in the early
second trimester, forms the legal basis for time-critical care
decisions as it enables expectant parents to make informed
reproductive decisions about their unborn child (e.g. termination
of pregnancy, intrauterine therapy or intervention) (National
Collaborating Centre for Women’s and Children’s Health, 2008).

Traditional approaches to GA estimation include (a) menstrual
dating, which makes use of the first day of the last menstrual
period (LMP) as a reference point for the EDD and (b) extraction
of diameter and circumference measurements from 2D ultrasound
(US) images of the fetal cranium, abdomen, and femur (ISUOG,
2007). These measurements are regressed to population-based
dating charts to estimate age and assess normality of fetal growth
(Loughna et al., 2009). However, beyond 24 post-menstrual weeks,
measurement accuracy is dependent on operator expertise and
compromised by increasing biological variation, inconsistencies
in skull size approximation, and subjectivity in 2D diagnostic plane
finding, all contributing to age approximation errors (Bottomley
and Bourne, 2009). As pregnancy advances and biological variation
amongst normal fetuses increases, the range of values of each bio-
metric measurement associated with a specific GA also increases
and so equations based upon size become less accurate. In practice,
this means that whilst the predictive error at 22 weeks’ GA
(±10 days, Altman and Chitty (1997)) is considered acceptable in
the majority of clinical settings, the predictive error at
28–42 weeks (±18 days) is considered to offer little clinical value
(Hadlock et al., 1983).

Pregnancy dating becomes particularly important in
low-income settings where pregnant women typically attend for
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obstetric care late in pregnancy, when menstrual history is
unavailable or unreliable. In the absence of clinically-useful LMP
information, US measurements provide the most accurate estima-
tion of GA (Geirsson, 1991). However, in the third trimester of
pregnancy, even US-based dating may produce estimation errors
up to ±3 weeks (Hadlock et al., 1984; Altman and Chitty, 1997).
Thus, in a setting where screening occurs in the second and third
trimesters, the error margins yielded by current methods render
them as not clinically useful, potentiating the need for alternative
techniques for estimating GA.

Post-mortem neuroanatomical studies have observed that dur-
ing early development the fetal brain undergoes dramatic struc-
tural changes and have established a spatiotemporal timetable
which characterises normal brain development (Chi et al., 1977;
Dorovini-Zis and Dolman, 1977). Specifically, the fetal brain sur-
face, or cortex, rapidly transitions from a relatively smooth agyric
surface in the early second trimester to progressively bearing more
indentations or folds (gyrification) over the course of pregnancy
until it resembles the adult brain at birth. Deviations from this pat-
tern have been indicative of cortical malformations as a result of
defective neuronal migration, as is the case of lissencephaly which
occurs when gyrification is reduced or stunted. Depending on
severity, cortical malformation may result in adverse outcomes
ranging from developmental delays and retardation to infant mor-
tality (Ghai et al., 2006). This, in turn, is suggestive of a direct link
between healthy gyrification and chronological age. These findings
raise the question whether changes in brain morphology could be
used as a robust indicator of GA and developmental normality in
clinical practice.

1.1. Related work

To date, several methods have been developed to automatically
map neuroanatomical structure from MR image data to neonatal or
adult age. Using voxel-based morphometry or shape analysis to
capture tissue growth (Good et al., 2001; Gholipour et al., 2012),
tensor analysis to characterize regional growth patterns
(Thompson et al., 2000), or discriminative classifiers to capture
characteristics of the developing or ageing brain (Franke et al.,
2012; Sabuncu and Van Leemput, 2012; Toews et al., 2012), a clear
link between anatomical changes and cerebral progression (or
regression) has been demonstrated. With the advent of image
preprocessing methods such as slice-to-volume reconstruction
and image mosaicing (Jiang et al., 2007; Rousseau et al., 2006),
and super-resolution techniques (Gholipour et al., 2010; Kim
et al., 2010; Rousseau et al., 2010), 3D MR images with high sig-
nal-to-noise ratio and improved spatial resolution are now avail-
able and have stimulated studies of fetal (Caldairou et al., 2011;
Gholipour et al., 2012; Habas et al., 2010; Habas et al., 2012;
Jacob et al., 2011; Rajagopalan et al., 2011; Scott et al., 2011;
Scott et al., 2013; Serag et al., 2012; Dittrich et al., 2014; Wright
et al., 2014) and neonatal (Kuklisova-Murgasova et al., 2011;
Serag et al., 2012) brain development from MR images. However,
these techniques are tailored for the challenges affecting MR
images and may not be appropriate for application in neurosonog-
raphy, which continues to be the modality of choice in routine
clinical care.

In the clinical literature, the age-related changes in echogeneity
of fetal brain structures have been well-described. The timing of
emergence of cortical sulci has been observed in US images and
described as following a predefined spatiotemporal timetable
(Bernard et al., 1988; Monteagudo and Timor-Tritsch, 1997; Toi
et al., 2004; Cohen-Sacher et al., 2006; Pistorius et al., 2010), in
agreement with MR and post-mortem neuroanatomical findings.
In particular, the process of cortical maturation observable in US
images of the fetal brain has been detailed by means of simple
subjective scoring techniques to define the appearance of sulci
and gyri beyond 20 gestational weeks (GW) (Quarello et al.,
2008; Pistorius et al., 2010).

Unlike MR images, US images are complicated by intensity arte-
facts such as signal attenuation, acoustic shadows, and occlusion
due to cranial calcification. US probe placement also generates
reverberation caused by multiple reflections of the US beam on
the fetal skull and other maternal tissues. These factors can affect
the visibility of key anatomical landmarks necessary for image
registration—the primordial step in image-based brain analysis.
However, given that cranial calcification and fusion progress with
GA (Malas and Sulak, 2000), the complex image patterns generated
by these artefacts may be used along with structural image
features to inform on developmental maturation.

Our work is the first to exploit age-related sonographic activity
to predict GA and hence neurodevelopmental maturation from US
images. We present bespoke appearance-based features designed
to capture these age-specific sonographic patterns and use them
to develop a model which automatically maps them to GA and
hence neurodevelopmental maturation. Learning-based
approaches are well-suited for this task due to their ability to take
high-dimensional data (i.e. longitudinal images producing 5000+
features representing image appearance at different ages) and
establish a compact representation of fetal brain development. In
the literature, relevance vector machines (RVM) (Franke et al.,
2010) and relevance voxel machines (RVoxM) (Sabuncu and Van
Leemput, 2012) have demonstrated the feasibility of learning a
mapping between image-based biomarkers and pathologies in
adult brains. More recently, Konukoglu et al. (2013) applied neigh-
bourhood approximation forests (NAF) to estimate adult age.
While the work of Konukoglu et al. (2013) also presents a forest-
based method for predicting age from brain images, their approach
relies on accurate alignment and registration of anatomical land-
marks, which remains a challenge in US images of the brain. Unlike
MR images, the appearance of anatomies in an US image varies
with the relative position of the brain with respect to the probe,
which results in acoustic shadows, occluded anatomical features,
and reverberation artifacts (Kuklisova-Murgasova et al., 2013).
Consequently, approaches requiring images of similar intensity
appearance and one-to-one inter-subject anatomical correspon-
dence are not, at present, directly applicable to a study of US
images of the brain; a local feature-based approach is more appro-
priate (e.g. Toews et al., 2010).

The advantages of employing decision forests for such tasks are
their built-in automatic feature selection, which allows for
identification of salient and age-discriminating image features,
and their generalizability to images from different age groups
and acquisitions. Thus, decision forests are appropriate for our
work in which we seek to identify the structures which are
informative for GA decision-making, and aim to apply the model
to images from patients at different developmental stages.

1.2. The proposed method

We propose a feature-based model for characterizing neuroana-
tomical appearance both spatially and temporally, capturing the
natural variation existing in a healthy fetal population over a
period of active brain maturation: 18+0 to 33+6 GW (weeks+days).
Specifically, we present an automated machine learning-based pre-
dictive model to learn the pattern of fetal brain changes through
dynamic features observable in multiple subject images and apply
it to demonstrate successful age estimation from a single unseen
scan. Our proposed model comprises of two steps: (i) 3D parametri-
zation of the fetal skull and (ii) feature extraction for learning age-
related sonographic patterns from 3D volumes, resulting in the
development of an age-predictive model. The model can then be
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applied to a new 3D US volume to automatically predict the GA of
the fetus from which the volumetric image was collected. Fig. 1 pre-
sents an overview of the GA estimation framework.

To tackle the challenges posed by fetal neurosonography, we
proposed the use of a 3D continuous B-spline surface to model
and parametrize the fetal skull (Namburete et al., 2013). Cranial
parametrization allows for fast and efficient sampling of anatomi-
cally-corresponding brain regions to achieve like-for-like struc-
tural comparison of different developmental stages—voiding the
need for segmentation or registration of intracranial structures
(Namburete et al., 2014b). The lack of direct registration encour-
ages preservation of age-specific sonographic patterns and image
differences, which may be indicative of GA. The methodology for
cranial parametrization was first described and validated in our
previous conference papers (Namburete et al., 2013; Namburete
et al., 2014a), and Section 2.1 describes the process in detail.

It has been demonstrated that the parametric surface is suitable
for feature extraction in a supervised age-predictive framework
based on regression forests to predict the GA of healthy and routine
clinical fetal populations (i.e. containing growth-restricted fetuses)
in the second trimester (18+0 to 28+6 GW) (Namburete et al.,
2014b). That approach used age-related changes in US image
intensity, distance of near-neighbour points on the cranial surface,
and inner head circumference features for the age regression and
prediction. We demonstrated that our model successfully esti-
mated GA on a set of 130 healthy fetuses (error of ±3.8 days), out-
performing the current best clinical method. Through the feature
selection process, the model also identified the Sylvian fissure as
a critical age-discriminating region during this age range.
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Fig. 1. Schematic flow chart of probabilistic age estimation model. Given a set of image
ultrasound image appearance and model a mapping between sonographic activity and ag
model can be applied to estimate age and possibly determine clinical outcomes.
In this paper, we further extend the age range of the model to
function in the second and, importantly, third trimesters (i.e.
18+0 to 33+6 GW) to make the method clinically useful. We
describe, in detail, the features used in the regression forest model
for age prediction (§2.3), and through further validation
experiments, we demonstrate the ability of the model to accurately
predict GA from 3D US images (§4). We also provide new insight
into the functionality and behaviour of the age-predictive model,
and examine the effect of feature inclusion on prediction accuracy.
Finally, we show, for the first time, that the proposed age estima-
tion framework is capable of identifying age-discriminating
regions in the fetal brain, which has never before been demon-
strated on clinical US images.

2. Methods

2.1. Cranial parametrization

This section describes the 3D cranial parametrization method in
preparation for US image analysis of the fetal brain. Throughout,
matrices are denoted by boldface uppercase letters (X), vectors
by boldface lowercase letters (x), and column-vectors extracted
from matrices are denoted by indexed boldface letters, such that
xi is the i-th column of matrix X. The j-th element of vector x is
denoted by xj.

Cranial parametrization is performed by a semi-automated
framework that fits a continuous 3D parametric surface into the
skull in each US image. The input to the framework is a 3D US
image to which the anatomically annotated surface is manually
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s in the database, the machine learning model will be trained to learn age-specific
e. When given a new test image taken from a fetus of unknown gestational age, the



Fig. 2. Surface model: (a) The control mesh and control vertices (X, green) defines its underlying surface (pink). (b) Given four coarse anatomical regions, (c) the control
vertices and faces are colour-annotated with the anatomical regions with which they ought to align in the image during surface initialization. (d) These annotations are
propagated down to the underlying cranial surface. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

1 http://www.vtk.org.
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aligned. Though providing coarse inter-subject alignment, the sur-
face does not attempt to achieve one-to-one correspondence
between brain regions of different subjects but rather ensures that,
when present and visible, the anatomical regions are approxi-
mately aligned for feature extraction. The aligned surface serves
as the initialization to an energy minimization algorithm which
seeks to deform the surface until it finds the best fit to the inner
skull boundaries in the image. During deformation, the surface
geometry changes to adhere to the cranial edges, but the topology
of the surface points is preserved.

The remainder of this section describes the basic cranial param-
eterization framework which is further detailed in Namburete
et al. (2013) and validated in Namburete et al. (2014a). The surface
fitting framework is inspired by ‘‘Snakes’’ (Kass et al., 1988) and
Doo-Sabin surface fitting (Orderud et al., 2007) but differs in three
distinct ways. First, surface ‘‘fit’’ is defined as the squared distance
between positions on the model surface and a subset of detected
edge positions in the image. In comparison, ‘‘Snakes’’ define model
fit directly against the image and in Orderud et al. (2007), edge
positions are detected at each step when updating the model sur-
face. Second, the coordinates of positions on the surface model—
which are used to define the surface fit—are optimized jointly with
the surface geometry. In contrast, in ‘‘Snakes’’ and Orderud et al.
(2007) the coordinates are fixed. The joint optimization is inspired
by the works of Cashman and Fitzgibbon (2013) and Marinov and
Kobbelt (2004), and although it is more complex, it has two key
advantages: (a) selected edge positions are not restricted to be per-
pendicular to the surface model as in Orderud et al. (2007) and (b)
surface folding is discouraged. Third, in Orderud et al. (2007), edge
positions are detected and selected independently for each position
on the surface model. The assumption of independence simplifies
edge detection and selection, but does not encourage a coherent
selection of edge positions across the surface. To remedy this, pair-
wise terms are included here so that the edge positions selected for
neighbouring points on the surface model are encouraged to be
close. This has been done previously for open model contours in
2D for which the discrete optimization problem can be solved
exactly using dynamic programming (Behiels et al., 2002). For a
closed surface in 3D, such as the one presented here, the resulting
discrete optimization problem is more complex.

2.1.1. Surface model
We generated a bespoke spherical biquadratic B-spline surface

(Piegl and Tiller, 1997) which can be aligned to anatomical regions
within the brain. The control mesh T explicitly represents the
underlying cranial surface (Fig. 2(a), in pink), and its geometry is
specified by NX control vertices, X 2 R3�NX (Fig. 2(a), in green). Each
point p on the cranial surface is parametrized by a surface
coordinate u 2 X in the surface domain X � R2 through a mapping
function M : X� R3�NX ! R3 such that p ¼ Mðu;XÞ. Similarly, the
surface normal at u is defined by n ¼ M/ðu;XÞ, with mapping func-
tion M/ : X� R3�NX ! R3.

2.1.2. Surface Initialization
To initialize the surface control vertices X to X0, the user rigidly

aligns the default spherical surface to the imaged skull/brain using
a multi-view graphical user interface (GUI) programmed using
VTK.1 As shown in Fig. 3(d), initialization involves displacing the sur-
face to roughly align with the centre of the brain, rotating and aniso-
tropically scaling the surface such that it approximates the cranial
dimensions and aligns anatomical regions to surface annotations.
This manual interaction is a simple process which takes approxi-
mately 1–2 min per 3D image when performed by a non-clinical
expert (Namburete et al., 2013).

To facilitate manual initialization, the faces on the control
mesh were colour-annotated with the anatomical regions with
which they ought to align in the US image (Fig. 2(b) and (c)).
The colour annotations were based on a coarse parcellation of
the brain, including a minimal number of landmarks observable
in US images which would allow for an approximate anatomical
alignment, despite the complications caused by partial occlusions.
These anatomical regions include the right and left cerebral hemi-
spheres, the frontal cortex, and the falx cerebri (structure separat-
ing the cerebral hemispheres) (Fig. 2(b)). Rigid image alignment
using these global landmarks provides information about approx-
imate brain size, fetal head pose and orientation (e.g. cephalic or
breech). The colour annotations on the control faces of T are
propagated down to define colouring of the underlying surface
(Fig. 2(d)).

2.1.3. Surface deformation
Determining the ideal deformation for the surface model to fit

to the imaged cranial boundary first requires selection of relevant
boundary candidates in the US image. For the purposes of brain
analysis, the ideal voxel candidates lie in the interior skull bound-
ary which we generated using a standard US edge detection tech-
nique: Feature Asymmetry (FA) (Kovesi, 1996). The FA image
retains important structural information, is contrast-invariant,
and allows edge features to be obtained at different scales. In the
task of cranial boundary detection, we are interested in the junc-
tion between the inner skull boundary and the intracranial soft tis-
sue which behaves like step-edges or ridge-like structures, so an
isotropic log-Gabor filter is appropriate (Boukerroui et al., 2004).
Non-maximum suppression was then applied to thin the edges in
the FA image.

http://www.vtk.org


(a) US Image (b) Edge Map (c) Default Surface (d) User Initialization (e) Deformed Surface

Fig. 3. Surface initialization and deformation Sagittal view of (a) an example US image of the fetal head with (b) the edge map enhancing ridge-like features, (c) default
annotated surface X, (d) user-initialized surface X0, and (e) 3D rendering of the final deformed surface superimposed on the US image.

2 Standard ‘‘Snakes’’ fixes U.
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Given an original US image (Fig. 3(a)), candidate interior skull
positions C 2 R3�NC and normals U 2 R3�NC are defined from the
corresponding FA edge image (Fig. 3(b)). Thus, given control verti-
ces X, and a matrix U of NU surface points, the energy function
defining the fit of the surface to a selection of edge image boundary
candidates, q 2 NNU , is given by:

Eðq;U;XÞ ¼
XNU

i¼1

Eunaryðqi;ui;XÞ þ k2EpairwiseðqÞ þ k3EuserðXÞ

þ k4EregðXÞ ð1Þ

where k2; k3; k4 influence the weight of each term.
Specifically, Eunary quantifies the mismatch between each sur-

face point ui and its corresponding boundary point at qi in terms
of position and orientation.

Eunaryðqi;ui;XÞ ¼ cqi
�Mðui;XÞ

�� ��2 þ k1 /qi
�M/ðui;XÞ

��� ���2
ð2Þ

where k1 penalizes the orientation of the vectors between the sur-
face and boundary points. Note that boundary candidates are not
assumed to be perpendicular to the surface model.

Realizing that by virtue of anatomical structure boundary
points are spatially correlated, so the Epairwise term models the fact
that neighbouring surface points should also prefer boundary
points which are spatially coherent.

EpairwiseðqÞ ¼
X
ði;jÞ2N

cqi
� cqj

��� ���2
ð3Þ

where N is the set of edges over the surface points.
Given that the surface model is manually initialized by an indi-

vidual who provides approximate anatomical surface orientation
and head size, it is desirable that the surface deformation does
not deviate too far from its original surface placement. Conse-
quently, Euser encourages minimum deformation from the user ini-
tialization, and also removes the problem of finding multiple local
minima that may arise from the geometric symmetry of the near-
ellipsoidal shape of the fetal skull.

EuserðXÞ ¼
XNX

i¼1

xi � x0
i

�� ��2 ð4Þ

Finally, the regularization term Ereg encourages a smooth cranial
surface by penalizing large displacements between the surface
control vertices.

EregðXÞ ¼
X
ði;jÞ2T

xi � xj

�� ��2 ð5Þ

While Eqs. (3) and (5) appear similar, they serve different pur-
poses: Epairwise regularizes the selection of boundary points and is
a function over the vector of discrete boundary point indices; Ereg

regularizes the surface model and is a function over the matrix of
continuous model control point positions.
Eq. (1) is minimized through a series of alternating discrete and
continuous optimization steps. By taking the user initialization of
X to X0 and generating U to a regular sampling of X, we use belief
propagation with a subset of edges in Epairwise to solve an approxi-
mate q which is then refined using Quadratic Pseudo-Boolean
Optimisation (QPBO) (Kolmogorov and Rother, 2007). Next, given
q, Eq. (1) is minimized jointly with respect to X and U using the
Levenberg–Marquardt algorithm (Gill et al., 1981).

Importantly, as a result of the convexity of the surface, Ereg, and
due to the joint optimisation of X and U2, surface self-intersection
and stretching is strongly discouraged and was not seen in practice.
The resulting surface is an anatomically realistic representation of a
‘complete’ fetal skull (i.e. filling the gaps of fontanelles).

2.2. Extracting features from the cranial domain

For the task of predicting GA, and hence maturation, from brain
images, the features were designed with the objective of extracting
morphological changes guided by the findings of post-mortem
neuroanatomical studies of early brain development (Chi et al.,
1977; Dorovini-Zis and Dolman, 1977). Specifically, the second
and third trimesters are marked by (a) increasing cortical complex-
ity with the emergence and developmental progression of sulci and
gyri on the fetal brain surface (Pistorius et al., 2010; Toi et al., 2004;
Wright et al., 2014); (b) an increase in overall brain size and vol-
ume (Chang et al., 2000; Zhang et al., 2013); and (c) changes in
brain surface curvature in different cortical regions (Aljabar et al.,
2011; Clouchoux et al., 2012; Habas et al., 2012). We designed
three features banks, each capitalising on this prior knowledge
about anatomical maturation, to be used in our machine learning
framework to develop a link between cerebral progression and GA.

Typical approaches to mapping anatomical structure from
image data to age have relied on accurate inter-subject segmenta-
tion and registration of brain images (Good et al., 2001; Thompson
et al., 2000; Franke et al., 2012; Sabuncu and Van Leemput, 2012)
or atlas creation (Dittrich et al., 2014), which remains a challenge
in US images of the fetal brain. In particular, when working with
US images of fetal brain anatomy, one cannot rely on the assump-
tion that inter-subject alignment is capable of achieving one-to-
one anatomical correspondence in subjects of different ages. Given
that our data-driven model employs the image representation to
discover distinctive anatomical patterns related to ageing, it may
be likened to Feature-Based Morphometry (FBM) (Toews et al.,
2010) as it aims at quantifying feature variability based on cortical
appearance, geometry, and occurrence statistics at different GAs.
The features capture local patterns of anatomical development,
and the parametrized surface model fulfils the role of common
coordinate space, voiding the need for a global brain atlas. The fea-
tures are thus sampled with respect to the parametrized surface
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model, ensuring inter-subject anatomical consistency in the image
regions sampled for feature extraction (Namburete et al., 2014a).
2.2.1. Feature design
3D images contain a large amount of information and possibly

several neighbouring image patches containing similar informa-
tion. Reducing the number of surface/image ‘points’ included in
the search space reduces redundancy which in turn improves the
computational cost. To this end, the cranial surface is densely eval-
uated with a preselected number of points to represent anatomical
regions of interest, P.

However, due to the effects of cranial thickening, the brain
hemisphere proximal to the US probe is typically occluded, leav-
ing only the distal hemisphere with visible and discernible intra-
cranial structures. As such, feature extraction is confined to
points on half of the cranial surface Ph 2 R3�N

Ph corresponding
to the distal cerebral hemisphere in the image volume, such that
h 2 L;Rf g denotes the hemisphere in question (Fig. 4(a)). For
simplicity, the surface is divided by the midsagittal plane
Ym 2 R3�2 and the sparse subset of points Ph is a matrix of
NPh < NU (Fig. 4(a)).

Appearance-based features. This bank of features extracts infor-
mation from the greyscale US image voxels in order to capture
age-related sonographic patterns of an anatomical region. Given
the points on the deformed surface Ph and the 3D US image, a
cuboidal volume-of-interest (VOI) is sampled based on the cranial
points available on the selected hemispheric subsurface (Fig. 4(a)).
The location of the VOI is determined by the position of the sam-
pled cranial point p, and its normal vector n.

VOI dimensions are defined by a scalar side length, s, which is
scaled with respect to distance between cranial point p and its pro-
jection onto the midsagittal plane, p0, such that s ¼ lskp� p0k,
p

p’

Ym

Cranial surface point, p
kNN surface point, pk

VOI
Point on TT plane, ptt

(a) Sampled cranial points

Ym

p

p’

(b) Unary3D

(f) Appearance Features

Fig. 4. Feature design. Schematic representation of feature sets with respect to the param
point p from a set of available surface points. A cuboidal VOI can be used to characte
characterize (d) local skull deformations or (e) global head growth. (f) Appearance-based
between different brain regions. (g) Haar-like features are computed from the cuboidal V
(For interpretation of the references to colour in this figure legend, the reader is referre
where ls � Uð0;0:5Þ is randomly selected during feature evalua-
tion. Scaling allows for characterization of local anatomy indepen-
dent of cranial surface size such that like-for-like anatomical
comparisons can be achieved. The exclusion of age-related brain/
cranial growth factors allowed by relative VOI sizing is paramount
to retaining the ‘pure appearance characterisation’ quality of this
feature set.

Upon extraction of the image voxels within the cuboidal VOI,
the feature score is evaluated by computing one of the Haar-like
features shown in Fig. 4(g). In particular, the score is determined
by subtracting the sum of voxels in a cuboid from the sum of voxels
in an adjacent cuboid of the same dimensions (shown as red and
blue cuboids in Fig. 4(g)). The cuboids are of arbitrary dimensions
and aspect ratio, and they are sensitive to edges and ridge-like
structures within the image.

Appearance-based features comprise of two groups: sulcal and
intracranial VOIs. Sulcal features are evaluated by affixing the VOI
to the inner cranial surface (Fig. 4(c)). They are designed to capture
the sonographic image appearance related to changes in shape and
morphology of the sulci and gyri on the cortical surface across ges-
tation. When evaluating sulcal features, the VOI is oriented along
the normal vector n at cranial point p (Fig. 4(f)).

Intracranial features, on the other hand, are evaluated by dis-
placing the VOI along the vector normal to Ym (Fig. 4(b)). The
VOI displacement dVOI ¼ rkp� p0k is determined in proportion to
the distance between p and p0, where r � Uð0;1Þ allowing for
the VOI to be placed anywhere in the trajectory between the inner
skull and the falx cerebri (or midsagittal plane, Ym), ultimately cov-
ering the entire brain space. The value of r is also randomly
selected during feature evaluation. This relative VOI positioning
encourages correspondence in the sampling of intracranial ana-
tomical regions regardless of brain size.
p n

(c) Sulcal3D

pk

p

(d) Local Size

ptt

(e) InnerHC

(g) Haar-like Features

etrized cranial surface model. (a) Features are extracted by first sampling a cranial
rize appearance based on (b) Unary3D or (c) Sulcal3D features sets. Size features
features are designed to capture sulcal changes and to compare structural changes
OI’s by subtracting the voxels within the red cuboid from those in the blue cuboid.

d to the web version of this article.)
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Local size features. These features capture local skull deforma-
tions and hence local growth patterns at different time points in
pregnancy. To compute this feature, a cranial point p is first sam-
pled from the set of available points on the cranial subsurface of
interest. Using a Ball tree search algorithm (Omohundro, 1989), k
cranial points nearest to p are identified (k ¼ 9). During feature
evaluation, one of the k-th nearest neighbours, pk, is randomly
selected and the Euclidean or orthogonal distance between the
sampled cranial point (Fig. 4(d), in red) and its randomly-selected
k-th nearest neighbour (Fig. 4(d), in black) is obtained in Euclidean
space R3:

dEuclid ¼ kp� pkk ð6Þ

and the orthogonal size features are the x; y; z-component distances
given by:

dj
? ¼ pj � pk

j

��� ���; where j ¼ 1;2;3f g ð7Þ

Biometric features. Guided by current clinical assessment of fetal
growth, the biometric feature is akin to the clinical head circumfer-
ence (HC) measurement acquired from the standard transthalamic
(TT) plane of the head (ISUOG, 2007). In this case, the feature is
evaluated as the perimeter of the inner contour of the deformed
cranial surface at the level of the diagnostic TT plane, Ytt . To define
a parametric representation of the TT plane on the cranial surface,
the plane is first identified on a single reference brain volume by
manual selection of three cranial points, Ztt 2 R3�3. The surface
points defining the TT plane, Ptt , are the surface points closest to
Ztt .

At feature evaluation, the inner cranial contour (or inner HC) is
obtained from each image by extracting the 2D TT plane Ytt defined
by Ptt and computing the closed path length of all the surface edges
which the plane intersects. The biometric HC feature captures glo-
bal changes in head size in a manner similar to the current clinical
method of GA estimation (Namburete et al., 2014a), emulating
rigid cranial transformations related to fetal growth.

2.3. Modelling age-specific sonographic appearance

Our goal is to use age-discriminating image information to pre-
dict GA from 3D images of the brain. To develop the predictive age
model, we take advantage of the regression forest framework that
is well-established in the literature (Breiman, 2001; Criminisi et al.,
2012) to produce estimates of continuous variables. Given that GA
is itself a continuous variable, we opted for training the forest from
a large longitudinal dataset of brain US images spanning the entire
age range of interest, detailed in Section 2.3.1. The process of pre-
dictive age regression is explained in Section 2.3.2.

2.3.1. Learning the link between age and brain images
The model is trained on a supervised dataset, in which all train-

ing examples are annotated with the GAs at scanning. In our
framework, each training example Vi ¼ ðIi;P

h
i ; aiÞ comprises of a

3D US image Ii and its corresponding deformed cranial surface
parametrization Ph

i , labelled with the GA of the fetus at the time
of scanning, ai. The dataset is denoted by V ¼ fVig.

We train our trees following the regression forest framework
proposed by Criminisi et al. (2012). During training, a random sub-
set of the dataset Vt � V is traversed through each tree Tt in the
regression forest F ¼ fTtg. All training examples in the subset
are passed into the root node Vt

j¼0

� �
of each tree, and the data is

recursively partitioned at each node j in its path along the tree
branches until reaching leaf nodes. At each node, the data is split
to the left and right child nodes, Vt

j2fL;Rg, by age-discriminating bin-
ary tests according to the node optimization criteria described
below. Data splitting continues until leaf nodes are created due
to (a) a maximum number of tree levels (i.e. tree depth, d) has been
reached; (b) the node contains less than a defined number of train-
ing data points and (c) a minimum information gain has been
achieved.

Node optimization. The age-discriminating binary tests are
designed to minimize the differential entropy between the data
sent to the left and right children nodes. At each node, a feature
f i is randomly-selected from the available feature sets f 2 Nn

(described in §2.2.1). The feature is applied to the dataset at the
node Vt

j � Vt and data splitting between children nodes occurs
on the basis of a threshold, s. The optimally age-discriminating
node feature is determined by applying m features (m� n) to Vt

j

to identify the pair of f i; sð Þ which minimizes the cost function.
Modelling the ages of the dataset at each node j as a random

variable aj with univariate Gaussian distribution, aj � Nð�aj;r2
j Þ,

the cost function can be expressed as

Ig ¼ log r2
j ðVt

j Þ
��� ���� X

i2 L;Rf g
xi log r2

i V
t;i
j

� ���� ��� ð8Þ

where �aj is the mean age of all samples at the j-node, r2 denotes
the variance of the ages, and xi is the ratio between the number
of training examples in a child node V

t;i
j and the number of

examples in the parent node Vt
j , i.e. xi ¼ V

t;i
j

��� ���= Vt
j

��� ���. Maximizing

Eq. 8 is equivalent to favouring binary tests which minimize the
variance of the ages of the partitioned data, ultimately reducing
the uncertainty in the age-discriminating ability of a given test
on Vj. The discriminative quality of these binary tests hinges
on the assumption that Vt is representative of the complete data-
set, V.

Each leaf node l stores the mean �al and variance r2
l of a Gaussian

distribution derived from the vector of ages al to have reached it:

plðaÞ ¼ N �al;r2
l

� �
ð9Þ
2.3.2. Prediction of GA
During age prediction, an unseen data point of unknown GA,

Wk ¼ ðIk;P
h
kÞ, traverses through the nodes in each tree of the

trained forest model, and the binary test associated with each node
evaluates whether to send the data to the left or right child nodes,
until Wk eventually reaches a leaf node. For each tree, the leaf node
reached provides a mean age estimate with an associated variance.
Leaf nodes with high variance values have lower age certainty, so
they are assumed to be less informative and likely to add noise.
Therefore, a single prediction ak is generated by taking the mean
of only the age estimates with associated variance less than r2

max.
Specifically:

A ¼ aljr2
l < r2

max

� 	
; ak ¼

1
Aj j
X
al2A

al ð10Þ

where Aj j is the number of ages satisfying the exclusion criteria. For
the experiments that follow r2

max ¼ 1:0 GW2.

3. Dataset and implementation details

3.1. US data and preprocessing

The model was developed to characterize all brain regions
observable in the distal hemisphere of US images. The input data
to the framework are 3D US images of the fetal brain obtained from
two study databases: (a) INTERGROWTH-21st,3 an optimally
healthy group of women with a low risk of pregnancy complications

http://www.intergrowth21.org.uk
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Fig. 5. Feature selection profiles. Feature selection versus tree depth for the leave-10-out cross validation forests (a) F app , (b) F appþlSz , and (c) F appþlSzþHC . Lines denote mean
feature selection frequency at a given tree depth (solid: right distal hemisphere; dashed: left distal hemisphere). Error bars indicate standard deviation. Grey vertical lines
indicate the tree depth of optimal GA prediction.
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and fetal abnormalities (Papageorghiou et al., 2014) (Dataset A); and
(b) INTERBIO-21st,4 an unselected, routine clinical cohort (Dataset
B). Throughout the text, we refer to these as Dataset A and Dataset
B, respectively. ‘True age’ (GAtrue) was defined by the last menstrual
period (LMP) and confirmed by crown-rump-length (CRL) measure-
ment on US images taken in the first-trimester (6 14þ0 weeks)
agreeing within 7 days. For both datasets, CRL-based age is accurate
within 2.7 days, determined from 3 independent clinical measure-
ments. For this work, the age prediction model was trained using
448 3D US images of the fetal brain (198 and 250 images with visible
left and right hemispheres, respectively) acquired from Dataset A
ranging from 18þ0 to 33þ6 GW. Cross validation experiments were
conducted on the same dataset following a leave-10-out protocol.
The image inclusion criteria were:

– Cranium occupies P50% of the image.
– Distal cerebral hemisphere is not occluded.
– Interhemispheric fissure is clearly visible in the entire supraten-

torial region.
– Intracranial structures (namely, Sylvian fissure, thalami, ventri-

cles, and cavum septum pellucidum) are clearly visible.

3D US images of the fetal head were collected using a Philips
HD9 curvilinear probe at a 2–5 MHz wave frequency. All images
used for training and validation of the model were preprocessed
by first resampling the acquired images to an isotropic spatial res-
olution of 0:6� 0:6� 0:6 mm3. Ridge-like structures were then
enhanced using a bandpass Gaussian derivative filter (kernel size
5Gr ¼ 4 mm). Cranial parametrization was then applied to the
preprocessed data as detailed in Section 2.1. The bandpassed 3D
US images and their respective deformed parametric surfaces were
passed into the regression forest algorithm for training and testing.

3.2. Parameters and training

Regression forests consist of several parameters which can be set
based on the desired application. For the task of neurosonography-
based GA estimation, each regression forest was constructed by
training T ¼ 20 trees to a maximum depth of dmax ¼ 15. At each node
j, a total of m ¼ 200 features was sampled, from which only one fea-
ture f j was selected as possessing the most age-discriminating
power. The age regression framework was implemented in C++
(3.30 GHz quad-core, 12 GB RAM), and (as expected) training time
proved to be related to the size of the training dataset (data not
shown). For each tree, training took an average of 4.6 min and
4 http://www.interbio21.org.uk.
7.2 min for left and right distal hemispheres, respectively, and
approximately 0.1 s to predict GA from a single volume.

3.3. Evaluation of GA predictions

To measure the accuracy of GA predictions, we used the root-
mean-squared error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Wj j

XWj j

k¼1
a0k � ak

� �2

s
ð11Þ

where Wj j is the number of test images, a0k is the model-predicted
GA of the k-th test image, and ak is GAtrue.

4. Results

In the following, we describe experiments conducted in order to
demonstrate the performance and functionality of the age regres-
sion forest for the task of estimating GA from 3D US images of
the fetal brain.

4.1. Model parameter and feature selection

To gain insight into the functionality of the GA prediction
model, we assessed the relative importance of each feature set pre-
sented in Section 2.2.1 in its age discriminating ability. This was
achieved by plotting forest level (d) against the number of times
a particular feature f i was selected at each level in the forest, nor-
malized by the total number of nodes present at the given level

across all trees in the forest (Nd), i.e. Ndðf jÞ
Nd

. This result is shown in

Fig. 5 and it is based on the understanding that decision trees select
more general binary tests to split the data at the shallower levels
and progressively select more specific tests as the data traverses
to deeper levels. In our work, such an analysis informs on which
features contain global GA discriminating ability, and which pro-
vide information about subtler or more detailed age-related differ-
ences. Three separate forests were trained for comparison
(Table 1).

Fig. 5 demonstrates the feature selection profiles for forests (a)
F app, (b) F appþlSz, and (c) F appþlSzþHC for the leave-10-out cross-val-
idation forests, displaying each appearance and size feature subset
separately. It is evident from Fig. 5(a) that when the forest is
trained exclusively with appearance-based features (F app), Haar-
like features are selected more frequently than Unary or Binary
context features. At all forest levels, Haar3D was consistently
selected in more than 60% of the nodes as the most powerful
feature. This indicates that the algorithm selected binary tests

http://www.interbio21.org.uk


Table 1
Description of the different types of regression forests trained for model selection, and
their constituent feature sets. Graphical explanation of each feature set is provided in
Fig. 4 and discussed in Section 2.2.1.

Forest type Feature vector

F app Appearance only
F appþlSz Appearance and local size
F appþlSzþHC Appearance, local size, and biometry

Fig. 6. Example feature selection. Illustration of feature selection paths for two
different fetuses at 19 and 28 GW, demonstrating typical tree traversal.
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which capture ridge-like image features more frequently than
those capturing differences in homogeneous image regions, sug-
gesting that sulcal and fissural development was salient in the
brain during the second and third trimester. Fig. 5(b) shows that
when the feature vector comprises of appearance and local size
features, the latter are more age-discriminating in the shallower
forest levels, but anatomical appearance is dominant from level
d ¼ 2, and optimal prediction with minimal RMSE occurs at level
d ¼ 11. However, when the innerHC feature is also included in
the feature vector (Fig. 5(c)), it is preferentially selected in the
shallower tree levels, superseding even local size features,
before anatomical appearance features are rendered more impor-
tant also at level d ¼ 2. This clearly demonstrates that global and
local head size provide an important first estimate of GA, but
sonographic anatomical appearance is valuable in refining age
predictions.

To assess the stability of feature selection, cross-validation
experiments were conducted using a leave-10-out protocol, each
time partitioning the dataset such that 10 images were kept for
testing the model, whilst the remaining images (i.e. 188 and 240
images with visible left and right distal hemispheres, respectively)
were used for training the corresponding regression forests. Fig. 5
displays error bars indicating the standard deviation of feature
selection frequency for all forests trained during cross-validation.
The fact that the error bars tightly follow the curves for all feature
profiles demonstrates that the model is stable in its selection of
age-discriminating features at the different forest levels. It is also
clear from the figure that regardless of which cerebral hemisphere
was used to train the model, the feature selection profiles were
similar. This demonstrates the ability of the model to simply
capture anatomical progression of the brain, respecting cerebral
developmental symmetry.

Fig. 6 illustrates the process of feature selection and demon-
strates the tree traversal paths for two data examples from
fetuses at 19þ3 and 28þ3 GW for a typical tree from forest
F appþlSzþHC . Note that although the examples traverse the tree
along different paths before reaching a leaf node, the binary tests
applied to achieve GA estimation follow a similar pattern. Specif-
ically, the inner HC is tested at the root node (d ¼ 0), followed by
local size features in the shallow levels (d ¼ 1� 2), and lastly
image appearance features were applied as the final tests before
arriving at a leaf node where a decision about GA is achieved.
This corroborates the findings of the feature selection profiles
plotted in Fig. 5, and most test examples followed a similar tree
traversal pattern. Also, the example from the younger fetus had
a shorter tree traversal path than the older fetus. Guided by this
indication, we found that on average, the trend was for the tree
traversal path length to increase with GA (Fig. 7), which may be
indicative of the longitudinal behaviour of the model as the brain
increases in complexity.
4.2. Brain maturation maps

Having established the method by assessing the entire image
volume of each distal hemisphere, it is expected that only some
regions within the entire 3D cerebral volume would accurately
report on brain maturation, while low-contrast or highly variable
regions could obscure this task. We hypothesized that the
unguided training framework could by itself identify the relevant
brain regions that provide the best age discrimination. Similar to
the works of Sabuncu and Van Leemput (2012), Toews et al.
(2010) and Konukoglu et al. (2013) on MR brain images, we
examined the most age-discriminating brain regions selected by
the algorithm. To achieve this, heat maps were generated to dem-
onstrate the image appearance features selected in each level of a
forest. To generate these maps, the nodes in each forest level d
were parsed, and the image voxels pertaining to the VOI selected
at a node were incremented each time they were sampled. The
resulting image was then normalized by the number of nodes
present at level d, i.e. Nd.

Fig. 8 demonstrates the locations of age-discriminating image
features selected by the model at three different levels of the for-
est. Our investigation showed that the algorithm consistently
selected a small number of key age-discriminating regions. These
included: (a) regions around the midsagittal plane such as the cal-
lossal sulcus, thalami, and parieto-occipital fissure at d ¼ 3; (b) the
posterior and anterior ventricles at d ¼ 6; and (c) sulcal areas such
as the Sylvian fissure (d ¼ 3;6;9) and central sulcus (d ¼ 3). These
are regions which show substantial change during gestation (Toi
et al., 2004; Pistorius et al., 2010), reflecting the ability of the
model to query developmentally-informative anatomical regions
during the GA prediction process. We also observed that at shallow
forest levels, the model queried more brain regions than at deeper
levels. For instance, at d ¼ 3 the model queried six key regions (i.e.
callossal sulcus, thalami, parieto-occipital fissure, central sulcus,
cingulate sulcus, and Sylvian fissure), while it focused primarily
on the Sylvian fissure and cingulate sulcus at d ¼ 9. Given that
the nodes at deeper levels have lower variance values, it indicates
that the binary tests associated with these nodes improve the
confidence of GA estimates, highlighting finer differences between
age-related sonographic appearance. In theory, it might be
expected that the regions queried by these nodes would be spa-
tially distributed in the brain. However, in practice, we found that
key anatomical regions were consistently selected by different
trees, identifying them as salient landmarks for GA estimation.
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4.3. Model-based prediction of age

To demonstrate the predictive quality of each combination of
feature sets across gestation and hence identify the best predictor,
we plotted the age predictions from the leave-10-out cross-valida-
tion experiments on Dataset A (Fig. 9). Our results show that the
forest which combines all available features (F appþlSzþHC) yields
the most accurate age predictions. However, even the forest
trained exclusively with anatomical appearance features (Fapp)
was capable of generating predictions with a high r-value
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Fig. 9. Regression results from cross-validation experiments. Graphs plot true age versus predicted age for each image in the training database (Dataset A) using a leave-10-
out protocol. Shown are the age predictions achieved using forests trained with different feature sets: from left to right, (a) Fapp , (b) FappþlSz , (c) FappþlSzþHC . The r value and root-
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82 A.I.L. Namburete et al. / Medical Image Analysis 21 (2015) 72–86
(r ¼ 0:97) and low RMSE. We also plotted the curves denoting the
the error margin of the GA predictions (dw) against GA, shown in
Fig. 11. The different types of forests were applied to Dataset A
and each was compared to GAtrue on the basis of dw. Although the
forests were set to train to a maximum depth of dmax ¼ 15, none
of the trees reached this depth during training, and optimal results
were achieved at d ¼ 10 for F app, and d ¼ 12 for both F appþlSz and
F appþlSzþHC . To compute the dw, the GA predictions (with respect
to the line of equality) were separated into two groups: over-esti-
mations made by the model Rþ 2 R2�Nþ , and the under-estimations
R� 2 R2�N� in GA prediction. Quadratic fit functions were gener-
ated to model each of the positive (fþ) and negative (f�) bounds
of the GA predictions. The dw for each GA prediction model was
defined as the absolute difference between the fit functions for
the upper and lower centiles, dw ¼ jfþ � f�j. We illustrate this pro-
cedure in refer to Fig. 10.
Fig. 10. Error margin of the GA predictions, dw. Illustration of the xCI . The positive
and negative GA predictions (relative to the line of equality) are marked as red and
yellow circles, respectively. Quadratic fitting functions approximating the positive
(fþ , dashed red line) and negative (f� , dashed blue line) bounds of the confidence
interval are shown, and the difference between these functions denotes the value at
dw when sampled at each age value (grey region). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
A good age prediction model would demonstrate low dw values,
indicating a narrow error range (i.e. narrow spread). According to
Fig. 11, all predictors produce the lowest errors in GA estimation
during the second trimester, and error increases steadily with
GA. However, the rate of increase differs for the predictors. For
instance, the dw of both F app and F appþlSz increases almost linearly
at a rate of þ0:226 days=GW and þ0:215 days=GW, respectively.
The width of the clinical HC predictions shows a sharp quadratic
increase such that the error nearly doubles from 18þ0 to
33þ6 GW, rendering the GA predictions in the third trimester
� 10 days more erroneous. On the other hand, the forest contain-
ing all features ðF appþlSzþHCÞ produces the lowest errors in the sec-
ond trimester, but mimics the behaviour of clinical HC predictions
in the third trimester.

We also observed that model-based predictions improved with
each feature set that was incorporated into the feature vector.
Specifically, at 18 GW, F app yields the widest error margin
(dw ¼ 8:2 days) whilst F appþlSzþHC has the narrowest
(dw ¼ 6:2 days). Although this is not strictly the case in the third
trimester, F appþlSz continues to yield lower GA errors than F app.
Nevertheless, this experiment identifies forest F appþlSzþHC as yield-
ing the most accurate age estimates overall, and hence the highest
Fig. 11. Model comparison. Error margin of GA prediction, dw , expressed in days, for
the best current clinical method (dashed red line), and for each trained forest model
(solid lines) during the second and third trimesters of pregnancy. (Results shown
for Dataset A.)



Table 2
GA prediction performance measures for the clinical HC method and the best model-based predictor (F appþlSzþHC ) applied to Dataset B for the 2nd and 3rd trimesters of pregnancy.
RMSE and confidence interval (CI) values expressed in days.

Trimester 2nd 3rd 2nd and 3rd
Age range, weeks 18þ0—27þ6 28þ0—33þ6 18þ0—33þ6

Age mean (SD), weeks 23.45 (2.94) 31.07 (1.76) 25.83 (4.41)
No. subjects, n 108 49 157

Performance measure RMSE (r) CI RMSE (r) CI RMSE (r) CI

Clinical HC prediction 4.86 (0.94) ±9.46 10.28 (0.76) ±18.57 7.01 (0.98) ±13.32
Model-based prediction 5.18 (0.97) ±10.10 7.77 (0.83) ±14.01 6.10 (0.98) ±11.64
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predictive power of the GA estimation model. In addition, the fact
that the error margins of model-based predictors were always nar-
rower than that of clinical HC demonstrates the ability of the
model to outperform the best current clinical method for the entire
GA range considered in this work.
4.4. Estimation and validation of age predictions

Model-based age predictions (GAmodel) were compared against
the best clinical method for estimating gestational age, GAclinical:
the mean of three HC measurements taken from independent 2D
US images of the TT plane and regressed to population growth
charts (Loughna et al., 2009). Table 2 summarizes the GA estima-
tion results from applying F appþlSzþHC and the clinical HC method
to Dataset B, and Fig. 12 plots the GA predictions against true
GA. As a comparison, a predictor using random guessing would
result in a RMS error of �2:76 GW ð� 19:4 daysÞ. Our results dem-
onstrate that although GAclinical yields the lowest prediction errors
in the second trimester (7.2 days), GAmodel has a lower overall error
throughout the entire age range, outperforming GAclinical by
±0.91 days and reducing the CI by ±1.68 days. However, the real
benefit of GAmodel becomes apparent in the third trimester where
the CI is reduced by approximately �4:56 days and GA predictions
are improved by �2:51 days. Furthermore, visual inspection of
Fig. 12 indicates that the results from GAmodel had a tighter fit to
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Fig. 12. GA regression results. GA estimation results for a routine clinical dataset, using (
The rectangular overlay indicates the age range of data included in this work (i.e. 18þ0 t
reader is referred to the web version of this article.)
the line of equality for the entire age range, whereas results from
GAclinical diverged with progressing GA.

4.5. Developmental trajectories

In order to determine whether the model produces chronologi-
cally consistent age predictions between scanning session, we
assessed the developmental trajectories for a subset of fetuses
scanned at multiple time points in pregnancy. Fig. 13 compares
the GA trajectories as predicted by separate scanning sessions for
31 subjects from Dataset B. The lines denote the time lapses between
subsequent scans (marked by circles), and connected circles corre-
spond to a single patient. It is evident that there is high agreement
between the true age at a scanning session, and the model-predicted
GA. This demonstrates the ability of the model to consistently
approximate GA with monotonically consistent time lapses
between the predictions of each scanning session. This is also indic-
ative of the potential for using the model to extract personalized
maturational progression across different time points in pregnancy.

5. Discussion

For the task of GA estimation from US scans of the fetal brain,
this paper presents and validates a semi-automated learning-based
framework for discovering age-related sonographic patterns in the
images and linking them to neurodevelopmental maturation. Our
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Fig. 13. Developmental trajectories. Longitudinal age predictions of images taken
from fetuses at multiple separate scanning sessions. Connected line segments
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model benefits from a surface manifold representation of the fetal
skull which allows for fast and efficient sampling of anatomically-
corresponding brain regions to achieve like-for-like structural
comparison of different developmental stages and serves as a
skull-stripping tool. We demonstrated that the model is capable
of characterizing neuroanatomical appearance both spatially and
temporally, modelling GA as a continuous variable from
18þ0 to 33þ6 GW, capturing the natural variation existing in a
healthy fetal population over an age range of active brain
maturation.

Clinically relevant metadata (i.e. fetal head circumference) was
provided as input to the machine learning framework, and in addi-
tion, we extended canonical features sets (e.g. Haar-like features
(Viola and Jones, 2004)) to capture structural changes within the
fetal brain. Our results indicate that features which inform on cra-
nial (and hence brain) size are selected as the first tests for discrim-
inating between age groups, but structural image appearance
features inform of finer age-related differences. This suggests that
the method that is currently used in the clinic provides a good first
prediction of GA, but additional information about structural brain
development reduces errors in GA estimation and improves the
confidence of predictions throughout the entire age range.

Validation of the model revealed that (a) the model will gener-
alize to an independent dataset and (b) that feature sets are consis-
tently selected by the different forests, hence indicating that the
model represents a stable solution for GA estimation. It is worth
noting that due to the visualization of only one cerebral hemi-
sphere in every given brain US image, each forest was trained sep-
arately to be applied to its respective hemisphere. That is, if only
the left cerebral hemisphere is clearly discernible in a test image,
age prediction will be obtained by applying the forest trained using
only left-hemisphere images in order to ensure developmental and
anatomical hemispheric likeness between training and testing
data. We found that regardless of which cerebral hemisphere is
observable in the US image and thus used for training the regres-
sion forest, an accurate age prediction can be achieved using our
model, reflecting its ability to capture developmental symmetry.
Our model demonstrated the feasibility of automatically learn-
ing the pattern of sonographic activity and linking it to GA. In par-
ticular, the model was able to identify relevant brain regions such
as the Sylvian fissure, cingulate sulcus, and callosal sulcus as pow-
erful image regions in the age-discrimination task. This corrobo-
rates findings in the clinical literature about these cerebral
structures following a characteristic pattern of development (Toi
et al., 2004; Mittal et al., 2007; Pistorius et al., 2010). Beyond the
extraction of anatomical regions which undergo significant
changes during gestation, our GA estimation framework has the
potential to provide clinically relevant information.

Finally, our GA estimation framework has the potential to pro-
vide clinically relevant information. On dataset B, the presented
algorithm improved the confidence of age predictions provided
by the clinical HC method by ±0.64 days and ±4.57 days in the sec-
ond and third trimesters, respectively. Specifically, our third tri-
mester predictions within ±7.77 days are a notable improvement
on the ±18 days reported in the literature (Hadlock et al., 1983).
Moreover, the fact that model-based prediction errors increased
with GA may be reflective of the inherent biological variation as
gestation progresses, ultimately making the task of GA estimation
more challenging. In fact, the largest errors were seen in the third
trimester when the model relied more on clinical HC than on image
appearance. This behaviour may be attributed to progressive skull
thickening which results in increasing structural occlusions, reduc-
ing the image-based support available to the GA estimation task.
This, in conjunction with the fact that decision tree traversal path
lengths increased with GA, demonstrate the longitudinal behaviour
of the model as it is able to respond to the fact that GA estimation
is more complex in later gestation.

In conclusion, we have developed a novel feature-based model
which regresses brain development to GA using US images, which
has never before been attempted. Validation on a healthy dataset
of 448 fetuses demonstrated the ability of the model to accurately
approximate true chronological age. Application of the framework
to a routine clinical fetal cohort of 187 fetuses resulted in GA pre-
diction accuracy of ±6.1 days, particularly outperforming the cur-
rent clinical method of GA estimation in the third trimester. Our
preliminary analysis identified age-discriminating brain regions
observable in fetal US images, namely the Sylvian fissure, callosal
sulcus, and parieto-occipital fissure, all of which have been
reported as undergoing significant change during the gestational
period.
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