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A B S T R A C T

The filamentous fungus Penicillium chrysogenum Q176 secretes the antimicrobial proteins (AMPs) PAF and PAFB,
which share a compact disulfide-bond mediated, β-fold structure rendering them highly stable. These two AMPs
effectively inhibit the growth of human pathogenic fungi in micromolar concentrations and exhibit antiviral
potential without causing cytotoxic effects on mammalian cells in vitro and in vivo.

The antifungal mechanism of action of both AMPs is closely linked to - but not solely dependent on - the lipid
composition of the fungal cell membrane and requires a strictly regulated protein uptake into the cell, indicating
that PAF and PAFB are not canonical membrane active proteins. Variations in their antifungal spectrum and their
killing dynamics point towards a divergent mode of action related to their physicochemical properties and
surface charge distribution.

In this review, we relate characteristic features of PAF and PAFB to the current knowledge about other AMPs
of different sources. In addition, we present original data that have never been published before to substantiate
our assumptions and provide evidences that help to explain and understand better the mechanistic function of
PAF and PAFB. Finally, we underline the promising potential of PAF and PAFB as future antifungal therapeutics.

1. Introduction

Approximately one billion people are suffering from severe fungal
diseases which cause around 1.5 million deaths per year [1]. Ninety
percent of all deaths are a consequence of fungal infections caused by
species of the genera: Aspergillus, Candida and Cryptococcus [2]. The
treatment of these pathogens is hampered by the limited number of
available antifungal drugs belonging mainly to the classes of azoles,
echinocandins and polyenes [3]. The extensive use of antimycotics
stimulates the development of resistance towards these agents in many
fungal pathogens [4]. Also, in agriculture the control of plant diseases
caused by filamentous fungi pose severe problems as species like Fu-
sarium are responsible for enormous crop losses every year [5].
Therefore, there is a great urgency to develop alternative antifungal
drugs and treatment strategies.

Filamentous fungi produce a wide spectrum of antimicrobial pro-
teins (AMPs) that serve as defense and/or signaling molecules for their
hosts [6–8]. Such AMPs are promising candidates for the development
of new therapeutic compounds. These small (~5.6–6.6 kDa), cysteine-
rich and amphipathic proteins are secreted into the culture supernatant
and can be easily purified via ion-exchange chromatography due to
their positive net charge. Therefore, large scale industrial production of
AMPs would be easy and inexpensive [9,10].

AMPs of fungal origin are highly active against pathogenic fila-
mentous fungal species e.g. the human pathogen Aspergillus fumigatus or
the plant pathogens Botrytis spp. and Fusarium spp. [8]. Additionally,
some show anti-yeast activity and inhibit the growth of pathogenic
yeasts like Candida albicans at low micromolar [μM] concentrations
[11–13].

In this review, we focus on the two AMPs derived from the well-
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known penicillin producing ascomycete Penicillium chrysogenum Q176:
the P. chrysogenum antifungal protein (PAF) and the P. chrysogenum
antifungal protein B (PAFB). These two AMPs do not only inhibit the
growth of filamentous fungi and yeasts but also possess antiviral po-
tential without exhibiting any cytotoxic or hemolytic activity on
mammalian cells [11]. A detailed knowledge about the mechanistic
function of PAF and PAFB is an important prerequisite for their ex-
ploitation and also related biomolecules in industrial drug design and
the development of new anti-infective treatment strategies for medical
and agricultural application. Here, we highlight and discuss the simi-
larities and differences of these two P. chrysogenum AMPs regarding
structure, antimicrobial spectrum and mode of action.

2. Phylogenetic aspects

Screening of genomic databases revealed that AMPs with potential
antifungal activity are widespread among filamentous ascomycetes,
especially in the class Eurotiomycetes (specifically the genera
Aspergillus, Monascus, Penicillium, Paecilomyces) [14] and Sordar-
iomycetes (containing the genus Fusarium) [15]. A detailed phyloge-
netic analysis revealed that the so far isolated small, cysteine-rich an-
tifungal AMPs from Eurotiomycetes and their putative and predicted
homologs can be divided into four well-separated clades. These are
named in this review according to their first characterized re-
presentatives: the clade of (i) Aspergillus giganteus antifungal protein
(AFP) [16]; (ii) P. chrysogenum antifungal protein (PAF) [17]; (iii) Pe-
nicillium brevicompactum “bubble protein” (BP) [18] and (iv) Neo-
sartorya (Aspergillus) fischeri antifungal protein 2 (NFAP2) [13]. Inter-
estingly, some ascomycetous isolates are able to produce more than one
AMP belonging to different clades [14]; e.g. the Penicillium rubens
Wisconsin 54-1255 strain (PAF and BP-clade) and N. fischeri NRRL 181
(PAF-, BP-, and NFAP2-clade). Notably, the PAF and PAFB producing P.
chrysogenum Q176 [11,17] is the original ancestor of the industrially
exploited Wisconsin strains [19]. This analysis also revealed that the
PAF-clade can be further divided into four subclades [14], containing
(1) the Aspergillus niger antifungal protein (AnAFP) [12] and its putative
homologs; (2) the PAF-like proteins; (3) the N. (A.) fischeri antifungal
protein (NFAP) [20] and respective Penicillium spp. homologs; as well as
(4) the Penicillium protein PAFB [11] and other closely related proteins.
A recent mining of the UniProt database [21] for PAF-like Penicillium
AMPs resulted in several putative representatives with 34–88% amino
acid (aa) identity (Fig. 1A) and distinct physicochemical features
(Table 1). Based on the primary structure they are clearly separated into
three different subclades, representing PAF-, PAFB-, and NFAP-like
proteins, but no AnAFP-similar ones. The well-supported separation of
Penicillium PAFBs from PAFs in this phylogenetic tree proposes differ-
ences in protein structure and antifungal mode of action, which is
further discussed below (Fig. 1B).

3. Antimicrobial and antiviral activity

PAF and PAFB exhibit growth inhibitory activity against numerous
pathogenic molds, yeasts and fungal model organisms, whereas both
proteins were found inactive against bacteria such as the Gram-negative
Escherichia coli or the Gram-positive Bacillus subtilis in the concentration
range tested (up to 32 μM) [11,27]. Pathogenic fungi that are highly
susceptible towards low doses of PAF and PAFB are the human patho-
gens: A. fumigatus, A. niger, Trichophyton spp. and Candida spp., as well
as the model fungi Neurospora crassa and Saccharomyces cerevisiae.
These strains are similarly sensitive towards both proteins as their
growth is inhibited in the presence of 0.25–4 μM PAF or PAFB, re-
spectively (Table 2).

Notably, differences exist in the spectrum of microorganisms tar-
geted by these two related proteins. The clinically relevant and am-
photericin B-resistant human pathogen Aspergillus terreus is highly
susceptible towards low doses of PAFB (1 μM) whereas a high

concentration of PAF (32 μM) is required for growth inhibition [11,29].
The same holds true for the producing mold P. chrysogenum itself,
whose growth is inhibited at 0.5 μM PAFB. In contrast, the highest PAF
concentration tested (32 μM) was not sufficient to achieve the same
growth inhibition [11]. Notably, the AMP encoding genes paf and pafB
are differently regulated in P. chrysogenum, paf being induced under
nutrient limitation whereas pafB being expressed under excess nutrient
availability [30]. The difference in the gene expression pattern and in
the AMP susceptibility of the host strengthen our hypothesis that PAF
and PAFB cover additional functions, possibly related to signaling in
growth and development regulation in P. chrysogenum [30,31].

However, in sensitive target fungi PAF acts in a dose-dependent
manner and causes a linear growth reduction with increasing protein
concentrations as documented with the fungal model N. crassa (Fig. 2).
PAFB, instead, does not significantly alter the fungal proliferation
within a wide concentration range until the protein amount is reached
that effectively inhibits growth by 90% (IC90) (Fig. 2). The differences
in the antimicrobial spectrum as well as in the dynamics of antifungal
activity suggest different modes of interaction of PAF and PAFB with
the fungal target cell.

The risk of resistance development in fungal pathogens is greatly
reduced with fungicidal agents [32]. Notably, PAF and PAFB show
fungicidal potential on the wide-spread opportunistic human pathogen
C. albicans killing planktonic cells and inhibiting biofilms (Fig. 3)
[11,14].

In addition to their antifungal activity, the P. chrysogenum AMPs
also possess antiviral potential. Both proteins diminished the cyto-
pathogenic effects of the Human Coronavirus in human cervix carci-
noma cells [11]. To our best knowledge, this was the first report on the
antiviral potential of small, cysteine-rich and cationic proteins from
fungal origin. Investigations are in progress to study in more detail the
antiviral spectrum and unravel the mechanism of action that impedes
virus activity.

4. Structure-function relation of PAF and PAFB

Understanding the mechanistic mode of action of AMPs requires
detailed knowledge of their structural features. PAF and PAFB are
produced as 92 aa long preproproteins. Both proteins contain a signal
(pre)sequence that directs their secretion and a prosequence, which is
suggested to prevent premature protein folding and activity [33]. A
high degree of homology (56% aa identity) can be found within the
preprosequence of PAF and PAFB. The pre- and prosequence are re-
moved before or during protein secretion into the supernatant. The
mature PAF and PAFB consist of 55 or 58 aa, respectively, with a high
content of positively charged residues: PAF contains 13 lysines leading
to a net charge of +4.7 (at pH 7), whereas PAFB contains 16 positively
charged aa: eight lysines, two arginines and six histidines, which ren-
ders this protein slightly higher positively charged (+5.2 at pH 7) than
PAF (Table 3). Importantly, N-terminal shorter variants of PAFB exist,
which differ from the full-length protein by the lack of one (lysine) or
two (serine/lysine) aa. The shortest N-terminal variant of PAFB
(sfPAFB) served to determine its solution structure (Fig. 4) [11].

For both AMPs the solution structures have been solved by nuclear
magnetic resonance (NMR) spectroscopy [11,34,35], and for PAF the
crystal structures complexed with sulfonato-calixarenes reflect the NMR
structure (PDB ID: 2mhv) [36]. Compared to the NMR structures that
are based on proton-proton distance measurements only, the X-ray
structures more accurately define disulfide conformations. Indeed, the
PAF X-ray structures (PDB ID: PAF-sclx4, 6 ha6; PAF-sclx6, 6hah; PAF-
sclx8, 6hah) [37] exhibited lower energy disulfide conformers than the
2mhv NMR structure [35]. Similar to other members of the PAF cluster,
PAF and PAFB adopt a Greek key super-secondary structure and five
antiparallel β-strands, including the fifth amphipathic strand, are con-
nected by four slightly flexible loops. The strands form two orthogon-
ally packed β-sheets leading to a β-barrel topology, rendering the
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tertiary structure of PAF and PAFB very similar despite low sequence
similarity (35.2%) (Fig. 4) [11]. Both proteins contain six cysteine re-
sidues, that form three intramolecular disulfide bridges with a common
“abcabc” pattern [11,34]. This strongly stabilized structure with a
central hydrophobic core around the disulfides results in resistance
against adverse environmental conditions, e.g. proteolytic degradation,
high temperature, chemical denaturants and extreme pH range [34]
(PAFB; unpublished data). In PAFB, the side chains of Tyr 43 and Tyr 15
equipped with other apolar residues also contribute to the hydrophobic
core. In the sfPAFB (PDB ID: 2nc2) the strands are connected by three
small loops (1, 2, 4) and one large loop (3) forming the β-turns. The

conformation of loop 3 shows significant differences between PAF and
sfPAFB. The central part of loop 3 in sfPAFB includes three conserved
lysines (Lys 36, 37, 39), and equipped with the N-terminal Lys 9, they
contribute to a contiguous positively charged surface. Still, PAFB does
not have a “belt” of aligned lysines as compared to PAF (Lys 6, 15, 42)
and has a different electrostatic surface potential [11]. The loops ex-
hibit a limited flexibility that might allow the interaction with so far
unidentified fungal target molecules, e.g.membrane lipids and proteins.
A breakthrough for the possibility of structural analysis of the P. chry-
sogenum AMPs was the development of a P. chrysogenum-based ex-
pression system. This tool uses the strong promoter of the paf-gene to

Fig. 1. (A) Clustal W multiple alignment of the putative PAF-like antifungal AMPs from Penicillium spp. from the UniProt database [21]. Alignment was generated by
BioEdit [22] and visualized by Jalview 2.11.0. [23]. The cleavage of the preprosequence and the first aa of the mature protein is marked by brown dotted line and
asterisks. After the species name the accession number of the respective AMP (see Table 1) is indicated. The Clustal X default color scheme was applied (http://www.
jalview.org/help/html/colourSchemes/clustal.html). (B) Maximum-likelihood (ML) tree of putative PAF-like AMPs from Penicillium spp. from UniProt database [21].
The alignment of the full-length proteins was generated with PRANK v. 140,110 [24] with default settings for phylogenetic analysis. ML analysis was performed with
RAxML v. 8.2.10 [25] under the GAMMA distributed rate heterogeneity empirical frequencies model with DCmut substitution matrix in 1000 through bootstrap
replicates. ML bootstrap values> 60% are shown next to branches. After the species name the accession number of the respective AMP (see Table 1) is indicated. “#”
marks PAF and PAFB from P. rubens Wisconsin 54-1255, which is the descendent strain of P. chrysogenum Q176 [19].
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produce cysteine-rich and cationic AMPs in a P. chrysogenum paf dele-
tion strain (Δpaf), which provides the secretion of the recombinant
proteins in high yields into the supernatant and the correct disulfide-
bonding and protein folding. The use of defined minimal medium in
combination with 15N and/or 13C isotopes allows uniform labelling of
the proteins and easy one-step purification by ion-exchange chroma-
tography avoiding impurities that hamper NMR-based analysis [9]. The
functional importance of the loop sequences was demonstrated by
creating the recombinant PAF variants PAFD19S, PAFF31N and PAFY48Q,
in which distinct aa in loop 2 (position 19), loop 3 (position 31) and
loop 4 (position 48) were substituted, respectively [9,38] (Table 3). All
analyzed variants retained an overall 3D structure similar to PAF but
lost antifungal activity (see Chapter 5). This shows that AMPs are finely
tuned for their activity and selectivity, and neither the overall fold, nor

the gross physical properties of a given sequence warrant biological
impact.

4.1. The γ-core motif - functional or structural determinant?

PAF and PAFB contain a ten-aa long conserved consensus sequence
in loop 1, the so-called gamma(γ)-core motif [11,14]. This motif is
present in many disulfide-stabilized AMPs of prokaryotes and eu-
karyotes. When folded, it resembles the Greek letter “γ” and it is
composed of the primary structure GXCX3-9C, for which a central role in
AMP function has been reported [14,40]. Synthetic peptides derived
from specific plant defensins that span this motif exhibit antimicrobial
activity per se [41].

In agreement with these reports, a positively charged peptide (Pγ)
(net charge +3.9 at pH 7) spanning the γ-core of PAF showed anti-
Candida activity per se, whereby exhibiting reduced activity by 2.5-fold

Table 1
Putative PAF-like AMP homologs of Penicillium spp. from UniProt database [21], and their physicochemical properties analyzed in silico.§

Species UniProt ID MW$

[Da]
pI Net charge (pH 7) GRAVY⁎ No. positively charged aa

PAF-subclade
P. roqueforti W6Q896 6134.96 9.09 +4.7 −1.335 13
P. rubens B6HWK0 6250.05 8.93 +4.7 −1.375 13
P. coprophilum A0A1V6UEN3 6272.10 9.28 +6.7 −1.166 13
PAFB-subclade
P. subrubescens A0A1Q5UKJ2 6464.30 8.29 +2.7 −0.781 12
P. polonicum A0A1V6NI29 6591.44 9.22 +6.9 −1.153 17
P. rubens B6GXZ8 6500.32 8.83 +5.2 −1.031 16
P. chrysogenum D0EXD3 6500.32 8.83 +5.2 −1.031 16
P. antarcticum A0A1V6Q3B7 6621.33 8.29 +3.2 −1.284 16
P. digitatum K9FGI7 6575.39 9.06 +5.9 −1.000 15
P. expansum A0A0A2K0J0 6592.28 7.80 +2.2 −1.570 17
P. italicum A0A0A2KW66 6718.48 8.27 +3.2 −1.538 18
P. vulpinum A0A1V6SDD4 6685.55 9.14 +7.2 −1.467 18
P. oxalicum S8AKE6 6528.37 9.02 +5.7 −1.031 15
NFAP-subclade
P. brasilianum A0A0F7U0V3 6510.26 8.96 +5.2 −1.172 12
P. oxalicum S7ZGG3 6638.31 8.27 +2.5 −1.435 13
P. expansum A0A0A2K8K6 6644.70 9.48 +8.7 −1.081 15

§ ExPASy ProtParam tool [26].
$ MW: Molecular Weight.
⁎ GRAVY: Grand Average of Hydropathy.
Protein Calculator v3.4 (The Scripps Research Institute; http://protcalc.sourceforge.net/) was applied for calculations of physicochemical properties.

Table 2
Activity of PAF and PAFB on fungi.

Organisms IC90 [μM]⁎ References

PAF PAFB

Filamentous fungi
Aspergillus fumigatus§ 1 0.25 [11]
Aspergillus niger§ 0.25 0.50 [11]
Aspergillus terreus§ 32 1 [11]
Neosartorya fischeri§ 0.50 1 This study
Neurospora crassa# 0.06 0.12 [11]
Penicillium chrysogenum§ > 32 0.50 [11]
Trichophyton rubrum+ 0.25 0.50 [11]
Trichophyton mentagrophytes+ 0.02 0.30 This study

Yeasts
Candida albicans 4 1 [11]
Candida glabrata 2.5 0.60 [28]
Candida krusei 5 0.60 [28]
Candida parapsilosis 2.5 0.60 [28]
Saccharomyces cerevisiae 2 1 [11]

⁎ IC90, AMP concentration inhibiting growth ≥90%. The antifungal activity
was tested in a microdilution broth assay by inoculating conidia (104/mL) or
yeast cells (104/mL) with increasing concentrations of PAF or PAFB.

§ 0.1 × potato dextrose broth (PDB) medium 48 h, 25–30 °C.
# 0.2 × Vogel's medium 32 h at 25 °C. +0.1 × PDB medium 8 days, 37 °C;

Yeasts were grown for 24–48 h at 30 °C in 0.05–0.1 × PDB.

Fig. 2. Growth inhibition of N. crassa by increasing concentrations of PAF and
PAFB. The antifungal activity was tested in a microdilution broth assay by in-
oculating conidia (104/mL) with increasing concentrations of PAF or PAFB in
undiluted Vogel's medium and incubation for 30 h at 25 °C without shaking.
Growth was determined spectrophotometrically (FLUOstar Omega, BMG
Labtech) measuring the optical density at λ = 620 nm. Values represent the
mean ± SD (n = 3, technical triplicates) growth (%) in the presence of AMPs
in comparison to the untreated control which was set to be 100%. The result of
one representative experiment of two biological repeats is shown.
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(IC90 10 μM) compared to PAF (IC90 4 μM) (Table 2, Table 4). Inter-
estingly, the substitution of neutral aa in Pγ by positively charged and
less hydrophobic ones resulted in the peptide Pγopt with eight-fold in-
creased efficacy (IC90 1.3 μM) than Pγ and four times higher efficacy
than PAF (Table 4) [14]. The improvement in antifungal activity could
also be transferred to the full-length PAF when the aa in loop 1 were
substituted by the same residues as those used for designing Pγopt. The

resulting PAFopt had a four-fold higher anti-Candida activity than the
native protein (Table 2, Table 3) [14]. Both, Pγopt and PAFopt coun-
teracted Candida-biofilm formation more effectively than the un-
modified peptide and protein [14]. These results underline the im-
portant role of the γ-core motif for the antifungal activity of PAF. They
further demonstrate that the antifungal efficacy of a synthetic γ-core
peptide and of the full-length AMP can be improved by rational design,
increasing the net charge and the hydrophilicity in this conserved motif
by specific aa exchanges.

However, this observation is not necessarily true for all AMPs car-
rying a γ-core motif. A synthetic peptide spanning the γ-core of PAFB
(PBγ) exhibited no activity against C. albicans when applied at con-
centrations of up to 400 μM [28]. It has to be noted here that the PBγ is
nearly neutral (net charge +0.1 at pH 7) and less hydrophilic compared
to Pγ. This could possibly explain its inactivity. An “optimized” version
of PBγ (PBγopt) was generated by the exchange of distinct aa to posi-
tively charged and hydrophilic ones, leading to an increase in the net
charge and to a reduction of the grand average of hydropathy (GRAVY).
PBγopt exhibited anti-Candida activity at an IC90 of 1.3 μM (Table 4),
which is similar to the IC90 of the full-length PAFB (Table 2). These
results again underline that a high positive net charge and hydro-
philicity result in a markedly higher antifungal efficacy. In contrast, our
attempt to improve the PAFB efficacy by generating a PAFB variant
with the primary structure of PBγopt in its γ-core was unsuccessful. The
recombinant protein PAFBopt was readily degraded when expressed
with the P. chrysogenum-based expression system [28]. It is likely that
the γ-core of PAFB contributes to protein structure and stability. The
exchange of certain aa in this sensitive region could have resulted in a
different folding of the mutated protein PAFBopt and rendered it more
susceptible for proteolysis. Therefore, PAFBopt was prepared stepwise,
using microwave-assisted solid-phase peptide synthesis and fluor-
enylmethoxycarbonyl (Fmoc) chemistry. To ensure the naturally oc-
curring “abcabc” pattern, disulfide bridges were formed in a regio-se-
lective manner (Fig. 5) [42]. Sulfhydryl (SH) groups of the three pairs of

Fig. 3. Killing of C. albicans exposed to PAF and PAFB. Planktonic cells (104/
mL) were mixed with 0.25 ×, 1 × and 4 × the IC90 of PAF or PAFB in
0.1 × PDB and incubated for 6 h at 30 °C. Samples with appropriate dilutions
were plated on 0.1 × PDB agar and the colony number was determined after
24 h of incubation at 30 °C. Values represent the mean ± SD (n = 3, technical
triplicates) colony number (%) in the presence of AMPs in comparison to the
number of colonies from the untreated control at time point 0 h, which was set
to be 100%. The result of one representative experiment of two biological re-
peats is shown.

Table 3
Amino acid sequences of P. chrysogenum AMPs and AMP variants and their physicochemical properties analyzed in silico.§

Proteins and variants MW$

[Da]
pI Net charge

at pH 7
GRAVY* No. positively charged aa References

PAF wt 6250.05 8.93 +4.7 −1.375 13 [17]
AKYTGKCTKSKNECKYKNDAGKDTFIKCPKFDNKKCTKDNNKCTVDTYNNAVDCD
PAFopt 6290.20 9.30 +7.7 −1.438 15 [14]
AKYTGKCKTKKNKCKYKNDAGKDTFIKCPKFDNKKCTKDNNKCTVDTYNNAVDCD
PAFD19S 6222.03 9.09 +5.7 −1.325 13 [38]
AKYTGKCTKSKNECKYKNSAGKDTFIKCPKFDNKKCTKDNNKCTVDTYNNAVDCD
PAFD53SD55S 6194.02 9.22 +6.7 −1.276 13 [39]
AKYTGKCTKSKNECKYKNDAGKDTFIKCPKFDNKKCTKDNNKCTVDTYNNAVSCS
PAFY48Q 6215.00 8.95 +4.7 −1.415 13 [9]
AKYTGKCTKSKNECKYKNDAGKDTFIKCPKFDNKKCTKDNNKCTVDTQNNAVDCD
PAFF31N 6216.97 8.93 +4.7 −1.489 13 [9]
AKYTGKCTKSKNECKYKNDAGKDTFIKCPKNDNKKCTKDNNKCTVDTYNNAVDCD
PAFK9A 6192.95 8.77 +3.7 −1.271 12 [34]
AKYTGKCTASKNECKYKNDAGKDTFIKCPKFDNKKCTKDNNKCTVDTYNNAVDCD
PAFK35A 6192.95 8.77 +3.7 −1.271 12 [34]
AKYTGKCTKSKNECKYKNDAGKDTFIKCPKFDNKACTKDNNKCTVDTYNNAVDCD
PAFK38A 6192.95 8.77 +3.7 −1.271 12 [34]
AKYTGKCTKSKNECKYKNDAGKDTFIKCPKFDNKKCTADNNKCTVDTYNNAVDCD
PAFB wt 6500.32 8.83 +5.2 −1.031 16 [11]
LSKFGGECSLKHNTCTYLKGGKNHVVNCGSAANKKCKSDRHHCEYDEHHKRVDCQTPV
PAFBopt 6546.52 9.51 +9.9 −1.236 19 This study
LSKFGGKCKTKKNKCTYLKGGKNHVVNCGSAANKKCKSDRHHCEYDEHHKRVDCQTPV

§ ExPASy ProtParam tool [26].
$ MW: Molecular Weight.
GRAVY: Grand Average of Hydropathy.
Protein Calculator v3.4 (The Scripps Research Institute; http://protcalc.sourceforge.net/) was applied for calculation of physicochemical properties. Red letters

indicate aa exchanges.
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cysteines were protected by trityl (Trt), acetamidomethyl (Acm) and
methoxybenzyl (Mob) groups. Partially protected intermediates were
isolated from the reaction mixtures after each step by reversed-phase
high performance liquid chromatography (RP-HPLC). At the end of the
synthesis, purification of PAFBopt was also performed by RP-HPLC.

Unexpectedly, the synthetic PAFBopt exhibited no improvement;
rather a severe reduction in antifungal efficacy was observed when
compared to that of the native PAFB. PAFBopt acted at a slightly in-
creased IC90 (2 μM) against C. albicans when compared to PAFB and
showed no activity against A. fumigatus (IC90 > 400 μM), which un-
derlines a role in structure and stability rather than a functional role of
the γ-core in PAFB. To address the hypothesis that the PAFB γ-core
contributes to protein stability, we exposed PAFB and the synthetic
PAFBopt to conditioned cell-free supernatants of 48 h cultures of C. al-
bicans and A. fumigatus. The treated AMPs were then size fractionated
on SDS-polyacrylamide gels to visualize any proteolytic degradation
that might have occurred during fungal incubation. Indeed, PAFBopt

was readily degraded when exposed to the cell-free A. fumigatus su-
pernatant, whereas only a mild degradation - if at all - was observed
with samples exposed to the C. albicans supernatant (Fig. 6). Obviously,
A. fumigatus secretes a different set of proteases into the culture broth
than C. albicans. The result explains the loss of activity of PAFBopt

against A. fumigatus. PAFB, in contrast, showed no signs of proteolytic
degradation when incubated with the supernatant of any of these fungal
cultures, which underlines its higher stability against proteolysis
(Fig. 6).

According to other reports, the role of the γ-core motif indeed differs
between distinct AMPs. For example, peptides spanning the γ-core of
AMPs from Penicillium digitatum (AfpB) or N. fischeri (NFAP2) had no

antifungal activity indicating that this motif is not important for the
antifungal mode of action of these AMPs [43,44]. Similarly, a peptide
spanning the γ-core of the plant defensin MsDef1 from Medicago sativa
was inactive against Fusarium graminearum, whereas the γ-core peptide
derived from the plant defensin MtDef4 from Medicago truncatula in-
hibited the growth of this plant pathogen at very low concentrations
[41]. Notably, these two γ-core peptides significantly differ from each
other with regard to primary structure and net charge, e.g. MtDef4
showing a higher positive net charge (+4.8 at pH 7) than MsDef1
(+0.9 at pH 7) [41].

Interestingly, the γ-core motifs in PAFB, AfpB and NFAP2 all have a
lower positive net charge as compared to PAF. Functional mapping of
AfpB [43,44] and NFAP2 [44] assigned an antifungal role to protein
parts other than this specific motif. Thus, the γ-core motifs of AfpB and
NFAP2 were proposed to be structurally important for folding and
protein stability [43,44]. We therefore conclude that the γ-core motif
fulfills different functions in the P. chrysogenum AMPs, contributing to
folding and stability in PAFB and antimicrobial activity in PAF.

5. Mode of action

5.1. The medium composition determines fungal susceptibility

PAF and PAFB exhibit anti-yeast activity only in 0.1 × PDB
(Table 2, Table 5), whereas no growth inhibitory potential was detected
in other media tested, e.g. diluted yeast-extract peptone dextrose
(0.1 × YPD) medium (Table 5). This could be explained with com-
pounds of the medium that may (i) directly interact with the AMPs and
reduce their activity; (ii) inhibit the interaction of the AMP with the

Fig. 4. Structure of PAF (PDB ID: 2mhv, red) and sfPAFB (PDB ID: 2nc2, blue) and structural alignment of both proteins. sfPAFB is a truncated variant of PAFB,
shorter with two aa residues at the N-terminus. Antiparallel β-strands represented by arrows form two overlapping β-sheets. Consecutive strands are connected by
short turns or longer loop regions. The positions of cysteines and cationic residues are indicated in one letter code. Disulfide bonds are marked in yellow. PyMol 1.4.1
(Schrödinger, Inc.) software was used for structure alignment.

Table 4
In silico predicted physicochemical properties of γ-core motives derived from PAF and PAFB and their anti-Candida efficacy.

Synthetic peptide γ-core sequence§ Net charge
at pH 7#

GRAVY$ IC90 [μM]⁎

C. albicans
References

Pγ +1.8 −1.56 10 [14]

Pγopt +4.8 −1.91 1.3 [14]

PBγ +0.1 −0.72 > 400 [28]

PBγopt +4.8 −1.91 1.3 [28]

§ Peptides were synthesized with –SH group of the cysteines being reduced. Red letters indicate aa exchanges.
# Protein Calculator v3.4 (The Scripps Research Institute; http://protcalc.sourceforge.net/) was applied for net charge calculation.
$ GRAVY: Grand Average of Hydropathy.
⁎ IC90, AMP concentration inhibiting growth ≥90%.
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fungal target molecule by competing for the binding site; or (iii) in-
fluence the physiology of the fungal target cell by regulating the pre-
sence/activity of interaction molecules located for example on the cell
surface (cell wall, membrane). In a control experiment we tested the

susceptibility of the PAF and PAFB sensitive filamentous ascomycete A.
niger in 0.1 × PDB and 0.1 × YPD. Both AMPs were active in the two
media, which excludes the inactivation by media compounds binding to
the proteins (data not shown). Instead, the accessibility, presence and/
or activity of susceptibility determinants for PAF and PAFB in fungi
might be influenced by the medium composition.

As it is true for many AMPs from different origin [38,45–47], the
antifungal activity of PAF and PAFB is strongly influenced by the ionic
strength of the medium. Among monovalent and divalent ions, Ca2+ is
the most effective ion that interferes with the activity of these two
AMPs. High extracellular Ca2+ reduce the antifungal activity of both
AMPs in a concentration dependent manner [39,48] (PAFB, un-
published data). This raised the question whether Ca2+-binding mod-
ulates AMP activity. Recently we could show that the C-terminal re-
sidues Asp53 and Asp55 in PAF indeed specifically bind Ca2+, but this
protein-ion interaction does not affect the antifungal activity [39]. The
relevance of the C-terminal Ca2+-binding remains unknown. Notably,
low Ca2+ concentrations in the medium are necessary for the growth
inhibitory activity of PAF, because Ca2+ deprivation by the extra-
cellular Ca2+-specific chelator BAPTA-AM counteracts PAF function
[48,49].

Fig. 5. Chemical synthesis of PAFBopt by regio-selective disulfide bond formation. The synthesized protein was detached from the solid support and protecting groups
of the aa except Acm and Mob were removed by a trifluoroacetic acid (TFA)/water/dithiothreitol (95:5:3) (v/v/w) cleavage cocktail. The first disulfide bond was
formed with O2 of air in a pH 7.5 buffer (1). Iodine treatment cleaved Acm and oxidized free thiols of the second pair of cysteines in one step (2). After cleavage of
Mob by a trifluoromethanesulfonic acid (TFMSA)/TFA/anisole mixture (3), iodine was used to form the third disulfide bond (4).

Fig. 6. Stability testing of PAFB wt and PAFBopt in cell-free supernatants of A.
fumigatus and C. albicans. Spores or yeast cells (104/mL) were grown for 48 h in
0.05 × PDB medium as stationary cultures at 37 °C and 30 °C, respectively. The
hyphae and yeast cells were removed by centrifugation and 100 μL of the cell
free supernatant were transferred to an Eppendorf tube together with 100 μg/
mL of PAFB wt and PAFBopt. The samples were incubated for 1 h at 30 °C (C.
albicans supernatant) and 37 °C (A. fumigatus supernatant). The proteins in-
cubated in water served as controls (control). Samples were loaded in 10 μL
aliquots (corresponding to 1 μg protein per sample) on a 18% (w/v) SDS
polyacrylamide gel and size fractionated. Silver staining was performed to vi-
sualize the proteins.

Table 5
Susceptibility of C. albicans towards PAF and PAFB in different media.

AMP IC90 [μM]⁎

0.1 × PDB 0.1 × YPD

PAF 4 >32
PAFB 1 >32

⁎ IC90, AMP concentration inhibiting growth ≥90%; Yeast cells (104/mL)
were grown in the presence of increasing AMP concentrations (0–32 μM) for
40 h at 30 °C in 0.1 × PDB or 0.1 × YPD, respectively. Values represent %
growth in the presence of AMPs in comparison to the untreated control which
was set to be 100% growth. All values are given as mean ± SD (n = 3).
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5.2. The uptake of PAF and PAFB is a prerequisite for fungal cell death

Little is known about the role of the fungal cell wall in AMP func-
tion. The PAF/PAFB related AMP AFP from A. giganteus was shown to
interact with the fungal cell wall first and then with the cell membrane
[50]. This is supported by a strong in vitro binding capacity of AFP to
chitin and the activation of the protein kinase C (PKC)-dependent cell
wall integrity pathway as compensatory response in sensitive fungi
exposed to AFP [34,51,52]. In contrast, the structural properties of PAF
did not suggest any chitin binding ability [34]. Further studies revealed
that PAF negatively interferes with PKC/mitogen-activated protein ki-
nase (Mpk) signaling and does not activate the cell wall integrity
pathway [53]. To substantiate these findings, in vitro activity assays
with N. crassa using culture medium supplemented with β-1,3-glucan (a
major cell wall polysaccharide in filamentous fungi) or glucosamine
(building units of chitin) did not hamper the antifungal activity of PAF
and PAFB (unpublished data). Therefore, the polysaccharide compo-
nents of the cell wall do not seem to be the primary binding targets for
these two P. chrysogenumderived proteins and their retention by the cell
wall is unlikely.

Our studies further revealed that the binding of PAF and PAFB to the
fungal membrane is not sufficient to induce cell death, but that these
AMPs need to be taken up into the fungal cell. This can be visualized by
PAF and PAFB labelled with the fluorescent dye BODIPY (BP-PAF and
BP-PAFB) [11,38]. Only those cells that have internalized the AMPs
also appear positively stained with the cell death dye propidium iodide
(Fig. 7).

The uptake of PAF and PAFB is a regulated mechanism, which can
be inhibited by reducing the metabolism or by blocking oxidative
phosphorylation of the fungal cell. Both suggest an endocytic uptake in
sensitive fungi [11,54]. This mechanism was investigated in more detail
with BP-PAF. Conidia bind PAF in the outer layers without internalizing
the protein, but as soon as they germinate, the protein is taken up and
kills the growing hyphae in a concentration and time dependent
manner [38]. This indicates that only actively growing fungal cells
dispose of PAF susceptibility determinants for its internalization. Most
probably, PAF is retained in the conidial cell wall because of its more
complex and different cell wall composition compared to that of hyphal
cells [55]. In contrast, the binding of PAF and PAFB to the fungal cell is

impaired and no protein uptake occurs (i) in AMP resistant fungal
strains [54,56]; (ii) when sensitive fungi are exposed to inactive PAF
variants [38] or (iii) the medium composition affects the efficacy of the
proteins as described in Chapter 5.1. (Fig. 7) [11,56]. In all these cases
the cells are not killed, as evidenced by the lack of a propidium iodide
positive signal.

After internalization, PAF and PAFB are compartmentalized, most
probably in vacuoles, which are part of the endocytic pathway. In
contrast to the A. giganteus AFP [57] or the plant defensin Psd1 from
Pisum sativum [58], none of the P. chrysogenum AMPs localize in the
fungal nuclei [34] (PAFB, data not shown). As long as the proteins
remain in these compartments, the fungal cells show no signs of cell
death. Fungal killing happens when the proteins localize in the cyto-
plasm, which coincides with the membrane disintegration and uptake
of the otherwise membrane impermeable dye propidium iodide [56].
Finally, the damage of the fungal plasma membrane seems to be a
secondary effect induced by PAF and PAFB. The mechanistic mode of
action strongly resembles that described for the small, synthetic anti-
fungal hexapeptide PAF26 [59,60] and specific plant defensins [61,62].

5.3. PAF and PAFB are not canonical membrane-active AMPs

Many antifungal proteins, such as plants defensins, were reported to
interact with lipids of fungal plasma membranes [63]. Thereby, the
electrostatic interaction of these cationic proteins with the anionic
fungal membrane lipids is suggested. In agreement with this assump-
tion, the substitution of lysines (Lys 9, 35, 38) by alanines reduced the
antifungal activity of PAF against A. niger, most probably because the
positive net charge was lowered in the protein variants PAFK9A,
PAFK35A and PAFK38A (Table 3) [34].

To further confirm the importance of an electrostatic interaction of
PAF and PAFB with the fungal cell membrane, broth microdilution
assays were performed with N. crassa exposed to PAF or PAFB in
combination with the polysaccharide heparin. Heparin is a linear
polysaccharide consisting of repetitive units of pyranosyluronic acid
and glucosamine residues. Due to the high content of sulfo and carboxyl
groups, heparin has an average of 2.7 negative charges per dis-
accharide. Therefore, the interaction of heparin with the cationic aa of
proteins, such as lysines or arginines possibly organized in clusters on

Fig. 7. Cellular localization of PAF and PAFB and cell death induction in C. albicans in different media. Yeast cells were shaken at 200 rpm for 3 h at 30 °C in
0.1 × PDB or 0.1 × YPD in the presence of 8 μM BODIPY-labelled PAF and PAFB. Co-staining with 5 μg/mL propidium iodide was performed for 10 min before
imaging. Images were taken with the same exposition time (1.500 ms). BF, Brightfield; BP, BODIPY-labelled proteins; PI, Propidium iodide.
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the protein surface, is assumed to be electrostatically driven [64]. To
test this hypothesis, we expected heparin to bind to PAF and PAFB and
mask their positive charge, resulting in the loss of function. Indeed,
heparin increased the IC90 value of PAF four-fold and that of PAFB even
more than 30-fold (Table 6). Additionally, fluorescent microscopy re-
vealed a significantly reduced interaction (binding and uptake) of both
BODIPY-labelled proteins with the fungal cell in the presence of heparin
(Fig. 8A). In a control experiment, heparin was added to N. crassa
germlings and then removed by washing the grown hyphae three-times
with fresh medium before exposure to BP-PAFB (Fig. 8B). The micro-
scopic evaluation revealed that PAFB retained its antifungal activity.
This control experiment confirmed our assumption that heparin binds
to positively charged AMPs but does not mask susceptibility determi-
nants of N. crassa (Fig. 8B).

Zeta-potential measurements with large unilamellar vesicles (LUVs)

generated from membrane lipid extracts derived from N. crassa con-
firmed the binding capacity of PAF and PAFB with the anionic fungal
membrane lipids via electrostatic interaction, whereby the affinity of
PAFB for LUVs was higher than that of PAF, most probably because of
its overall higher positive net charge and/or the presence of a positively
charged surface area (see Chapter 4) [56]. In contrast, none of the two
AMPs were able to neutralize the negative Zeta-potential of LUVs de-
rived from a N. crassa mutant defective in glycosylation of ceramides
(Δgcs), proposing sugar moieties to be important for high affinity
binding [56]. This parallels with in silico molecular dynamics simula-
tion data of the A. giganteus AFP that propose the formation of stable
salt bridges and hydrogen bonds between the negatively charged gly-
cosylinositol phosphorylceramides in the fungal membrane with the
positively charged protein [65].

In addition to the electrostatic attraction of PAF and PAFB by LUVs
generated from fungal membranes, the interaction of these two AMPs
seems to necessitate additional binding partners (e.g. receptors in the
membrane and/or intracellular molecules). This is corroborated by the
fact that PAF, but not PAFB, acts in a glucosylceramide dependent
manner as demonstrated by the susceptibility testing of N. crassa mu-
tants defective in distinct enzymatic steps of this synthesis pathway
[56]. Furthermore, PAF variants carrying aa substitutions that neither
change the net charge nor influence the overall solution structure, e.g.
PAFF31N and PAFY48Q, lost their antifungal activity [9]. This was also
found to be the case for the mutant PAFD19S with similar PAF structure,
but increased net charge (+5.7 at pH 7) [38]. We therefore favor the
assumption that the glucosylceramide depletion affects the correct
sorting, distribution or activity of lipids and/or membrane proteins that
could be putative interaction molecules of PAF. Furthermore, ceramides
function as second messengers in fungal signal transduction pathways
responsive to environmental stimuli. Therefore, we cannot exclude that
the observed phenotypes resulted from deregulated signaling in the N.
crassa mutants in response to PAF [66].

Table 6
Susceptibility of N. crassa towards PAF and PAFB in the pre-
sence of heparin.

Compound IC90 [μM]⁎

PAF 0.06
50 μg/mL heparin n.d.
PAF + 50 μg/mL heparin 0.25
PAFB 0.12
50 μg/mL heparin n.d.
PAFB +50 μg/mL heparin 4

⁎ IC90, AMP concentration inhibiting growth ≥90%; The
antifungal activity of PAF and PAFB in the presence of heparin
was tested in a microdilution broth assay. N. crassa conidia
(104/mL) were grown in 0.2 × Vogel's medium under in-
creasing PAF (0–0.25 μM) or PAFB (0–4 μM) concentrations
combined with heparin (50 μg/mL) for 30 h at 25 °C. n.d. not
determined as no growth inhibition is observed.

Fig. 8. Susceptibility of N. crassa towards PAF
and PAFB in the presence of heparin. (A) Uptake
of PAF and PAFB: N. crassa conidia (5 × 105/
mL) were grown for 4 h in 0.2 × Vogel's
medium (25 °C, shaking at 200 rpm). 8 μM
BODIPY-labelled PAF (BP-PAF) and PAFB (BP-
PAFB) were added alone or in combination with
50 μg/mL heparin to the germlings and samples
were further incubated for 2.5 h at 25 °C until
microscopic evaluation. (B) Control experi-
ments: N. crassa conidia (5 × 105/mL) were
grown for 4 h in 0.2 × Vogel's medium in the
presence of 50 μg/mL heparin or without he-
parin. Then, all samples were washed three-
times with fresh medium and 8 μM BP-PAFB was
added to the germlings alone (heparin removed
and - heparin) or in combination with 50 μg/mL
heparin (+ heparin). The samples were further
incubated for 2.5 h at 25 °C until microscopic
evaluation. Images were taken with the same
exposition time (1.500 ms). BF, Brightfield; BP,
BODIPY-labelled proteins.
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The killing mechanism of many AMPs that target the microbial
plasma membrane starts with the interaction of the AMPs with the lipid
matrix followed by the subsequent permeabilization or disintegration of
the membrane [67]. This has been related to numerous AMPs, most of
them with antibacterial function [68].

So far, all our studies indicated that fungal killing by PAF and PAFB
does not occur through membrane disruption in the first place. Leakage
experiments using LUVs composed of the major phospholipid con-
stituents of eukaryotic membranes, palmitoyl-oleoyl-phosphatidylcho-
line (POPC) and mixtures of POPC/phosphatidylinositol, POPC/ergos-
terol, POPC/ceramide and POPC/sphingomyelin, were performed
according to [69] to investigate the membrane disruption potential of
PAF and PAFB.

These assays, however, revealed that PAFB does not cause mem-
brane leakage, independent from the lipid composition of the LUVs.
PAF induced only 10–20% leakage at a lipid to peptide ratio of 4:1 and
2:1 in POPC vesicles and in all other tested lipid combinations, re-
spectively (data not shown). However, these protein concentrations
were dramatically higher than the concentration range normally ap-
plied with classical membrane-disruptive AMPs (molar ratios li-
pid:peptide = 400:1 to 25:1; [67]), though the degree of disruption
strongly depends on the mechanistic mode of action. As in all tested
lipid vesicles, POPC was present, suggesting that PAF interacted with
PC. In order to reappraise the observed leakage assay data, differential
scanning calorimetry (DSC) was carried out using dipalmitoyl phos-
phatidylcholine (DPPC) as described before [67]. This method enables
to observe phase transition (Tm) behavior of phospholipid membranes,
which represents a very sensitive method for the detection of any in-
teraction with AMPs [70]. Upon incubation of DPPC with PAFB at a
lipid to peptide ratio of 25:1, a slight shift of Tm from 41.2 °C to 41.4 °C
accompanied by a 20–30% increase in enthalpy was observed (Fig. 9).
According to DSC data analysis described and studied by Lohner 2016
[70], an increased phase transition temperature and enthalpy points
towards stabilization of the gel phase due to higher lipid packing and
ordering. Amongst others, this can be a consequence of shielding the
surface charge or dehydration of the phospholipid head groups without
damaging the membrane. In the case of PAF, the opposite behavior was
observed: a Tm decrease from 41.2 °C to 40.8 °C without changes in
enthalpy (Fig. 9). The decrease in Tm refers to destabilization of the
membranes and this may explain the low leakage induced by PAF.
Furthermore, the pre-phase transition temperature of DPPC at 35 °C
was shifted to 33 °C in the presence of PAF. The pre-phase transition
temperature is particularly sensitive to interaction of peptides with the

lipid matrix [70].
In summary, the mild effects on membrane stabilization or desta-

bilization may explain no or negligible leakage or peptide-induced
temporal reorganization of the membrane, which is in contrast to the
damage induced by canonical membrane-active peptides. For compar-
ison, the antimicrobial peptide OP-145 induced 20–30% leakage of
POPC vesicles at a lipid to peptide ratio of 25:1–12.5:1 [67]. In this
concentration range, DSC recorded DPPC phase transition was almost
lost and DPPC membranes were completely destroyed in a detergent-
like manner as confirmed via X-ray techniques by the presence of small
disk like particles [67]. Thus, the results obtained with PAF/PAFB and
model membranes do not support any strong membrane disruptive
activities.

The fungal membrane lipid composition can have a dramatic effect
on the susceptibility of fungi to PAF and PAFB. N. crassa mutants de-
fective in the synthesis of the sphingolipid glucosylceramide are re-
sistant to PAF, whereas the susceptibility to PAFB is not affected by the
respective gene deletions [56]. However, it remains largely elusive to
which extent the treatment with these two compounds impacts the
membrane lipid composition itself. Application of PAF and PAFB in
doses corresponding to 4 × IC90 did not cause significant alteration in
class-wise normalized lipid profiles. Instead, a significantly elevated
ceramide content could be observed in PAFB treated cells, while there
was a consistent trend towards a reduction of total cardiolipin, phos-
phatidylcholine and phosphatidylethanolamine content in N. crassa
(Fig. 10). While the latter effect could potentially be explained by the
inhibition of growth caused by PAF and PAFB activity, the specific in-
crease on ceramide levels showed that the interaction between anti-
fungal proteins and this lipid class can be a key to understand the exact
molecular mechanism of action responsible for their potency, which

Fig. 9. Impact of PAF and PAFB on the thermotrophic behavior. DSC scan of
DPPC in absence and presence of PAF and PAFB as observed by heating scans.
The concentration of PAF and PAFB is indicated in relation to lipid to peptide
(L:P) molar ratio of 25:1.

Fig. 10. Impact of PAF and PAFB treatment on the phospholipid composition of
N. crassa. Conidia (107) were inoculated in 20 mL Vogel's medium for 18 h
(25 °C, shaking at 200 rpm). Hyphae were then treated with 4 × IC90 of PAF
(6 μM) and PAFB (3 μM) for additional 3 h until harvesting for total lipid ex-
traction and phospholipidomics analysis. Sample preparation and LC-MS/MS
measurement were performed as described in [56] in negative ESI mode. Dif-
ferent lipid features were quantified, normalized to total protein content and
summed per class (Cer: ceramide; CL: cardiolipin; PA: phosphatidic acid; PC:
phosphatidylcholine; PE: phosphatidylethanolamine; PI: phosphatidylinositol;
PS: phosphatidylserine). The obtained values were normalized to the respective
mean control values. CLs, PCs and PEs show a trend to be reduced by PAF and
PAFB treatment, while the total ceramide content was significantly increased
when treated with PAFB compared to PAF and the controls. Values are shown as
mean ± SD (n = 3). Normality of fold changes was tested with Shapiro-Wilk
test class wise (p > 0.05, Holm multiple testing adjustment). Homogeneity of
variances of the changes by class and treatment was assessed by Levene's test
(p = 0.638). Fold changes were found significantly associated with treatment
and lipid class, F(12, 42) = 5.517, p < 0.001. Post-hoc Tukey HSD analysis
was applied, and p-values were adjusted for multiple testing (**: p= 0.01; ***:
p = 0.001).
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should be addressed in detail in future studies.
Thus, the results confirm our observations that the interaction of

PAF and PAFB with the fungal cell membrane does not result in killing
of the sensitive organism by membrane disruption in the first place.

5.4. The fungal killing mechanism is complex and regulated

Instead, we propose a more complex and regulated mechanism of
action based on our detailed investigations with PAF. An immediate
response upon exposure of A. nidulans to this AMP includes the hy-
perpolarization of the plasma membrane at the hyphal tips and the
efflux of potassium ions into the supernatant [71]. In N. crassa and A.
niger a fast influx of extracellular Ca2+ was detected resulting in a
sustained elevation of the cytoplasmic Ca2+ concentration [38,48,49].
The induction of intracellular reactive oxygen species (ROS) was de-
tected in PAF- and PAFB-treated fungi by applying an indicator for
oxidative radicals (2′,7′-dichlorofluorescein diacetate) (Fig. 11) [8,45].
The permeabilization of the fungal membrane for ions, the deregulation
of the intracellular Ca2+ homeostasis and the elevation of the ROS
burden in the fungal cell are recognized triggers for apoptotic cell
death. Indeed, apoptotic markers, like phosphatidylserine exposure on
the cell surface, DNA strand breaks, mitochondrial disintegration and
membrane damage, were detected in A. nidulans exposed to PAF [71].

In conclusion, the growth inhibitory and fungicidal effect of PAF
and PAFB is a complex process that elicits different timely regulated
responses in the fungal target cell. The identification of the exact me-
chanism of interaction with the fungal plasma membrane and the
specific intracellular interaction molecule(s) of both P. chrysogenum
AMPs still requires our utmost attention.

6. Impact on mammalian hosts

To guarantee a safe applicability of AMPs to treat fungal infections
in humans and plants, any detrimental and cytotoxic effects have to be
excluded. For PAF and PAFB neither cytotoxic effects on human epi-
thelial cells L132 nor hemolytic activity on sheep erythrocytes were
observed [11,14]. The in vitro cytotoxicity of PAF has been more ex-
tensively studied in the past than that of PAFB. PAF caused no detect-
able cytotoxic effects on endothelial cells from the umbilical vein and
only had minor pro-inflammatory activity as assessed by the quantifi-
cation of interleukin (IL)-6, IL-8, and TNF-α production. Furthermore,
no modification of voltage-gated K+ channels of neurons, skeletal
muscle fibers and astrocytes were detected [72]. Similar results were
obtained for the A. giganteus AFP [73].

Experiments were carried out to investigate the harmlessness of PAF
in an in vivo murine model and to give insight in its safe applicability.
These studies revealed no evident change in the histology of mouse
tissues and skin after PAF administration [74]. Furthermore, Palicz and

co-workers (2016) showed in a follow-up study that PAF was similarly
effective as amphotericin B and mildly prolonged the survival of a
mouse model suffering from invasive pulmonary aspergillosis when
administered intraperitoneally. Notably, the efficacy could be sig-
nificantly increased when PAF was applied in combination with am-
photericin B [75].

Another example further underlines the most promising applic-
ability of AMPs from filamentous fungi. The N. fischeri NFAP2 inhibits
the growth of Candida spp. without harming primary human skin cells.
It effectively reduced the fungal burden of a fluconazole-resistant C.
albicans strain in a murine vulvovaginitis infection model when applied
alone. Similar to the findings with PAF, the efficacy could also be fur-
ther improved in this model by combining NFAP2 with fluconazole
[76]. Other examples for the combinatorial efficacy of AMPs with li-
censed drugs, e.g. caspofungin, against C. albicans biofilms are the plant
defensin HsAFP1 from Heuchera sanguinea and the radish defensins
RsAFP1 and RsAFP2 [77,78].

These results promise low - if at all - side effects of AMPs from fi-
lamentous fungi and a safe applicability as mono- or polytherapeutic
agents with acceptable compatibility for the host.

7. Future perspectives

Up to date none of the small, cationic, antifungal proteins from
ascomycetes have been applied biotechnologically or therapeutically in
large scale. However, their growth inhibitory and fungicidal activity
against human and plant pathogenic fungi as well as their efficacy
against Candida biofilm formation renders them most promising bio-
molecules for the development of new antifungal treatment strategies.
By the use of our recently developed P. chrysogenum-based expression
system AMPs can be secreted in high abundance into the supernatant of
easily fermentable molds [9,79–82]. The secretion and accumulation of
the proteins in the culture broth of fungi grown in mineral minimal
medium enables fast and low-cost protein purification. This system also
allows the production of recombinant AMP variants with improved
efficacy that are created by rational design [14]. In this respect PAF and
PAFB represent valuable model biomolecules that could inspire the
research of AMPs from other filamentous ascomycetes that still await
their identification.

The high stability of PAF and PAFB at high temperatures, against
protease degradation and within a wide pH range renders them suitable
therapeutics for use in clinical treatments, plant and food protection
[34,83] (PAFB, unpublished data).

Especially a topical application to treat superficial fungal infections
caused by Candida spp. or dermatophytes could be promising, whereby
the combination with licensed drugs such as fluconazole proved to be
highly effective in inhibiting the growth of Microsporum spp. and
Trichophyton spp. [84]. Another possible application could be the

Fig. 11. ROS induction by PAF and PAFB in N.
crassa. Conidia (5 × 105/mL) were grown for
4.5 h in 0.2 × Vogel's medium at 25 °C as sta-
tionary cultures. Germlings were treated with
5 × IC90 PAF or 5 × IC90 PAFB for 1.5 h, re-
spectively. ROS production was detected by in-
cubating the samples with 10 μM of the fluor-
escent dye 2′,7′-dichlorofluorescin diacetate for
30 min. Images were taken with the same ex-
position time (1.500 ms). BF, Brightfield; DCFH-
DA, 2′,7′-dichlorofluorescin diacetate.
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constitutive expression of AMPs in transgenic plants, which would
contribute to an improved plant “immune system” and defense towards
plant pathogenic fungi. Adding preservatives to food is a common way
to prevent food spoilage and poisoning of food products by fungi. As
naturally secreted compounds, AMPs such as PAF or PAFB could be
advantageous options as new food preservatives.
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