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A B S T R A C T   

There is evidence in literature that the spread of COVID-19 can be influenced by various 
geographic factors, including territorial features, climate, population density, socioeconomic 
conditions, and mobility. The objective of the paper is to provide an updated literature review on 
geographical studies analysing the factors which influenced COVID-19 spreading. This literature 
review took into account not only the geographical aspects but also the COVID-19-related out-
comes (infections and deaths) allowing to discern the potential influencing role of the geographic 
factors per type of outcome. 

A total of 112 scientific articles were selected, reviewed and categorized according to subject 
area, aim, country/region of study, considered geographic and COVID-19 variables, spatial and 
temporal units of analysis, methodologies, and main findings. 

Our literature review showed that territorial features may have played a role in determining 
the uneven geography of COVID-19; for instance, a certain agreement was found regarding the 
direct relationship between urbanization degree and COVID-19 infections. For what concerns 
climatic factors, temperature was the variable that correlated the best with COVID-19 infections. 
Together with climatic factors, socio-demographic ones were extensively taken into account. Most 
of the analysed studies agreed that population density and human mobility had a significant and 
direct relationship with COVID-19 infections and deaths. The analysis of the different approaches 
used to investigate the role of geographic factors in the spreading of the COVID-19 pandemic 
revealed that the significance/representativeness of the outputs is influenced by the scale 
considered due to the great spatial variability of geographic aspects. In fact, a more robust and 
significant association between geographic factors and COVID-19 was found by studies conducted 
at subnational or local scale rather than at country scale.   

1. Introduction 

Admittedly, COVID-19 outbreak is linked to geographical factors and its diffusion across the globe reflects a geographic control, 
showing different impacts according to the scale considered (i.e., global, regional, national, sub-national). 
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Geographical science through the use of cartographic techniques and analysis has demonstrated to be crucial in the study of the 
spatial dynamics of COVID-19 spread and transmission [1,2]. In the field of geography, a number of papers focus on the association 
between COVID-19 diffusion and geographic factors, including physical ones, as well as on the application of spatial tools/techniques 
for the study of the pandemic. 

Already in the first months since the start of the pandemic a few reviews on the topic were published in international journals. One 
of the earliest was performed by Briz-Redón and Serrano-Aroca [3] who focused on studies investigating the relationships between 
meteorological variables and the global expansion of COVID-19 analysing both findings and statistical modelling techniques. This 
review highlighted contradictory results among the analysed literature in the definition of the relationship between climate variables 
and COVID-19 transmission. Similar conclusions were reached by Paraskevis et al. [4] who reviewed literature on the effects of 
weather and climate variables (also with reference to urban parameters and air pollution) on the impact of the COVID-19 pandemic. 
The inconsistency of results among studies investigating the association between weather variables and COVID-19 incidence was also 
highlighted in the review by McClymont and Hu [5] with the exception of temperature, for which a negative association with incidence 
was found by the majority of the examined studies. Briz-Redón and Serrano-Aroca [3] emphasized that detailed studies tend to provide 
more reliable data when climatic and non-climatic factors (e.g., population density, mobility) have to be associated. 

One of the most recent reviews is by Wang et al. [6] who focused on the role of natural factors (e.g., climate, geographic location, air 
pollution) and human activity (e.g., mobility, health factor, economic conditions, demography) on global COVID-19 transmission. The 
authors found that spatial and temporal heterogeneity varied across countries and during different pandemic stages. 

Geographical studies dealing with the COVID-19 pandemic benefitted from the use of mapping and spatial tools, including 
Geographic Information Systems (GIS). The mapping of territorial variables crossed with that of COVID-19 spread was found to be 
useful for the interpretation of COVID-19 geography [7]. Reviews on this topic were produced since 2020 [cf. 8,9]. 

In the early stages of the pandemic Franch-Pardo et al. [10] performed a review on the implementation of geographical and 
geospatial analyses for understanding distribution patterns of COVID-19. An update of this review [11] showed that the latest research 
improved in spatial resolution with a consequent decrease in studies conducted at global level. Additionally, the authors found an 
increase in the number of the studies considering socioeconomic variables which were found to have a greater influence on COVID-19 
pandemic at more local level. Fatima et al. [12] produced a similar literature review with a specific focus on methodologies and 
associated outputs in relation to geospatial analysis applied to the study of COVID-19 showing that GIS was extensively used for 
analysing, visualizing and identifying COVID-19 patterns. 

Another review on the use of GIS and geospatial tools for the study of COVID-19 pandemic was implemented by Ahasan et al. [13] 
who found an important lack in the literature related to spatial modelling aimed at identifying and predicting the location of potential 
future outbreak. 

Since most of the reviews mentioned above were published during the first phases of the pandemic, we felt the need to provide an 
updated literature review on geographical studies analysing the factors which influenced COVID-19 spreading. The review presented 
here covers the period 2020–2022 and also comprises studies carried out after the pandemic peak benefiting from additional 
knowledge on COVID-19 outbreak and transmission. 

The objectives of this review are to: i) understand the role of the geographic determinants in COVID-19 spreading (e.g., geographic 
location, climatic characteristics, altimetry, morphological features); ii) identify common approaches, materials and methods used in 
the study of the COVID-19 outbreak from a geographical perspective; iii) recognise possible research gaps to address future in-depth 
analyses. 

2. Materials and methods 

2.1. Bibliographic search 

A literature search was performed in Scopus and Web of Science (WoS) on 23 January 2023 and updated in November 2023 by 
applying the following research query to “title”, “abstract” and “keywords”: (COVID-19 OR CORONAVIRUS OR SARS-Cov-2) AND 
Geography. The search was limited to peer-reviewed articles published since 2020 considering that the beginning of the COVID-19 
outbreak was at the end of 2019. 

Scopus and WoS databases were used for the search since they host the widest set of peer reviewed journal articles with reference to 
Natural Sciences and offer good quality of metadata. 

An additional search was also performed in Google Scholar to confirm that no significant papers on the topic of interest were 
overlooked, having this database a more comprehensive coverage [14]. This literature search was performed by applying the 
above-mentioned query, looking for the combination of keywords within the entire text. 

Articles were considered eligible for our review if they were (i) published in English language, (ii) peer-reviewed, and (iii) if they 
included statistical analysis, modelling or cartographic representations of one or more geographical factors/variables in relation to the 
outbreak of the COVID-19 pandemic. On the contrary, articles were excluded from the review if they were (i) not research articles (e.g., 
commentaries, reviews, editorials): (ii) not considering any geographic variable; (iii) exclusively focusing on COVID-19 medical as-
pects; (iv) focusing specifically on geography teaching and learning; (v) exclusively focusing on the secondary impacts of COVID-19 
outbreak, such as on economy, mobility, and population life/working styles. 

The review was performed according to the following steps (Fig. 1): (i) records were identified through Scopus, Web of Science and 
they were exported in bibtex and plaintext formats respectively; (ii) the retrieved records from both literature databases were merged 
using the RStudio tool bibliometrix [cf. 15] which also allowed us to remove duplicates; (iii) the identified records were screened and 
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selected according to the above-mentioned inclusion/exclusion criteria by title and abstract reading; (iv) selected records were 
included in or excluded from the final list after full text reading according to the eligibility criteria; (v) a check of the completeness of 
the literature search was done by consulting Google Scholar and by the list of references of the literature reviews mentioned above. 

Records retrieved from Scopus and WoS were respectively 1730 and 768. The sum of the documents retrieved from both databases 
totalled 1940 excluding duplicates. Among these, 222 articles fulfilled the eligibility criteria based on their title and abstract. The 
subsequent analysis of the full texts led to the exclusion of 139 papers which did not satisfy all the eligibility criteria. 

The search in Google Scholar returned 16,800 records ranked by pertinence by the default ranking algorithm, being the first 1000 
results retrieved and analysed. This check revealed that the literature search carried out in Scopus and Web of Science was highly 
comprehensive; in fact, only four additional papers were found, making a total of 87 articles. 

A further search was performed by checking the list of references of the most relevant papers selected. This allowed us to include 25 
additional papers resulting in a total of 112 articles to be finally reviewed. The results from the publications’ reference list search 
brought to our attention that many articles dealing with geographical aspects l.s. did not include “geography” in the papers’ key fields 
(title, abstract, keywords). This was especially true for papers that analysed specific factors, such as air pollution. 

2.2. Categorization criteria 

The full texts of the articles fulfilling all the eligibility criteria were reviewed, and relevant data were extracted based on the 
following items.  

• Subject macro-area  
• Submission and publication date  
• Region or country of study  
• Aim of the study  
• COVID-19 outcome data macro-area (infection, hospitalization, death) and detail (e.g., incidence, reproduction number, lethality, 

mortality)  
• Geographic variables macro-area (e.g., territorial, climatic, socio-demographic) and detail (e.g., latitude, average temperature, 

population density)  
• Data source  
• Other variables (e.g., number per-capita of hospital beds, life expectancy)  
• Investigated period  
• Spatial and temporal resolution  
• Statistical methodological approach  
• Main findings. 

Fig. 1. Workflow of the literature search on the influence of geographic factors on COVID-19 pandemic.  
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The geographic variables are understood as parameters that provide information about the characteristics of an area (thus not only 
descriptive of the geographic location) [16]. 

The selected and analysed papers showed a high heterogeneity of methods, data, and outputs. A narrative description and synthesis 
of the main results achieved is presented in the following section. 

3. Results and discussions 

Among the 112 selected articles, 32 studies were conducted at a global scale (Fig. 2), considering single countries as the spatial unit 
of analysis. Studies conducted at national and subnational level were mainly focused on China, Italy and USA that were among the 
most affected countries in the earliest phases of the COVID-19 pandemic. With reference to the submission date, the selected literature 
is mainly clustered around mid-late 2020 on account of the initial/early worldwide interest of academia/science on COVID-19 during 
the very first period of the pandemic. 

The selected papers took into account factors related to both physical and human geography. The factors related to physical 
geographical aspects comprise: (i) territorial variables, which are descriptive of the geographic location (latitude and longitude), and 
physical features of the area such as elevation and urbanization degree; and (ii) climatic variables including temperature, humidity, 
wind speed, precipitation and solar radiation. Air pollution was included among the climatic variables and proved to be an important 
environmental factor. As a matter of fact, a considerable number of reviewed studies examined the influence of both climatic/weather 
variables and air pollution on COVID-19 spread and health consequences, since those variables are closely linked one another [cf. 17, 
18, 19 and references therein]. 

The latest studies on the COVID-19 pandemic [cf. 11,20] put a significant emphasis on human geographic aspects since they were 
found to have had a certain influence on the pandemic trends at a local level from both socio-demographic and socioeconomic aspects. 

Based on the outputs of our review, the geographic variables were grouped into three macro-areas: (i) territorial variables, (ii) 
climatic/weather and environmental variables, (iii) socio-demographic and socioeconomic variables. The variables comprised in each 
macro-area are listed in Table 1. 

Regarding health outcomes, COVID-19 data comprised a wide variety of items from which were grouped into three main categories: 
infections, hospitalisations and deaths. The infection category includes measures such as number of cases, incidence, prevalence, swab 
positivity, reproduction number (Rt), spread, transmission and related rates. The hospitalization category comprises measures such as 
hospitalization rates, hospital and ICU admissions (both COVID-19 positive or total inpatients). The death category relates to measures 
such as mortality and lethality (and related rates), fatality, absolute number of deaths, excess mortality. For a complete description of 
COVID-19 related outcomes found in reviewed articles please refer to Appendix A. 

In the selected articles, we found that hospitalization variables were never studied independently/alone and had similar behaviour 
to infection and death in relation to geographic variables. Therefore, for the sake of clarity, we decided to present tabular data only on 
infections and deaths but detailed information on articles considering hospitalization and geographic variables can be found as 
supplementary data in Appendix A. 

Fig. 2. Geographic distribution of the studied areas: (a) number of papers categorized by Scopus subject areas; (b) number of papers per region and 
global scale studies; (c) frequency of scientific articles per each group of variables considered. 

V. Vandelli et al.                                                                                                                                                                                                       



Heliyon 10 (2024) e25810

5

3.1. Territorial variables 

Based on the analysis of the results presented in the reviewed articles, the influence of territorial variables on COVID-19 infections 
and deaths is discussed in the following sections and schematized in Table 2. 

3.1.1. Elevation 
Many studies across the globe agree on the existence of a negative correlation between the severity of COVID-19 pandemic and the 

elevation, and show that infection rates are lower, and consequences less severe, in regions at high altitudes [52]. A medical review 
conducted by Millet et al. [53] speculated that this is related to the limited survival of the virus in such environments and to the 
biological mechanisms (e.g., high concentrations of erythropoietin, optimized cellular oxygenation and antioxidant systems, increased 
mitochondrial performance at the alveolar level) which may affect people living in those areas [see also 54 and references therein]. 
However, some authors highlighted that the association among lower case rate and mortality with increasing altitude may be 
confounded by factors such as population density, socioeconomic features, access to health care services etc. [55 and references 
therein]. 

Lower incidence and mortality of COVID-19 in high-altitude places has been outlined in several studies. This is the case of the work 
by Fernandes et al. [29] that investigated the effect of altitude on the incidence of COVID-19 in 154 Brazilian cities (with a population 
>200,000 inhabitants). The authors detected a negative correlation between altitude and incidence, being the latter lower in cities 
located at rather high altitudes (between 795 and 1135 m a.s.l.). Similarly, Gupta et al. [33] found that altitudinal variation had a 
negative relation with number of infections in India. Based on this finding, the authors suggested that regions located at low lying 
elevation in India are more prone to experience a higher COVID-19 transmission. The same correlation was found for China by Sun 
et al. [47] and Han et al. [34]. Han et al. [34] inferred that this negative correlation might be due to the interaction between the 
meteorological conditions and socioeconomic status which characterize the prefectures located at higher altitudes. Díaz Ramírez et al. 
[52] excluded elevation from the analysis of the patterns of excess mortality across regions in 36 countries around the globe because 
they found a multicollinearity between elevation and other variables, namely, share of youth, population density and air pollution 
(PM2.5). 

3.1.2. Geographic location (latitude and longitude) 
The relationship between geographic location and COVID-19 spreading appears quite controversial, having many authors found 

different evidence on its possible role. 
Li et al. [38] conducted a study at global scale (154 countries) finding that the latitude has a negative correlation with COVID-19 

cases and deaths. The authors inferred that this is mainly due to the latitude control on temperatures. On the contrary, they found that 
longitude has a positive correlation (i.e., direct correlation) with COVID-19 cases, deaths and case fatality rates. The authors did not 
provide any specific explanation of their finding. However, the fact that their statistical analysis revealed that longitude, as well as 
latitude, has a correlation with COVID-19 spread can be seen as further proof that there is a geographic signal in the evolution of the 
pandemic [cf. 56]. 

Conversely, Sarmadi et al. [43] recognised that latitude had a positive correlation between cases and deaths of COVID-19 at a global 
scale. The authors found evidence that at latitudes higher than 60◦ (referring to the northern hemisphere) there was a higher pro-
portion of COVID-19 cases to population per 105. According to their findings, this correlation may be due not only to the colder 
temperatures which favoured the survival of the virus (cf. section 3.2), but also to better socioeconomic conditions which imply, for 

Table 1 
Geographic factors considered in the selected articles.  

Geographic variable macro-area Geographic variables 

Territorial Elevation 
Geographic location 
Land use 
Other territorial variables (e.g., distance from/density of human points of interest such as train stations, airports and other 
facilities) 

Climatic/weather and 
environmental 

Humidity 
Temperature 
Precipitation 
Wind speed 
Solar radiation 
Air pollution 
Other climatic/weather variables (e.g., hours of sunshine, evapotranspiration, permafrost coverage, Köppen classification 
group) 

Socio-demographic and 
socioeconomic 

Age and/or gender and/or ethnic group 
Total population and/or population density 
Mobility (e.g., human mobility trends, travel time, tourist flow) 
Economic stability (e.g., poverty, income, education, GDP, industrial production, trade intensity) 
Other socio-demographic variables (e.g., proportion of persons living in urban areas) 
Other socioeconomic variables (e.g., household occupancy/population, number of foreign citizens in residential building, 
households belonging to the lowest income category)  
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example, a greater accessibility/availability of COVID-19 diagnostic kits. 
Scarpone et al. [44] considered longitude and latitude in their models in order to identify spatial patterns for COVID-19 outbreak in 

the German counties. The results indicated no apparent correlation between longitude and incidence rates and a weak-to-moderate 
correlation with latitude. Sun et al. [47] found that the cumulative number of infected cases in China shows a linear negative rela-
tionship with latitude as well as infective spreading speed but, for the latter, this negative relationship is limited to the first phase of the 
pandemic (first 21 days). The same authors justified this negative relationship, in contrast with the findings of the other studies, by 
considering that it reflects a finer scale pattern, at provincial level, with uniform and strict lockdown policies. 

3.1.3. Land use 
Several studies, carried out at a country scale during the first wave of the pandemic, found a positive correlation with the increase in 

COVID-19 infections [31,37,42,50] and deaths [21] in urban and/or metropolitan settings with respect to rural ones. Schnake-Mahl 
and Bilal [57] confirmed this positive correlation after the first wave of the pandemic. Moreover, Sigler et al. [45] found evidence of 
contagion diffusion from urbanised to non-urbanised areas in a study conducted at a global scale. Furthermore, the authors found a 

Table 2 
Territorial variables considered in the selected literature: elevation (Elev), longitude (Long), latitude (Lat), urbanization (Urb) and their association (if 
any) with respective COVID-19 outcomes. The upturned arrow represents a positive association, the downturned stands for negative association and 
the horizontal bar is when no or non-statistically significant association was found.  

Citation Elev Long Lat Urb other Country/Region of 
study 

Territorial variable detail COVID-19 
outcomes 

Amdaoud et al. [21]    X  Europe Urban regions Deaths ↑ 
Armillei et al. [22]    X  Italy Peripheral areas Deaths ↑ 
Ascani et al. [23]     X Italy Presence of an airport in the province Infections ↑ 
Boterman [24]     X Netherlands Distance from train/motorway Infections – 
Chaves et al. [25]     X Central America and 

Caribbean 
Number of international territories/cities 
connected through the main airport 

Death ↑ 

Chen et al. [26]     X Hubei (China) Distance by road from Wuhan Infections ↓ 
Coker et al. [27]     X Northern Italy Distance in meters to the closest airport Death ↑ 
Dixon et al. [28]    X  Indiana (USA) Rural regions Infections ↑ 
Fernandes et al. [29] X     Brazil Altitude Infections ↓ 
Florida and 

Mellander [30]     
X Sweden Presence of nursing homes Infections ↑ 

Fortaleza et al. [31]    X X São Paulo State 
(Brazil) 

Urban areas Infections ↑ 
Distance from the State capital Infections ↓ 
Proximity to main roadways/airports Infections ↑ 

Grubesic et al. [32]     X Wisconsin (USA) Location of federal correctional facilities Infections ↑ 
Gupta et al. [33] X     India Elevation Infections ↓ 
Han et al. [34] X     China Elevation Infections ↓ 
Hass and Jokar 

Arsanjani [35]     
X Europe Number of amenities (e.g., cafes per cap., bars 

per cap.) 
Infections ↑ 

He et al. [36]     X Guangzhou (China) Density of shopping malls, hotels, restaurants 
etc. 

Infections ↑ 

Karim and Chen [37]    X  USA Metropolitan areas Infections ↑ 
Li et al. [38]  X X   USA, World Latitude Infections and 

Deaths ↓ 
Longitude Infections and 

Deaths ↑ 
Murgante et al. [39]    X  Italy Soil consumption Infections and 

Deaths ↑ 
Nasiri et al. [40]    X  Tehran (Iran) Commercial/residential land use Infections ↑ 
Niu et al. [41]    X X Wuhan (China) Building density, number of urban facilities Infections ↑ 

Distance from urban open space Infections ↓ 
Ramírez and Lee [42]    X  Colorado (USA) Urban regions Infections ↑ 
Sarmadi et al. [43]   X   World Latitude Infections and 

Deaths ↑ 
Scarpone et al. [44]  X X  X Germany Driving distance to train stations Infections – 

Latitude Infections ↓ 
Longitude Infections – 

Sigler et al. [45]    X  World Urbanisation rate Infections ↑ 
Urban density Infections ↑ 

Sleszynski [46]    X  Poland Degree of urbanization Infections – 
Sun et al. [47] X  X   China Altitude Infections ↓ 

Latitude Infections ↓ 
Topîrceanu and 

Precup [48]     
X World Inter- and intra-settlements travel distance Infections ↑ 

Vaz [49]     X Toronto (Canada) Green spaces Infections – 
Wang et al. [50]    X X USA Metropolitan areas Infections ↑ 

Proximity to nearest core airports Infections ↑ 
Wheeler et al. [51]    X  SE Minnesota (USA) Rural area Infections ↑  
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Table 3 
Climatic variables considered in the selected literature: humidity (Hum), precipitation (Prec), solar radiation (SR), temperature (Temp), wind speed 
(WS) and their association (if any) with respective COVID-19 outcomes. The upturned arrow represents a positive association, the downturned stands 
for negative association and the horizontal bar is when no or not statistically significant association was found.  

Citation Hum Prec SR Temp WS Country/Region of 
study 

Climatic variable detail COVID-19 
outcomes 

Ahmadi et al. [59] X X X X X Iran Relative humidity Infections ↓ 
Average precipitation Infections – 
Average solar radiation Infections ↓ 
Average temperature Infections – 
Wind speed Infections ↓ 

Azuma et al. [60] X X X X X Japan Relative humidity Infections – 
Mean precipitation Infections – 
Sunshine hours Infections ↑ 
Mean, maximum, minimum temperature Infections ↑ 
Mean wind speed Infections – 

Baniasad et al. [61] X   X  Global South (9 
countries) 

Relative humidity Infection and 
Death – 

Daily average temperature Infection and 
Death – 

Bilal et al. [62] X X  X  USA Humidity Infections ↑ 
Deaths ↓ 

Rainfall Infections and 
Deaths ↓ 

Average daily temperature Infection ↑ 
Deaths ↓ 

Cacho et al. [63] X  X X  Spain Monthly average relative humidity Infections and 
Deaths – 

Monthly average UVR Infections and 
Deaths ↑ 

Monthly average temperature Infections and 
Deaths ↓ 

Carleton et al. [64] X  X X  World (173 
countries) 

Daily average specific humidity Infections – 
Daily average UV radiation Infections ↓ 
Daily average temperature Infections – 

Chakraborti et al. [65]  X  X X World Precipitation Infections and 
Deaths – 

Minimum temperature Infections and 
Deaths – 

Wind speed Infections and 
Deaths ↓ 

Chen et al. [66] X   X X World (15 countries) Relative humidity Infections ↓ 
Daily average temperature Infection ↑ 
Daily average wind speed Infections ↓ 

Cherrie et al. [67]   X   USA, England, Italy Mean daily UVA Deaths ↓ 
Coker et al. [27]    X  Northern Italy Average temperature Infections ↓ 
da Silva et al. [68] X X  X  Brazil Daily air humidity Infections ↓↑ 

Daily total precipitation Infections ↓ 
Daily minimum, maximum temperature Infections ↓↑ 

Díaz Ramírez et al. [52]    X  OECD and European 
countries 

Average temperature Deaths – 

Fernandes et al. [29] X     Brazil Relative humidity Infection ↑ 
Guo et al. [69] X   X X World Daily average relative humidity Infections ↓ 

Daily average temperature Infections ↓ 
Daily average wind speed Infections – 

Gupta et al. [33] X X X X X India Specific humidity Infections ↓ 
Annual rainfall Infections ↓ 
Annual minimum, maximum, mean 
temperature 

Infections ↑ 

Annual solar radiation Infections ↑ 
Annual wind speed Infections ↑ 

Han et al. [34] X   X  China Relative humidity, minimum relative 
humidity 

Infections ↑ 

Daily minimum, maximum, mean 
temperature 

Infections ↑ 

Hass e Jokar Arsanjani 
[35]    

X  Europe Annual mean temperature Infections – 

Hofmeister et al. [70]   X   World Global Horizontal Irradiance Infections ↑ 
Iqbal et al. [71] X   X  World Relative humidity Infections ↑ 

Average maximum, minimum temperature Infections ↑ 
Irfan et al. [72]    X  Pakistan Daily mean temperature Infections ↓ 

(continued on next page) 
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Table 3 (continued ) 

Citation Hum Prec SR Temp WS Country/Region of 
study 

Climatic variable detail COVID-19 
outcomes 

Isaia et al. [73] X  X X  Italy Relative humidity Infections and 
Deaths – 

UV irradiance Infections and 
Deaths ↓ 

Monthly mean temperature Infections and 
Deaths ↓ 

Islam et al. [74] X  X X X World Relative, absolute humidity Infections ↑ 
UV index Infections – 
Daily maximum temperature Infections ↑ 
Wind speed Infections ↓ 

Jamshidi et al. [75]    X  USA, World Equivalent temperature (combined effect of 
temperature and humidity) 

Infections ↓ 

Kubota et al. [76]  X  X  World Mean precipitation Infections ↑ 
Mean temperature Infections ↓ 

Li et al. [77]    X  World Daily temperature, temperature seasonality Infections ↓ 
Li et al. [38] X   X  USA, World Relative humidity Infections and 

Deaths ↓↑ 
Medium, high, low temperature Infections and 

Deaths ↓ 
Liu et al. [78] X   X  World Specific humidity Infections ↓ 

Near surface temperature Infections and 
Deaths ↓ 

Ma et al. [79] X   X  Wuhan (China) Relative humidity Deaths ↓ 
Daily average temperature, diurnal 
temperature range 

Deaths ↓ 

Mandal and Panwar 
[80]    

X  World Monthly average temperature Infections ↓ 

Méndez-Arriaga [81] X X  X  Mexico Specific humidity at 1000 hPa Infections ↑ 
Monthly mean precipitation Infections ↑ 
Highest, lowest and mean temperature Infections ↓ 

Merow and Urban [82] X  X X  Australia, Canada, 
China, USA 

Relative humidity, absolute humidity Infections ↓ 
Total incoming UV radiation Infections ↓ 
14-days average temperature Infections ↓ 

Meyer et al. [83] X   X  World Daily relative humidity Infections – 
Daily average temperature Infections ↓ 

Moozhipurath et al. [84] X X X X  World (183 
countries) 

Daily ultraviolet index (UVI) Deaths ↓ 

Paez et al. [85] X   X  Spain Relative humidity Infections ↓ 
Mean temperature Infections ↓ 
Daily hours of sunshine Infections ↑ 

Pan et al. [86] X  X X X World (8 countries) Relative humidity Infections – 
Daily erythemally weighted daily dose Infections – 
Daily mean temperature Infections – 
Wind speed Infections – 

Pramanik et al. [87] X   X X Russia Relative humidity Infections ↑ 
Average temperature Infections ↓ 
Wind speed Infections ↑ 

Prata et al. [88]    X  Brazil Annual average of temperatures 
compensation 

Infections ↓ 

Rodríguez-Pose and 
Burlina [89]  

X  X  Europe Average precipitation 2019 Deaths ↓ 
Average temperature 2019 Deaths ↓ 

Sarkodie and Owusu 
[90] 

X X  X X World (20 countries) Relative humidity Infections and 
Deaths ↓ 

Precipitation Infections and 
Deaths ↑ 

Maximum, minimum temperature Infections and 
Deaths ↓ 

Wind speed Infections and 
Deaths ↑ 

Sarmadi et al. [43]    X  World Average temperature Infections and 
Deaths ↓ 

Sergeenko [91]   X    UV-index Infections ↓ 
Shao et al. [92]    X X World (47 countries) Mean temperature Infections ↓ 
Sobral et al. [93]  X  X  World Precipitation Infections and 

Deaths ↑ 
Maximum, minimum, average temperature Infections ↓ 

Su et al. [94] X   X X World (277 
countries) 

Relative humidity Infections ↑ 
Air temperature Infections ↓ 

(continued on next page) 
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positive correlation with infections and urbanisation rate/density, showing however that this correlation decreases with time. Dixon 
et al. [28] studied the spread of the pandemic among rural areas of the Indiana state (USA). They found that by autumn 2020 hos-
pitalization and mortality rates in rural areas exceeded those of urban areas may be because of few ICU beds and lack of healthcare staff 
in rural regions. On the contrary, the investigation by Sleszynski [46] suggested that there is not a directly proportional correlation 
between the increase of COVID-19 infections in Poland and the degree of urbanization. 

Based on the results of local spatial autocorrelation carried out at provincial scale in Italy, Murgante et al. [39] inferred a positive 
correlation between urbanization and particularly the lack of green spaces and the high number of positive cases and deaths of the 
earliest phases of COVID-19 pandemic in Lombardy [cf. 58]. Similarly, Vaz [49] considered the presence of green spaces as a variable 
which may have limited COVID-19 spreading within the districts of Toronto (Canada); however, the author did not find any significant 
correlation with COVID-19 density (number of cases per population considering the area of the respective administrative unit) and 
such variable. A spatial analysis enabled Nasiri et al. [40] to show that in Iran the number of COVID-19 hospitalised cases were higher 
in commercial and residential areas. By means of a clustering analysis, Niu et al. [41] inferred that floor area ratio and building density 
in China are positively correlated with COVID-19 middle-aged and elderly patients. The study by Wheeler et al. [51] analysed the 
spread of the pandemic among Minnesota (USA) rural counties which were found to host a significant number of COVID-19 hotspots. 
The presence of hotspots was attributed to socioeconomic disparities among Minnesota rural population. 

3.2. Climatic variables 

Based on the results of the reviewed articles, the influence of climatic/weather variables and air pollution on the spread of COVID- 
19 is discussed in the following sections and schematized in Tables 3 and 4 respectively. 

3.2.1. Humidity 
Among the climatic variables, humidity is considered one of the most relevant factors influencing COVID-19 spread and its con-

sequences [cf. 56,59,62,96]. 
Most of the studies analysed in this review identified a negative association between humidity and COVID-19 infections and/or 

deaths at a global scale [69,71,78,79,82,83,90]. In particular, Iqbal et al. [71] inferred that this indirect association may be due to the 
fact that low relative humidity may prolong the survival of COVID-19 virus on surfaces, whilst Liu et al. [78] supposed that aerosol 
transmission, as one of the COVID-19 potential transmission routes, can be enhanced in low humidity environments. In fact, the 
predominant mode of viral particle transmission involves adherence to droplets. In humid areas, high humidity causes the droplets 
from an infected person to combine into larger drops that rapidly fall to the ground due to their increased weight [97,102–104]. 
Conversely, in arid regions, such as deserts, especially in summer, intense evaporation and high temperatures desiccate the virus, 
diminishing metabolic enzyme activity [105]. Worth mentioning are also the findings of Islam et al. [74] who identified a range among 
which the absolute humidity is positively associated with higher rates of COVID-19 cases, that is between 5 and 10 g/m3. Chen et al. 
[66] showed that the number of daily new cases was correlated with relative humidity with a 7-day lag from the exposure day, and that 
COVID-19 is easily spread under relative humidity between 70 % and 80 %. 

A correlation between humidity and COVID-19 spread was found at a country scale in Brazil [29,68], China [34,97], India [33], 
Iran [59], Mexico [81], Russia [87], Spain [85] and the USA [62]. Among these studies, there is no agreement on the type of correlation 
between humidity and COVID-19 spread, e.g., Fernandes et al. [29], Han et al. [34] and Méndez-Arriaga [81] stated this correlation as 
positive, whilst Ahmadi et al. [59] and Paez et al. [85] as negative. Heterogeneity of results occurred also at a country level; for 
example, for six Brazilian capital cities humidity correlated negatively with COVID-19 infections whilst the opposite occurred for two 
others [68]. Similarly, Yang et al. [97] suggested that in China the type of correlation between relative humidity and COVID-19 
transmission depends on the season (i.e., warm season or winter) and physiography of the region considered (i.e., coastal or arid 
inland). Worth mentioning is the study by Gupta et al. [33] from which it was observed that an absolute humidity range of 4–6 g/m3 

Table 3 (continued ) 

Citation Hum Prec SR Temp WS Country/Region of 
study 

Climatic variable detail COVID-19 
outcomes 

Wind speed Infections ↑ 
Tang et al. [95]   X   USA Daily sunlight UV radiation dose Infections ↓ 
Tzampoglou and 

Loukidis [96] 
X X  X  World Monthly average relative humidity Infections and 

Deaths – 
Cumulative precipitation Infections and 

Deaths – 
Monthly average atmospheric temperature Infections and 

Deaths ↓ 
Yang et al. [97] X X  X X China Relative humidity Infections ↑ 

Total precipitation Infections – 
Daily maximum, minimum, range, average 
temperature 

Infections ↑ 

Average wind speed Infections ↓↑ 
Yuan et al. [98]    X X World (127 

countries) 
Daily average temperature Infections ↓ 
Average wind speed Infections ↓  
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Table 4 
Air pollutants considered in the selected literature and their association (if any) with respective COVID-19 outcomes. The upturned arrow represents a positive association, the downturned stands for 
negative association and the horizontal bar is when no or not statistically significant association was found.  

Reference PM10 PM2.5 NO2 SO2 CO2 O3 Country/region of 
study 

Environmental variable detail COVID-19 outcome 

Azuma et al. [60]  X X     Five-day mean values Infections – 
Baniasad et al. [61]  X     Global South (9 

countries) 
Daily value for the period March–December 2020 (short term analysis); Average value 
for the period 1998–2017 (long-term analysis) 

Deaths ↑ 

Bilal et al. [62]  X     USA Daily value for the period 2 March - 17 September 2020 Infections, deaths ↑ 
Chakraborti et al. [65]  X X  X  World Mean annual exposure (period not specified) Infections ↑ 

Nitrous oxide emission (metric ton) Deaths ↑ 
Total CO2 emission; CO2 emission per capita Deaths ↑ 

Coker et al. [27]  X     Northern Italy Average of the annual mean for the period 2015–2019 Deaths ↑ 
Deguen and Kihal- 

Talantikite [99]   
X    France Average of the annual mean for the period 2014–2018 Deaths ↑ 

Díaz Ramírez et al. [52]  X     OECD and European 
countries 

Mean value of 2019 Infections, deaths ↑ 

Han et al. [34] X X X X X  China PM10, PM2.5, NO2, SO2, CO2 - Daily values to which a lag of 1 and 9 days was applied Infections ↑ 
Hass and Jokar Arsanjani 

[35] 
X X X    Europe PM10, PM2.5, NO2 - Average of the annual mean for the period 2019–2020 Infections ↑ 

Isaia et al. [73] X      Italy Average of the annual mean for the period 2015–2019 Infections, deaths – 
Konstantinoudis et al. 

[100]  
X X    England (UK) PM2.5, NO2 - Average of the annual mean for the period 2014–2018 Deaths ↑ 

Ma et al. [79] X X X X X X Wuhan (China) PM10, PM2.5, NO2, SO2, CO2, O3 - Daily value for the period 20 January − 29 February 
2020 

PM10 – Deaths ↓ 
PM2.5 – Deaths ↓ 
NO2 – Deaths ↑ 
SO2 – Deaths ↓ 
CO2 – Deaths – 
O3 – Deaths – 

Middya and Roy [101]  X X X   India PM2.5, NO2, SO2 - Daily data averaged across the period 2016–2020 Deaths ↑ 
Murgante et al. [39] X X X  X X Italy PM10, PM2.5, NO2, CO2, O3 - Annual average values for the period 2019–2020 Infections, deaths ↑ 
Rodríguez-Pose and 

Burlina [89]  
X   X  Europe PM2.5 - Value of 2016 Deaths ↑ 

CO2 - Value of 2010 
Vaz [49]  X X   X Toronto (Canada) PM2.5, NO2, O3 - Value of 2011 Deaths –  
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mainly influenced the spread of COVID-19 in India. This absolute humidity range is partially comparable with the one identified by 
Islam et al. [74] at a global scale. Furthermore, it has been proven that changes in air humidity can affect respiratory cells and impact 
mucosal clearance [103]. Therefore, alterations in air humidity can increase the risk of virus exposure for humans, and the severity of 
infections depends on specific climatic conditions in which changes in air humidity occur [79,97,87,63]. 

3.2.2. Temperature 
The selected literature clearly showed the influence of temperature on COVID-19 spread, most of the authors being convinced that a 

negative correlation can be inferred. Some authors observed that COVID-19 is less stable at high temperatures [cf. 106]. At the same 
time, lower temperatures in winter enhance the survival time of viral particles in the atmosphere, facilitating transmission [97,81,63]. 
However, rising temperatures may be associated with behaviours that increase human exposure to the virus, e.g., increased human 
mobility and gathering of people for recreational purposes [60,92,107–109]. From a medical point of view, Irfan et al. [72] noted that 
exposure to colder temperatures adversely affects the immune function of the respiratory tract (see also [63,79,87,97]). In cold 
weather, the ability of certain lung cells to engulf and remove harmful particles significantly decreases, weakening the body’s defence 
system [110,111]. 

In the investigated literature, only few authors found a positive association between global COVID-19 spread and deaths and 
temperature [82,74,65]. Chakraborti et al. [65] collected data on COVID-19 cases and deaths in 180 countries across the globe, finding 
a positive correlation between minimum temperatures and COVID-19 deaths, whilst Islam et al. [74] found a positive association with 
14-day-lagged temperature and COVID-19 confirmed cases. In their study, which considers data from 31 countries all around the world 
and 428 Chinese cities and districts, Chen et al. [66] found that (i) a temperature range from 5 to 15 ◦C favours the spread of COVID-19 
and (ii) the association between the number of newly confirmed cases correlated best with air temperature with a lag of 3–7 days. 
Jamshidi et al. [75] found that global highest infections were within the range of − 10-0 ◦C and the lowest in the 20–30 ◦C range. Li 
et al. [38] inferred that medium temperatures were a positive predictor of COVID-19 deaths, whilst low temperatures were a negative 
predictor. 

Similarly, several authors found a negative association with the number of COVID-19 cases at a global scale [69,92,76,80,93,98] 
and deaths [43,96,71,90]. The negative association was generally explained as the warmer temperatures diminish the survival and 
transmission of the virus [cf. 90], and by the fact that the immune system efficiency decreases at lower temperatures [43]. Li et al. [77] 
suggested that colder seasons discourage outdoor activities, increasing the probability of being infected indoors. Rodríguez-Pose and 
Burlina [89] performed a study across European countries with reference to the first wave of COVID-19 discovering a negative cor-
relation with average temperature and excess mortality. 

As for single countries, Bilal et al. [62] statistically determined that average daily temperatures in the USA had a positive asso-
ciation with daily new cases and a negative association with daily new COVID-19 deaths. Méndez-Arriaga [81] in Mexico found that 
temperature negatively associated with the local confirmed COVID-19 cases. Cacho et al. [63] and Paez et al. [85] found a negative 
association in Spain. In Italy, a negative association between temperatures and COVID-19 deaths was found by Coker et al. [27] and 
Isaia et al. [73]. An earlier study by Prata et al. [88], focusing on the 27 Brazilian capital cities, showed a negative correlation between 
temperature and COVID-19 cases below 25.8 ◦C. More recently da Silva et al. [68], considering the same case studies, found that the 
statistical significance and the type of correlation between the number of COVID-19 cases and temperature varied depending on the 
region where the capital cities were located. Gupta et al. [33] discovered a positive relationship with temperature and number of 
infections in their analysis on all the Indian states. Irfan et al. [72] found that temperature was inversely correlated with COVID-19 
cases in Pakistan. As for China, the same type of correlation with COVID-19 deaths was found by Ma et al. [79], while the findings 
by Han et al. [34] suggested that the number of COVID-19 cases tended to increase with extreme temperatures. Moreover, according to 
Yang et al. [97], who studied the relationship between meteorological factors and COVID-19 transmission in seven Chinese cities, the 
influence of temperature (as well as of other meteorological factors) depends on the geographic location. In particular, they stated that, 
in the arid inland region, the warm season limited COVID-19 transmission and minimum temperatures accelerated COVID-19 
transmission. Finally, Pramanik et al. [87] found that temperature had a varied role in influencing the number of COVID-19 cases 
across Russia. For example, in the humid continental region, the number of cases was mainly linked to temperature seasonality, whilst 
mean temperature diurnal range was found to be the main influencing factor in the sub-arctic region. In both cases the correlation with 
temperature is however positive. 

3.2.3. Wind speed 
The role of wind speed in influencing the geography of COVID-19 is twofold. Chakraborti et al. [65] performed a study at global 

scale (180 countries) during the first half of 2020 and found that for Europe wind speed was one of the variables which showed the 
highest relative negative influence on COVID-19 cases. Guo et al. [69] performed a study considering COVID-19 confirmed cases and 
deaths from 190 countries during the earlier pandemic phases (January–April 2020) investigating the role of meteorological factors on 
COVID-19 incidence, and they found a weak negative correlation with wind speed. 

A 7-day-lagged and 14-day-lagged global analysis revealed that for the latter there is a significant negative correlation between 
wind speed and COVID-19 cases [74]. A negative association between wind speed and daily new cases was also discovered by Yuan 
et al. [98]. In 20 countries across the globe, the association with daily recoveries was found as negative whilst the one with confirmed 
cases and deaths was found as positive [90]. Su et al. [94] also suggested a positive relationship between wind speed and number of 
confirmed cases. 

At a country scale, Chen et al. [66] found that the number of confirmed new cases in the city of Wuhan (China) correlated well with 
wind speed on the exposure day (no temporal lag) and that a peak of cases was recorded when wind speed was 1.88 m/s. Moreover, the 
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authors suggested that COVID-19 spread easier under wind speed ranging between 1.5 and 4.5 m/s. In China, Yang et al. [97] found 
that the influence of wind speed on infections varied according to geographic locations. For example, a significant positive influence 
was found in Beijing, but not in other cities. The authors tried to explain the nature of this relation by stating that wind speed tur-
bulence increases the spread distance and the virus diffusion rate in the atmosphere. As wind speed is positively related with the speed 
and distance of virus transmission in the atmosphere, and the virus is also adsorbed on suspended particles that accumulate near the 
ground, an increase in wind speed is likely to accelerate the spread of COVID-19 [90,97,63]. As for other countries, wind speed showed 
a significant and inverse relationship with COVID-19 infections in Iran [59], whilst the same correlation was found to be positive in 
India [33]. 

3.2.4. Precipitation 
In the analysed literature, precipitation is rarely taken into account and this is accompanied by the lack of a common agreement on 

its role in influencing COVID-19 spread and deaths. Kubota et al. [76] suggested that precipitation is relevant to habitat suitability for 
the virus. 

Globally, the conclusion of studies which investigated the impact of precipitation on COVID-19 pandemic are varied depending on 
the outcome variable and the study period considered. Kubota et al. [76] and Sobral et al. [93] identified a positive correlation of the 
number of COVID-19 cases with precipitation, in the earlier phases of the pandemic; on the contrary, Sarkodie and Owusu [90] 
discovered a negative association with both infections and deaths. Instead, neither significant nor weak correlation has been identified 
with COVID-19 deaths [96,93]. 

At a national level, precipitation showed varied relationships with COVID-19 depending on the region considered as well as on the 
considered health outcomes. Gupta et al. [33] found a negative association with COVID-19 number of infections in India. The analysis 
conducted by Bilal et al. [62] suggested that precipitation was among the most significant factors influencing COVID-19 pandemic in 
the 10 greatly affected states of the USA. The study also showed that daily new cases and deaths had a negative association with this 
weather variable. A negative correlation was found also for some capital cities in Brazil [68] and Europe [89]. On the contrary, a study 
focused on 31 states and the capital of Mexico outlined that daily local COVID-19 confirmed cases and local transmission ratio had a 
positive association with precipitation [81]. No significant correlation was found by Ahmadi et al. [59] in Iran and by Yang et al. [97] 
in China. 

3.2.5. Solar radiation 
Studies carried out at both global and national levels suggested that Solar UV radiation may have an impact on the development of 

COVID-19 through the positive effect of vitamin D on the immune system. In fact, UV rays play a crucial role in converting provitamin 
D3 into the active form vital for immune defence mechanisms [63,112–114]. Moreover, increased solar radiation, particularly in the 
UV-B region, may serve as a disinfectant for non-porous materials, potentially reducing the spread of the virus. 

In this context, at a global level, a negative association of COVID-19 cases [82,64] and deaths [84] was found. This negative 
correlation was confirmed also at a national level [33,59,73,91]. In contrast, Hofmeister et al. [70] suggested that the increases in 
COVID-19 cases in spring and summer may be linked to high solar irradiance, causing ultraviolet immune suppression as one means of 
amplification. Only a few studies discovered no correlation between solar radiation and COVID-19 at global [74,86] and country scales 
[63]. 

3.2.6. Air pollution 
Literature on the topic suggests that air pollution could act as a carrier of the viral particles and a factor which aggravates COVID-19 

severity [115–121]. In particular, it has been considered as a potential explanatory variable for COVID-19 geography in 15 studies. The 
main air pollutants considered were PM10, PM2.5 (fine particle matter with a diameter smaller than 10 and 2.5 μm respectively), 
nitrogen dioxide (NO2), sulphur dioxide (SO2), carbon dioxide (CO2) and ozone (O3). The possible correlations between air pollutants 
and COVID-19 outcomes are reported in Table 4. According to the literature review by Copat et al. [116] regarding the influence of air 
pollution on COVID-19 infectivity and lethality, PM2.5 and NO2 are the most influent pollutants, and to a lesser extent PM10. Worth 
mentioning is that Deguen and Kihal-Talantikite [99] found NO2 to be a good indicator for traffic-related air pollution since it cor-
relates well with other traffic-related air pollutants, (i.e. particulate matter), and chose it for their analysis due to its higher spatial 
variability. 

At a global scale, Chakraborti et al. [65] found that environmental pollution had a strong causal impact on COVID-19 cases in Asian 
countries. In particular, NO2 and PM2.5 concentration was significantly correlated with total cases and deaths. The same study showed 
that CO2 emissions had a certain influence in American countries whilst in African countries, considering COVID-19 deaths as the 
response factor in the modelling, only PM2.5 and CO2 emission proved to be statistically significant. It was also discovered that NO2 
was positively correlated with deaths in Oceania. 

Baniasad et al. [61] investigated the long-term effect of air pollution on COVID-19 health outcomes for eight countries of the Global 
South considering PM2.5 data over the period 1998–2017. The authors did not find any significant correlation between the air quality 
and a possibly higher risk of COVID-19. They suggested that it is necessary to consider a greater scale, e.g., at a subnational level, in 
order to better investigate this association. 

At a country scale, the statistical analysis of Bilal et al. [62] highlighted a negative association of PM2.5 with daily new cases as well 
as COVID-19 daily fatalities in the USA. On the contrary, the analysis by Coker et al. [27] suggested a positive association of ambient 
PM2.5 concentration and excess mortality in northern Italy. In France, the analysis carried out by Deguen and Kihal-Talantikite [99] 
revealed a significant correlation between long-term exposure to NO2 and COVID-19 incidence and hospitalised cases. As for China, the 
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analysis by Han et al. [34] revealed a positive correlation of PM2.5 with infected cases. Hass and Jokar Arsanjani [35] found that PM10 
is one of the variables with higher significance in the northern European countries. In England (UK), COVID-19 mortality risk posi-
tively correlated with long-term exposure to NO2 and PM2.5 [100]. A strong positive correlation was found mainly in the western part 
of India between PM2.5 and COVID-19 deaths, whereas in the other parts of the country such a relationship was not observed [101]. 
Finally, Rodríguez-Pose and Burlina [89] found a positive correlation of COVID-19 deaths with PM2.5 in their study at a European 
level. 

3.3. Socio-demographic and socioeconomic variables 

As far as human geography factors are concerned, the reviewed articles showed a significant influence of demographic and so-
cioeconomic features on COVID-19 infections and deaths, which is discussed in the following sections. 

3.3.1. Age 
The age structure of a population may help in explaining differences in the severity of COVID-19 consequences, e.g., in terms of 

hospitalization and fatality rates throughout regions and on how transmission took place [21]. It is clear that age is an important 
parameter to be considered in studying a pandemic. In fact, it has been estimated that 95 % of COVID-19 deaths in Europe were among 
people aged over 60 years old being more than 50 % ≥ 80 years old [21,30]. 

Only a few studies considered age structure in their analysis at a global scale. Chakraborti et al. [65] found that for 180 countries 
COVID-19 infection risk was high with age >80. Li et al. [38] found that a high percentage of the population less than 10 years old was 
a negative predictor of the number of COVID-19 cases in 154 countries. Su et al. [94] reported that the percentage of people aged over 
65 can explain approximately 50 % of variation in transmission rate across the 277 regions. Finally, Tzampoglou and Loukidis [96] 
found a strong correlation between both the total cases and the total deaths per million of inhabitants with the increasing median age of 
the population. 

At a national level, Middya and Roy [101] observed that the total number of persons aged 50 years or more positively correlated 
with COVID-19 mortality in India. On the contrary, Paez et al. [85] stated that the percentage of older people was negatively associated 
with incidence in Spain. The authors inferred that this finding might have been due to the fact that older adults may tend to have a 
lower level of social contacts/higher level of social distancing than younger people. This evidence is also confirmed by Rahman et al. 
[122] who found that the infection rate was the highest among those aged 21–50 years. The authors also underlined that this did not 
contradict the evidence that older adults are more vulnerable, since older people mortality rates are the highest among all age groups. 
This finding actually indicates that older people’s presence within a community tends to lower virus transmission. 

As for studies conducted at a more local scale, Lopez-Gay et al. [123] found that in Barcelona higher rates of infection characterized 
geographical units that had more residents aged 70 years, and that the percentage of people older than 70 years was positively 
correlated with COVID-19 infection rates. Similarly, Coker et al. [27] showed that COVID-19 infection risk was high with age >80 in 
northern Italy. In New York (USA), percentages of people aged 18–44 and 45–64 were negatively associated with COVID-19 death rate 
[124]. 

3.3.2. Population size and density 
Since the earlier phases of the pandemic, population size and density were considered to play a central role in explaining the 

geography of COVID-19. The pandemic has in fact hit harder the highly connected global cities [cf. 30] which are characterized by high 
frequency of social interaction that can surely be a driver of rapid contagion [23,125]. A total of 50 studies examined data relative to 
population size or population density to analyse possible relationships with COVID-19 infections and deaths. Twenty-three of these 
studies considered population density whilst the other 27 took into account the total population of the spatial unit of analysis (e.g., 
state, county, region). Actually, the above-mentioned positive correlation was confirmed by many of the studies analysed in our 
literature review, both at global and national/subnational levels. 

At a global level, it was found that population size was directly associated with case-fatality rate [126] and number of infections 
[45,75,76]. The factors that may have determined this direct correlation are: i) the higher strain on the healthcare system, ii) the 
higher risk of transmission, and/or iii) scant population health conditions in highly populated countries. On the contrary, the cor-
relation of population density with COVID-19 infections and deaths is not univocal. For example, some authors found no significant 
correlation between population density and transmission and fatalities [38,126], whilst Díaz Ramírez et al. [52] found a strong as-
sociation with mortality excess in their study focused on OECD and European countries. The discordant results are perhaps due to the 
fact that the population density was calculated by dividing population size by the country extent, being in many countries the pop-
ulation not homogeneously distributed (see also [96]). 

At a country scale, it was confirmed the positive correlation between population size and/or density. For example, in Iran Ahmadi 
et al. [59] and, specifically for the city of Tehran, Nasiri et al. [40] found a significant and direct relationship between the number of 
infected people and population density. In São Paulo State (Brazil), Fortaleza et al. [31] discovered a higher influence of demographic 
density on COVID-19 spread during the earlier phases. Similarly, population density showed a positive correlation with COVID-19 
spread in Malaysia [127,128]. The same correlation was found for China [34], Nigeria [129] and India [33,101,130]. Holmager 
et al. [131] reported that high population density in Denmark as well as large households, seemed to increase the risk of COVID-19 
spread. A positive association between COVID-19 deaths and population density [42,50] and county population [37] were found in 
the USA. 

On the contrary, no or unclear correlation between population and the geographic variation of COVID-19 was found in Italy [23, 
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27], The Netherlands [24] and Sweden [30]. 
It is worth mentioning that not in all the studies analysed population was used as a conditioning factor for COVID-19 geography; in 

fact, in some of them, population data were used to normalize infections and deaths [cf. 75] or to assign weights to the investigated 
spatial unit of analysis [22,132]. In some other studies, population was also considered as a confounding factor [83,133]. 

3.3.3. Economic stability (e.g., poverty, income, education, GDP, industrial production, trade intensity) 
Admittedly, welfare and income dimensions had a major role in driving the pattern of COVID-19 cases and deaths around the 

world. 
The Gross Domestic Product (GDP) well represents the country wealth and GDP per capita was taken into account as an explanatory 

variable in many of the analysed studies. In fact, at least during the first phase of the pandemic, the importance of GDP for the ge-
ography of COVID-19 could be inferred by observing that the regions hardest affected by the pandemic were characterized by rela-
tively higher GDP. This was the case of northern Italy, where the provinces most affected by the pandemic were those characterised by 
a GDP above the national average [23]. Statistical analysis conducted at the national level for Chinese prefectures confirmed the 
positive correlation between the GDP [34] and, more broadly, economic development [134], with the number of confirmed COVID-19 
cases. Paez et al. [85] estimated that higher incidence was associated with higher GDP per capita in Spain. At a global level, almost all 
the investigated studies agree on the existence of a positive correlation between country GDP per capita and COVID-19 infections [76, 
126] and deaths [43,65]. This is probably due to the fact that high GDP implies more intense international economic exchanges and 
consequently higher levels of global interconnection among individuals increasing the possibilities of virus transmission [135]. This is 
supported also by some studies which conclude that trade intensity showed a positive correlation with COVID-19 infections and deaths 
[25,136]. 

The role of income in affecting the distribution of COVID-19 was investigated mainly at sub-national level. Studies conducted in 
Sweden and in Finland [cf. 30,137] found that COVID-19 cases were more concentrated in the less advantaged areas. The impact of 
unemployment rate on COVID-19 at country level is twofold. A negative correlation was found in Italy and the USA regarding the 
number of infections and deaths, respectively [37,23] whilst a positive correlation was found with infections in Germany. The un-
employment status implies no human interactions within the working environment as well as reduced necessity to commute e.g., by 
using crowded public transport, thus less chance for virus transmission; on the contrary, a lower unemployment rate implies poor 
economic conditions which are often accompanied by scant access to medicine and health assistance. 

3.3.4. Human mobility 
Owing to the high transmissibility of COVID-19, many studies in literature analysed the effects of human mobility on infections 

and/or death rates. Topîrceanu and Precup [48] modelled epidemic diffusion integrating population characteristics with human 
mobility, finding that the number of infections was more sensitive to the increase in travel distance between settlements (positive 

Table 5 
Main methods and tools applied in the 112 reviewed studies. Classification of methodology macro-area and area is based on the work by Franch-Pardo 
et al. [11]. In the second column, the figures in the brackets represent the numbers of papers which have applied a methodology included in the 
respective area.  

Methodology macro- 
area 

Methodology area (number 
of articles) 

Specific methods and/or tools 

Mapping Choropleth mapping (56) Mapping spatial distribution of COVID-19 data (e.g., number of infections/deaths per administrative 
unit) and geographic factors (e.g., temperature, rainfalls, population density) 

Hotspot and cluster 
mapping (19) 

Mapping spatial autocorrelation based on hotspots and cluster analysis (e.g., LISA maps) 

Dot distribution mapping 
(11) 

Mapping locations of COVID-19 cases or points of interest 

Spatial heat mapping (11) Mapping geographic factors (e.g., temperature, precipitation) and COVID-19 spread (e.g., density of 
infections, COVID-19 risk) through interpolated surfaces 

Flow mapping (4) Mapping mobility and urban networks 
Statistical analysis/ 

modelling 
Aspatial models (49) Pearson Correlation; Poisson regression; Kendall and Spearman test; Negative binomial model; Analysis 

of variance (ANOVA); Exponential regression; Zero-inflated negative binomial (ZINB) regression; 
Quantile regression model; Generalized additive model (GAM) 

Machine learning (10) Random Forest algorithm; LASSO regression; Gradient Boosting Decision Tree 
Spatial statistics Hotspots and clustering (22) Spatial autocorrelation (Global Moran Index, Local Indicator of Spatial Association, LISA); Getis-Ord Gi; 

Kernel density estimation; Spatial and Space-Time Scan Statistics 
Spatial regression (13) Geographical weighted regression (GWR); Ordinary Least Square (OLS) model; Spatial error model 

(SEM); Spatial lag model (SLM); Conditional autoregressive (CAR) model; Spatial Seemingly Unrelated 
Regressions (SPSUR); Autoregressive Integrated Moving Average (ARIMA) 

Interpolation and 
geostatistics (3) 

Inverse Distance Weighting 

Other spatial models (5) Global geographical gravity models 
Multicriteria analysis Multicriteria analysis (12) Analytical hierarchical process; Hierarchical cluster analysis; Bayesian hierarchical Poisson log-linear 

models; Bayesian hierarchical space–time SEIR model; Geo-hierarchical population mobility model; 
Time-geography model based on space-time discs and control points; Grey relational analysis model 
(GRA)  
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association), rather than to the travel frequency. 
Generally speaking, it was observed that government-imposed mobility restrictions were successful in mitigating COVID-19 

transmission [61,138]. At a global level, a positive correlation was found between human mobility and COVID-19 infections [45, 
92,75,76,139]. At a national scale, several studies found that mobility reduction generally implies a restrain on infections [59,140, 
141]. A positive correlation between mobility and excess mortality was also found in Italy [23] and Ecuador [142]. 

Established that mobility is a very important variable in explaining the geography of COVID-19, retrieving mobility data is often 
challenging [143]. Considering this, it is worthy to mention that for the studies conducted at a global scale, mobility data were mainly 
retrieved from Google’s or Apple’s COVID-19 Community Mobility Reports [52,92,65,138]. At a national level, where a granular scale 
was required, human mobility data were often provided by mobile phone datasets [e.g., 124,142]. Additionally, Ascani et al. [23] 
studying the effect of mobility on the spread of COVID-19 pandemic between Labour Market Areas (LMAs) used Facebook Disease 
Prevention Maps data based on tracking Facebook users’ movements. 

In other studies, conducted at both global and country scales, mobility was measured by passenger traffic in airports [30,65,89, 
144], finding a positive correlation with COVID-19 outcomes. 

3.4. Spatial and temporal resolution, and statistical methodological approach 

Among the revised studies, 71 were conducted at sub-national level considering varied spatial units of analysis (e.g., counties, 
provinces, districts, municipalities, cities) almost exclusively based on administrative boundaries. This was due to the fact that COVID- 
19 data, climatic/weather and environmental data, as well as the socio-demographic and socioeconomic ones, were mostly provided 
for administrative units (e.g., regions, provinces, municipalities). In this context, the variations that can significantly affect such data 
within a certain administrative unit are often disregarded [145]. This may prevent the understanding of the significant uneven patterns 
of COVID-19 pandemic which in fact overcame administrative boundaries. 

Only a few studies considered spatial units not based on administrative boundaries. For example, Ascani et al. [23] studied the 
geography of COVID-19 at a local level in Italy by considering labour market areas based on commuting data as spatial units of 
analysis. Similarly, Carballada and Balsa-Barreiro [2] based their analysis on mobility areas in Spain. Only a few studies were per-
formed at a neighbour level [cf. 44,123,140] counting on granular data on COVID-19 and socio-demographic/socioeconomic features. 

With reference to the temporal resolution, most of the studies were relevant to the first phases of the pandemic, during the year 
2020, and mainly focused on a relatively short time frame, varying from 30 to 180 days, whilst only few studies exceeded one year of 
data collection and analysis [50,65,133]. If, on the one hand, the level of spatial granularity of the studies was modest, on the other 
hand, we encounter that the analyses were based on a high temporal resolution mainly including daily or weekly data. This reflects the 
wide availability of daily or weekly open data concerning both COVID-19-related outcomes (e.g., available at Our World in Data or 
John Hopkins University Coronavirus Research Centre websites), and geographic factors (e.g., available at Copernicus Climate Change 
Service and NASA Climate Data Service repositories). 

The literature review carried out showed that integrating both space and time in the analysis of COVID-19 spread is a challenging 
issue. In most of the studies, the time dimension is considered by comparing the results of the analysis at discrete individual time 
points. Only few studies integrated both temporal and spatial dimensions in their analysis and/or models [e.g., 66,68,76,146]. 

Different approaches in trying to decipher the role of geographical and environmental factors in the spreading of the COVID-19 
pandemic were applied including both spatial and aspatial techniques. The spatial distribution of COVID-19 data (e.g., infection 
and excess mortality rates) and geographic factors (e.g., temperatures, precipitation, population density) have been represented 
primarily through choropleth maps. Regression models were used to analyse the correlation with many kinds of variables. Among 
others, the Pearson correlation was used to investigate the correlation of COVID-19 related outcomes with climate/weather variables 
[33,59,97], elevation and geographic location [29,47]. The Poisson regression was instead applied to study the correlation between 
the independent socioeconomic and demographic variables with COVID-19 related outcomes [e.g., 123,142,147] but this method is 
also suitable for investigating the relation with meteorological factors [e.g., 148]. 

The geography of COVID-19 was also investigated by applying the hotspots and clustering analysis through the Global Moran 
Index, which measures the spatial correlation based on spatial distribution of the values of a variable. This tool evaluates if the variable 
values are spatially clustered, dispersed or random [149]. Since the Moran index is a global statistical index and provides only one 
value for the entire spatial pattern (and no information on the location of the clusters), the Local Indicators of Spatial Association 
(LISA) tool was frequently applied to achieve more significant outputs. The hotspot and clustering analysis were generally accom-
panied by the related maps (e.g., LISA maps). 

The limit of the spatial techniques used in the analysed studies is that they are generally based on the Tobler’s law according to 
which “everything is related to everything else, but near things are more related than distant things” [150] but many studies revealed 
that this cannot always be applied in describing COVID-19 spatial dynamics. This was particularly true in the first phases of the 
pandemic during which transmission could occur over a long distance through train and highway networks and airplane routes. On the 
contrary, aspatial techniques did not consider the potential spatial correlation of both COVID-19-related outcomes (e.g., infections, 
hospitalization and deaths) and geographic variables. 

Other methods and tools, which are not mentioned above, were applied in the analysed investigations (see Table 5). 

4. Conclusions and perspectives 

The literature review confirmed that there is a geographic signal in COVID-19 spreading since both physical and human 
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geographical factors have proved to be significant in explaining the spatial distribution of the contagion and its consequences. The 
novelty of our review with respect to the previous ones resides in: (i) the use of an interdisciplinary approach to analyse the selected 
papers, including expertise in epidemiology and physical geography; (ii) the emphasis on the spatial and temporal resolution of the 
analysed papers; (iii) the wider range of variables influencing COVID-19 outbreak and transmission considered; and (iv) the overview 
of the varied health outcomes considered by the reviewed studies, which are aspects often neglected by existing literature reviews in 
the field. 

Among the territorial variables, latitude and elevation, due to their control on temperatures and environmental features, showed a 
negative association with COVID-19 related outcomes. For what concerns elevation, its negative association with infections and deaths 
must be taken with caution since other factors, such as population density, socioeconomic characteristics, availability of health care 
services, may act as confounders. Urbanization was one of the most investigated variables in the analysed literature which in general 
showed a certain agreement in stating that there is a positive correlation between urbanization degree and COVID-19 infections. 
However, some studies highlighted that often COVID-19 had more severe consequences in rural settings due to the lower availability/ 
accessibility of health care services. 

For what concerns climatic variables, temperature is the one that best correlates with COVID-19 infections and this correlation was 
found to be negative in most of the analysed studies. From the analysis of the literature under investigation, it has also been revealed 
that correlations between humidity and COVID-19 must be considered. However, the role played by humidity can vary depending on 
factors such as scale and seasonality. 

The influence of wind speed on the geographical spread of COVID-19 is twofold. According to literature, wind speed is positively 
correlated with the speed and distance of virus transmission in the atmosphere, and an increase in wind speed will expedite the spread 
of COVID-19. Solar UV radiation was identified as impacting the development of COVID-19 through the positive influence of vitamin D 
on the immune system or virus inactivation. 

Admittedly, owing to the high transmissibility of COVID-19, human interactions must have played a major role in virus diffusion, in 
fact, the pandemic hit the highly populated and connected cities harder. This is in accordance with most of the analysed studies which 
showed that population density and human mobility have a significant and direct relationship with COVID-19 infections and deaths. 

The analysis of the different approaches used to decipher the role of geographic and environmental factors in the spreading of the 
COVID-19 pandemic revealed that it is advisable to look at the geographic aspects, considering their great variability, at a high level of 
granularity (e.g., subnational or local scales) in order to ensure the representativeness of the data with respect to the spatial unit of 
analysis. This is particularly true for the climatic/weather and environmental variables. 

From a public health perspective, the significant heterogeneity of the epidemiological outcomes measured in the analysed works 
makes it challenging to compare and interpret the actual contribution of each geographic parameter on COVID-19 outcomes. 

Given the transdisciplinary character of investigations linking geographical factors and COVID-19 spread, it would be desirable to 
involve public health experts in such kind of research, in addition to the necessary expert knowledge in physical geography, economy, 
sociology etc. This would avoid inappropriate usage of epidemiological terms (i.e., using the term “mortality” when considering the 
absolute number of COVID-19 related deaths), or not accounting for outcome indicators limits. In fact, the number of COVID-19 
hospitalised patients can be overestimated during periods of intense virus circulation, when all the patients are tested for SARS- 
CoV-2 infection independently from the reason of hospitalization (“incidental COVID-19 hospitalizations”). In this context, it 
would be advisable to align with the indications provided by the World Health Organization (WHO) in the specific interim guidance 
published in March 2023 [151]. The latter proposes a series of COVID-19 indicators capable of providing epidemiological assessment 
methods which consider, as key areas, COVID-19 transmissibility, impact on comorbidity and mortality, and impact on the health 
system. 
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