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ABSTRACT Convalescent plasma is a promising therapy for coronavirus disease
2019 (COVID-19), but the antibody characteristics that contribute to efficacy remain
poorly understood. This study analyzed plasma samples from 126 eligible convales-
cent blood donors in addition to 15 naive individuals, as well as an additional 20
convalescent individuals as a validation cohort. Multiplexed Fc Array binding assays
and functional antibody response assays were utilized to evaluate severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody composition and activ-
ity. Donor convalescent plasma samples contained a range of antibody cell- and
complement-mediated effector functions, indicating the diverse antiviral activity
of humoral responses observed among recovered individuals. In addition to viral
neutralization, convalescent plasma samples contained antibodies capable of
mediating such Fc-dependent functions as complement activation, phagocytosis,
and antibody-dependent cellular cytotoxicity against SARS-CoV-2. Plasma samples
from a fraction of eligible donors exhibited high activity across all activities eval-
uated. These polyfunctional plasma samples could be identified with high accu-
racy with even single Fc Array features, whose correlation with polyfunctional ac-
tivity was confirmed in the validation cohort. Collectively, these results expand
understanding of the diversity of antibody-mediated antiviral functions associated
with convalescent plasma, and the polyfunctional antiviral functions suggest that
it could retain activity even when its neutralizing capacity is reduced by muta-
tions in variant SARS-CoV-2.

IMPORTANCE Convalescent plasma has been deployed globally as a treatment for
COVID-19, but efficacy has been mixed. Better understanding of the antibody charac-
teristics that may contribute to its antiviral effects is important for this intervention
as well as offer insights into correlates of vaccine-mediated protection. Here, a sur-
vey of convalescent plasma activities, including antibody neutralization and diverse
effector functions, was used to define plasma samples with broad activity profiles.
These polyfunctional plasma samples could be reliably identified in multiple cohorts
by multiplex assay, presenting a widely deployable screening test for plasma selec-
tion and investigation of vaccine-elicited responses.
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Since its emergence in 2019, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) has spread rapidly and infected over 115 million individuals world-

wide. As the medical community has mobilized to identify effective therapies to com-
bat the virus, treatment with convalescent plasma derived from individuals who have
recovered from coronavirus disease 2019 (COVID-19) has emerged as a potential thera-
peutic intervention (1, 2). Preliminary evidence suggests that patients treated early
with convalescent plasma show improved survival and reduced viral load, but efficacy
data have been mixed (1, 3–10). While the Expanded Access Program demonstrated
the efficacy of convalescent plasma in a dose-response effect of neutralizing titers,
units with low titers were also efficacious, suggesting that there are other contributing
activities that have not been measured (11). Antibody responses resulting from infec-
tion are highly variable in magnitude and character (12–14). Thus, a better understand-
ing of the breadth and spectrum of antiviral activities of the humoral immune response
is critical to understanding convalescent plasma as well as offering insights into corre-
lates of vaccine-mediated protection.

Antibody responses to SARS-CoV-2 have exhibited wide variation, not only in titer
but also in the quality of the antibody response including neutralization potential
(14–18). Antibodies directed against the receptor-binding domain of the fusogenic
spike (S) protein can block the interaction of the spike with the angiotensin-converting
enzyme 2 (ACE2) receptor of airway epithelial cells. Such neutralizing antibodies have
demonstrated the ability to inhibit infection in vitro (19, 20) and in vivo (21–23).
Accordingly, neutralizing responses have been a key target in development of vaccines
to prevent SARS-CoV-2 and monoclonal antibodies to treat COVID-19 disease (18).
Recent data suggest that the frequency of neutralizing antibodies (nAbs) within the
total humoral response could be quite low (24, 25) and that many antibodies are
directed toward nonneutralizing epitopes within more conserved regions of the S pro-
tein (26–28). In the absence of sufficient levels of direct antiviral activity via antibody
(Ab)-mediated blocking, the burden for humoral protection falls to the extraneutraliz-
ing effector functions, which are initiated by the relatively constant domain (Fc) of vi-
rus-specific antibodies and executed by innate immune cells and the complement cas-
cade. By engaging soluble and cell surface-expressed Fc receptors, antibodies can
trigger a variety of functions such as phagocytosis, cellular cytotoxicity, and comple-
ment deposition, which play an important role in clearing diverse viral infections (29,
30). In the context of SARS-CoV-1, antibody-mediated phagocytosis has been observed
to play a critical role in clearing infection in vivo, even in the context of existing potent
neutralization activity (31).

Further, these activities, which in principle can be mediated by a greater diversity of
epitope specificities, may gain in importance in the context of emerging neutraliza-
tion-resistant viral variants (32–34). Even in the context of potent neutralization activ-
ity, there is growing appreciation of the role that effector functions play in vivo.
Multiple passive transfer experiments have shown that effector mechanisms contribute
to the antiviral activity of monoclonal antibodies (35–38) and polyclonal antibodies
raised in the context of vaccination (39, 40). This evidence extends beyond correlative
observations (37, 39) to include mechanistic evidence of in vivo contributions via Fc
sequence engineering to knock out or enhance these activities (36, 38), as well as on
the basis of depletion of effector cells (38). Such findings indicate that understanding
the ability of convalescent donor plasma to elicit these effector functions in diverse
infected subjects may contribute to efficacy.

RESULTS
Biophysical characterization of SARS-CoV-2 convalescent plasma. Convalescent

plasma samples from 126 eligible donors from the Baltimore/Washington, DC area

Natarajan et al. ®

March/April 2021 Volume 12 Issue 2 e00765-21 mbio.asm.org 2

https://mbio.asm.org


(Johns Hopkins Medical Institutions [JHMI] cohort) (14) and serum samples from 15 na-
ive controls and 20 convalescent subjects from New Hampshire (Dartmouth-Hitchcock
Medical Center [DHMC] cohort) (41) serving as a validation cohort were collected (see
Table S1 in the supplemental material). Antibody responses were evaluated using an
Fc Array assay that assesses both variable fragment (Fv) and Fc domain characteristics
of antibodies (42). The assay was customized to assess responses across a panel of
SARS-CoV-2 antigens. This panel consisted of the nucleocapsid (N) protein, stabilized
trimeric spike protein (S-2P) (43), spike subdomains, including S1 and S2, the receptor-
binding domain (RBD), and the fusion peptide. Influenza hemagglutinin (HA) and her-
pes simplex virus gE antigens served as controls. Characterization extended beyond
antigen specificity to include antibody isotype, subclass, and propensity to bind Fc
receptors (FcRs).

Diverse SARS-CoV-2-specific immunoglobulin isotypes and subclasses, particularly
IgG1 and IgG3, IgA, and IgM, were elevated in SARS-CoV-2 convalescent subjects across
different epitope and antigen specificities (Fig. 1A; see also Fig. S1 to S3 in the supple-
mental material). Robust responses to stabilized spike (S-2P) and N were apparent, and
lower magnitudes of responses were detected to functionally relevant RBD and fusion
peptide domains. IgA responses were primarily driven by the IgA1 subclass, whereas
IgG responses were dominated by IgG1 and IgG3. FcgR binding profiles, which capture
the effects of other factors known to impact avid FcgR recognition, such as binding to
multiple epitopes, distinct spatial recognition profiles, and differing antibody glycosyla-
tion, were distinct from measurements of the overall SARS-CoV-2-specific IgG response
(titer), as well as compared to these innate immune activating IgG subclasses.

Relationship between antibody characteristics and clinical characteristics.
Differences in the antibody response toward SARS-CoV-2 and endemic CoV associated
with sex, age, and hospitalization status were evaluated (Fig. 2). A chi-squared test was
performed to examine whether there was an association between disease severity and
gender. It was determined that there was no statistically significant link between these
two traits (P = 0.7355). Moreover, a univariate logistic regression analysis was
employed to assess the association between age and either gender of hospitalization
status (sex: age, P = 0.711; hospitalization: age, P = 0.593). Therefore, the potential con-
founding effect on the association between biophysical measurements and each clini-
cal trait were eliminated. SARS-CoV-2 IgG, IgA, and FcgR-binding antibodies were sig-
nificantly elevated in older and male subjects, characteristics which are considered risk
factors for more severe disease. Elevated SARS-CoV-2-specific IgG and FcgR-binding
antibody features were also observed in hospitalized subjects, consistent with prior
studies (14, 41, 44), and it is possible that IgG responses may drive disease enhance-
ment (45–47). However, despite being associated with both age and sex risk factors,
elevated IgA features were not observed in hospitalized subjects, consistent with the
possibility that IgA responses may contribute to milder infection (41).

Antibody effector functions. To explore the biological functions of antibodies in
convalescent serum donors, both neutralizing and extraneutralizing activities were
evaluated (Fig. 3A). Consistent with the overall SARS-CoV-2 antibody response magni-
tude, neutralization activity against live virus was higher among donors who were hos-
pitalized than those who were not hospitalized. While antibody-dependent cell-medi-
ated phagocytosis (ADCP), FcgRIIIa activation as a surrogate for antibody-dependent
cellular cytotoxicity (ADCC), and antibody-dependent complement deposition (ADCD)
elicited by RBD-specific antibodies were likewise elevated among donors who had
been hospitalized, correlative relationships between functions showed distinctions
among these antiviral activities (Fig. 3B). ADCP, which has previously been associated
with clearance of SARS-CoV-1 in a mouse model (31), and FcgRIIIa activation (ADCC)
were highly correlated with each other (Pearson correlation coefficient [RP] = 0.82), and
moderately correlated with neutralization (RP = 0.64 and 0.57, respectively).
Complement activation, which has been associated with increased inflammation and
disease pathology in a mouse model of SARS-CoV-1 (48) and which may also contrib-
ute to COVID-19 disease (49, 50), was less well correlated with other activities.
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FIG 1 Antibody responses in convalescent plasma. (A) Fc Array characterization of antibodies to SARS
CoV-2 antigens across antibody subclasses, isotypes, and binding to FcR in naive (serum; n=15) and
convalescent (plasma; n=126) donors. (B) Volcano plot of fold change and significance of differences
between convalescent and naive subject antibody response features specific for SARS-CoV-2.
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Antibody features associated with antiviral functions. Because a number of the
effector functions were tested specifically against the RBD antigen, we measured the
degree and direction of correlation between RBD-specific Ab biophysical features and
other Ab functions (Fig. 3C). ADCP and FcgRIIIa activation (ADCC) were most strongly
correlated with FcgR-binding antibodies, and IgG1 and IgG3, which strongly ligate
FcgR. Among FcR, correlations with activating FcgRIIa and FcgRIIIa were most strongly
correlated, consistent with their known mechanistic relevance to ADCP and FcgRIIIa
activation (ADCC).

As previously observed (41), IgM also positively correlated with neutralization activ-
ity. Relationships between serum IgA responses and antibody functions were consider-
ably weaker than those with IgG responses. Correlative relationships with ADCD
tended to be weaker, consistent with the strong dependence of this function on spatial
aspects of avid antibody binding and immune complex formation that are better cap-
tured by detection with the C1q, an initiator of the complement cascade that was not
evaluated in this study.

Distinctions between subjects defined by humoral response profiles. To define
similarities and differences among donors more globally, dimensionality reduction was
performed on biophysical features using Uniform Manifold Approximation and
Projection (UMAP) (51). Subjects were distributed across the antibody biophysical pro-
file landscape into a set of four distinct clusters (Fig. 4A). Though hospitalized subjects
were observed in multiple clusters, they were most prevalent in cluster 2 and adjacent
regions of clusters 1 and 3. To understand aspects of the humoral response that distin-
guished each cluster, univariate testing was performed to determine and depict which
Fc Array features were distinct for individual clusters (Fig. S4). Relative responses for
these features among convalescent donors in each group reflect differences in the
magnitude of the response, with cluster 1 having lower humoral responses to SARS-
CoV-2 antigens in general, clusters 2 and 3 exhibiting intermediate responses, and clus-
ter 4 typically showing globally elevated antibody responses. Clusters 2 and 3, which
both presented with intermediate response magnitudes, were distinguished by relative
differences in IgG1 and IgA responses (Fig. S4).

Identification of polyfunctional plasma samples. Based on the potential clinical
value of polyfunctional plasma, the neutralization and effector functions of each subject
according to their UMAP cluster was defined (Fig. 4B). Subjects in cluster 2 exhibited ele-
vated activity across diverse functions, identifying this cluster of donors as possessing
polyfunctional plasma. Because screening plasma for multiple individual functional activ-
ities is impractical, we sought to identify the ability of individual Fc Array measurements
and classical clinical enzyme-linked immunosorbent assay (ELISA) tests to identify

FIG 2 Antibody features associated with clinical status. Volcano plots of significance and fold change of response medians for antibody responses to
SARS-CoV-2 antigens according to hospitalization status (left), sex (center), and age above or below the cohort median (right). Symbol shapes indicate Fv
specificity, and color indicates Fc characteristic.
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polyfunctional plasma samples. To determine which features were able to distinguish poly-
functional (cluster 2) from nonpolyfunctional (clusters 1, 3, and 4), receiver operator charac-
teristic (ROC) curves were generated for each Fc Array feature and available clinical ELISA.
This analysis identified SARS-CoV-2 S-2P- and S2-specific IgG and FcgR-binding antibodies
as exhibiting good discriminatory capacity (Fig. 5A). Area under the ROC curve for the top
nine Fc Array features was superior to that of S1-based clinical ELISAs (Fig. 5B).

To validate this observation, the strength and significance of correlations between
these features and a polyfunctionality score for the serum samples from the validation
cohort was evaluated (Fig. 5B). Strong and significant correlations were observed for
both FcgR-binding antibodies specific to stabilized spike (S-2P) and the S2 domain, as
well as the magnitude of total IgG responses to these proteins. Together, discovery
and validation cohorts support the ability of individual high-throughput multiplex
assay measurements to predict the polyfunctionality of donor plasma samples.

FIG 3 Functional characterization of plasma antibodies. (A) Neutralization (Neut), antibody-dependent cell-mediated phagocytosis (ADCP),
FcgRIIIa activation (ADCC), and antibody-dependent complement deposition (ADCD) activity of convalescent plasma donors that were
hospitalized (1) (n=12) or not hospitalized (2) (n= 114). The dotted line indicates mean activity observed among naive donor samples. (B)
Correlations between RBD-specific Ab features to functions in plasma, colored and labeled by Pearson correlation coefficient (RP) in the
lower-left quadrant (n= 126). (C) Correlations (RP) between RBD-specific Fc Array features and neutralization and effector functions.
Significance of Pearson correlations, corrected for multiple comparisons using the Benjamini-Hochberg method (*, P , 0.05; **, P , 0.01; ***,
P , 0.001), are provided along with circles that are colored and sized according to their Pearson correlation coefficients (RP).
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Identification of highly and broadly antiviral donor plasma samples has the potential
to improve treatment outcomes or prevent reinfection.

DISCUSSION

Convalescent plasma is one of the leading treatments of hospitalized patients for
COVID-19. Following transfusion of more than 100,000 individuals in the United States
with convalescent plasma, the FDA issued an expanded use authorization. In general,
convalescent plasma appears to be most effective when high-titer units are provided
early, but efficacy data have been mixed (5, 10). Thus, it is important to establish the
specific, measurable qualities of convalescent plasma that may help us to understand
the mechanism of action and resistance of convalescent donors to reinfection.

SARS-CoV-2-specific antibodies can elicit diverse antiviral functions beyond neutrali-
zation. These less well characterized functions were measured and related to biophysi-
cal antibody profiles. Effector functions were most strongly correlated with FcgR-bind-
ing antibodies, IgG1, and IgG3. Beyond IgG, neutralization was also correlated with IgM
responses, which may suggest the development of novel responses, as opposed to
reactivation of responses to endemic CoV. SARS-CoV-2- specific IgM has also attracted
interest because of its association with lower risk of death from COVID-19 (12), and
recent evidence of direct neutralization activity (52, 53). Evidence in support of the
relevance of nonneutralizing mechanisms of antibody-mediated protection against
SARS-CoV-2 is accruing (35–40), and there is evidence that both ADCC and phagocyto-
sis can contribute antiviral effects against other coronaviruses (54–56). Thus, activities
measured by these and other in vitro assays have demonstrated the ability to play im-
portant roles in antibody-mediated defense against SARS-CoV-2, and as observed in a
number of studies in other infectious disease settings (57–62).

The antibody responses measured in convalescent subjects in this study were
highly diverse, both in the SARS-CoV-2 antigens recognized and the magnitude of the
responses; the latter observation is largely characteristic of the humoral responses
measured to date (12, 13). Some of these differences are likely associated with the dif-
ferent manifestations of disease, but others may relate to the cross-sectional nature of
the cohort and factors such as differences in time since infection. Other limitations of
this study range from cohort composition to the experimental and analytical
approaches employed. Individuals in the naive control cohort were generally younger
and from a different geographic location. Recombinant antigen and lab-adapted cell
lines were employed for several of the functional assays, and the substitution of surro-
gate measurements such as FcgRIIIa activation was made in place of infected cell death.
Thus, while the value of such assays has been established in a diversity of other infec-
tious disease settings (57–62), as well as in SARS-CoV-2 in animal models (35–40), in
vitro function may differ substantially from the in vivo processes these assays are meant
to mimic. Though performed on dilute plasma, these assay results could also include

FIG 4 Identification of polyfunctional plasma samples. (A) UMAP analysis of subjects (n= 126) based on Fc Array antibody biophysical
profiles. The position in variable space indicates similarity or distinctions in antibody response. Symbols and color indicate subject sex,
hospitalization status, and cluster. (B) Boxplots depicting the level of antibody functions observed among subjects in each UMAP
group. Polyfunctional plasma donors are observed among UMAP group 2. Dotted lines indicate mean activity observed among naive
donor samples.
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effects of plasma components other than antibodies, such as cytokines and comple-
ment factors, which cannot be disambiguated from the data collected, and may or
may not be relevant to the effects of convalescent plasma therapy (63). Additionally,
the convalescent and naive subjects enrolled in the DHMC cohort provided serum
samples, whereas the convalescent subjects in the JHMI cohort contributed plasma
samples, which could result in differences in antibody detection and functional activity.
Nevertheless, the Fc Array feature that best identified polyfunctional convalescent-
phase plasma samples was also able to accurately identify polyfunctional convales-
cent-phase serum samples.

In summary, this study establishes three Fc-dependent activities in convalescent
plasma beyond viral neutralization that could have antiviral effects against SARS-CoV-2,
namely, ADCC, phagocytosis, and complement activation. These activities could explain ther-
apeutic effects of plasma samples with low neutralizing capacity (11). With this study we
also provide a proof of principle for the correlation of diverse antiviral activities against
SARS-CoV-2 using biophysical inputs more amenable to high-throughput measurement.
The recent futility-based termination of the ACTIV-3 clinical trial of neutralizing antibody
bamlanivimab in hospitalized subjects points to potential challenges to therapy based on
individual monoclonal antibodies. Taken together, it is possible that optimally effective anti-
body therapies for SARS-CoV-2 may require a polyclonal antibody response, which can con-
trol virus through binding to multiple epitopes and eliciting a range of effector functions.
This work begins to define the specificities and Fc domain characteristics of antibodies asso-
ciated with potent neutralization as well as effector function and to distill a means to identify
polyfunctional plasma samples from a single high-throughput multiplex assay readout.

Further insights into the antibody response to COVID-19 among convalescent
plasma donors may be of special interest due to the emergence of novel variants of
SARS-CoV-2. Whereas convalescent plasma has shown compromised neutralization
capability against novel variants (33, 34), other effector functions that are typically
effectively driven by a broad diversity of epitope specificities may prove less sensitive

FIG 5 Identification and validation of antibody response features that identify polyfunctional plasma. (A) Receiver operator characteristic
curve for the ability of selected features to discriminate between polyfunctional plasma samples (UMAP group 2) and nonpolyfunctional
plasma samples (UMAP groups 1, 3, and 4). Features in panel A are colored according to assay and detection reagent type, as in panel B. (B)
Area under the ROC (AUROC) curve for discrimination of polyfunctional plasma among JHMI cohort (n= 126) for the top Fc Array features
and clinical ELISAs. Spearman correlation coefficients (RS) between these features and polyfunctionality score in the DHMC validation cohort
(n= 20) are given at right. Significance of Spearman correlations, corrected for multiple comparisons using the Benjamini-Hochberg method,
are provided (**, P , 0.01; ***, P , 0.001; ****, P , 0.0001). ELISA data were not available (NA) for the DHMC cohort.
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to neutralization escape mutants or other forms of antigenic drift. However, therapeu-
tically desirable plasma antibody functions have yet to be determined in humans. A
strong evidence base exists for the role of antibodies in protection based on animal
models and in the setting of human immune responses against other CoV (64–66) and
SARS-CoV-2 (67, 68). This evidence now includes observations of both beneficial as
well as detrimental potential consequences of diverse effector functions (35–40, 69,
70), suggesting that continued analysis of the associations between passively trans-
ferred plasma characteristics and patient outcomes will be key to identifying the recipi-
ents who are most likely to benefit and the donors most likely to provide that benefit
in the context of the COVID-19 pandemic.

MATERIALS ANDMETHODS
Human subjects. The principal cohort of the study has been previously described (14). Briefly, it

comprised 126 adult subjects (mean age, 43 years; range, 19 to 78 years) previously diagnosed with
SARS-CoV-2 infection by PCR-positive (PCR1) nasal swab who met the standard eligibility criteria for
blood donation and were collected in the Baltimore, MD and Washington, DC area (Johns Hopkins
Medical Institutions [JHMI] cohort). The cohort was composed of 68 males (54.0%) and 58 females
(46.0%). Eleven cases (8.7%) were severe enough to require hospitalization (mean duration of stay,
4 days; range, 1 to 8 days). The validation cohort comprised 20 SARS-CoV-2 convalescent individuals
from the Hanover, New Hampshire area (Dartmouth Hitchcock Medical Center [DHMC] cohort) (mean
age, 40 years; range, 18 to 77 years) and comprised 10 males and 10 females among which 4 subjects
(20%) were hospitalized. Infection with SARS-CoV-2 was confirmed in all convalescent subjects by real-
time reverse transcriptase polymerase chain reaction of a nasopharyngeal swab. Plasma (JHMI) or serum
(DHMC) was collected from each donor approximately 1 month after symptom onset or first positive
PCR test in the case of mild or asymptomatic disease (see Table S1 in the supplemental material).

Human subject research was approved by both the Johns Hopkins University School of Medicine’s
Institutional Review Board and the Dartmouth-Hitchcock Medical Center Committee for the Protection
of Human Subjects. All participants provided informed written consent.

Antigen and Fc receptor expression and purification. Prefusion-stabilized, trimer-forming spike
protomers (S-2P) of SARS-CoV-2 and a fusion of the receptor-binding domain of SARS-CoV-2 N terminally
to a monomeric human IgG4 Fc domain were transiently expressed in either Expi 293 or Freestyle 293-F
cells and purified via affinity chromatography, all according to the manufacturers’ protocols, as previ-
ously described (41). Human FcgR were expressed and purified as described previously (71).

Fc Array assay. Coronavirus antigens—including S trimers, S subdomains (i.e., S1 and S2), and other
viral proteins from SARS-CoV-2 (Table S2)—and the control antigens influenza HA and herpes simplex vi-
rus (HSV) gE proteins were covalently coupled to Luminex Magplex magnetic microspheres using two-
step carbodiimide chemistry as previously described (70). Biotinylated SARS-CoV-2 fusion peptide was
immobilized on neutravidin-coupled microspheres. Pooled polyclonal serum IgG (intravenous immuno-
globulin [IVIG]), the SARS CoV-1-specific monoclonal Ab CR3022 that cross-reacts with SARS-CoV-2 S
(72), and VRC01, an HIV-specific monoclonal Ab, were used as controls to define bead antigenicity pro-
files. Pilot experiments were used to determine the optimal dilution of plasma for titrations. Test concen-
trations for plasma ranged from 1:250 to 1:5,000 and were varied per detection reagent (Table S3).
Isotypes and subclasses of antigen-specific Abs were detected using R-phycoerthrin (PE)-conjugated sec-
ondary Abs and by FcRs tetramers as previously described (73). A FlexMap three-dimensional (3D) array
reader detected the beads and measured PE fluorescence in order to calculate the median fluorescence
intensity (MFI).

Neutralization assays. Plasma samples from SARS-CoV-2 convalescent donors were tested in micro-
neutralization assays using SARS-CoV-2/WA-1/2020 virus (14, 74) obtained from BEI Resources. VeroE6-
TMPRSS2 cells were used to propagate the virus and to determined infectious virus titers using a 50%
tissue culture infectious dose (TCID50) assay as previously described for SARS-CoV (14, 74) using
Institutional Biosafety Committee-approved protocols in biosafety level 3 containment. Twofold dilu-
tions of plasma were incubated with 100 TCID50s for 1 h at room temperature in a volume of 100 ml. The
virus-plasma solution was then added to one well of VeroE6-TMPRSS2 cells in a 96-well plate and incu-
bated for 6 h before being replaced with medium. After incubation at 37°C for 2 days, the cells were
fixed with 150 ml of 4% formaldehyde followed by staining with Naptho blue black (Sigma-Aldrich) and
scoring for wells protected from infection. The assay was performed in hextuplicate, and the area under
the curve was calculated from the neutralizing antibody curve. Neutralization of the serum samples was
tested using a vesicular stomatitis virus (VSV)-SARS-CoV pseudovirus system as previously described (41,
75), and neutralization was expressed as 60% inhibitory concentration (IC60) values.

Phagocytosis assay. An assay of Ab-dependent phagocytosis by monocytes (ADCP) was performed
essentially as described previously (76, 77). Briefly, 1-mm yellow-green fluorescent microspheres
(Thermo catalog no. F8813) covalently conjugated with recombinant RBD were incubated for 3 h with
dilute plasma specimens and the human monocytic THP-1 cell line (ATCC, TIB-202). After pelleting,
washing, and fixing, phagocytic scores were calculated as the product of the percentage of cells that
phagocytosed one or more fluorescent beads and the median fluorescent intensity of this population
was measured by flow cytometry with a MACSQuant analyzer (Miltenyi Biotec). CR3022 and VRC01 were
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used as positive and negative controls, respectively. Antibody-independent phagocytosis was measured
from wells containing cells and beads, but no antibody.

FccRIIIa activation reporter assay. A Jurkat Lucia NFAT reporter cell line (Invivogen, jktl-nfat-cd16)
was used to measure the ADCC potential, represented by the extent of FcgRIIIa activation, of each sam-
ple. Engagement of the cell surface receptor leads to the secretion of luciferase into the cell culture su-
pernatant. The cells were cultured according to the manufacturer’s recommendations. One day prior to
performing the assay, a high binding 96-well plate was coated with 1mg/ml SARS-CoV-2 RBD and incu-
bated at 4°C overnight. The plates were then washed with phosphate-buffered saline (PBS) plus 0.1%
Tween 20 and blocked at room temperature for 1 h with PBS plus 2.5% bovine serum albumin (BSA).
After washing, dilute plasma and 100,000 cells/well in growth medium lacking antibiotics (with a total
volume of 200 ml) were cultured at 37°C for 24 h. The following day, 25 ml of supernatant was drawn
from each well and transferred to an opaque, white 96-well plate and 75 ml of QuantiLuc substrate was
added. Luminescence was read immediately on a SpectraMax Paradigm plate reader (Molecular Devices)
using 1 s of integration time. The reported values are the means of three kinetic reads taken at 0, 2.5,
and 5min. Negative-control wells contained assay medium instead of antibody sample, while cell stimu-
lation cocktail (Thermo catalog no. 00-4970-93) plus an additional 2mg/ml ionomycin were used to
induce expression of the luciferase transgene as a positive control.

Complement deposition assay. Antibody-dependent complement deposition (ADCD) was quanti-
fied essentially as previously described (78). In brief, plasma samples were heat inactivated at 56°C for
30min prior to a 2-h incubation with multiplex assay microspheres at room temperature. After washing,
each sample was incubated for 1 h at room temperature with human complement serum (Sigma catalog
no. S1764) at a concentration of 1:50. Samples were washed, sonicated, and incubated for 1 h at room
temperature with murine anti-C3b (Cedarlane catalog no. CL7636AP) followed by anti-mouse IgG1-PE
secondary Ab (Southern Biotech catalog no. 1070-09) at room temperature for 30min. After a final wash
and sonication, samples were resuspended in Luminex Sheath Fluid and complement deposition in the
form of the median fluorescent intensity of the PE measured on a MAGPIX (Luminex Corp.) instrument.
Wells lacking Ab and but still containing heat-inactivated human complement serum served as negative
controls.

Data analysis and visualization. Basic analysis and visualization were performed using GraphPad
Prism. Heatmaps, correlation plots, and boxplots were generated in R version 3.6.1 (supported by R
packages pheatmap [79], corrplot [80], and ggplot2 [81]). Hierarchical clustering was used to cluster and
visualize data using the Manhattan and Euclidean metrics. Fc Array features were filtered by elimination
of features for which the samples exhibited signal within 10 standard deviations (SD) of the technical
blank. Fc Array features were log transformed and then scaled and centered by their standard deviation
from the mean (z-score). A Student’s two-tailed t test with Welch’s correction with a cutoff of P = 0.05
was used to define features different between groups. Pearson correlation coefficients were calculated
for the correlation matrices. Spearman correlation coefficients were used to relate antibody features to
polyfunctionality scores. The Benjamini-Hochberg method was used to adjust determinations of statisti-
cal confidence due to multiple hypothesis testing.

UMAP was employed in the R package “umap” version 0.2.6.0 (82) to enable dimensionality reduc-
tion of the JHMI Fc Array data set. Upon log transformation, default UMAP parameters were used with
the following exceptions: random_state = 45, min_dist = 1E29, knn_repeats: 21, set_op_mix_ratio = 1.
DBSCAN (83) was employed in the R package “dbscan” version 01.1-5 to identify clusters within the
UMAP reduced dimensions, using settings of eps = 0.65 and MinPts = 5 to define the clusters. To identify
features associated with each cluster, individual clusters were compared to the other three clusters using
a Student’s two-tailed t test with Welch’s and Bonferroni’s corrections and a cutoff of P = 0.05.

A receiver operating characteristic (ROC) curve was applied to evaluate the performance of biophysi-
cal features in discriminating polyfunctional plasma donors from nonpolyfunctional plasma donors. The
binary labels were assigned among the subjects in cluster 2 (n= 27) versus the subjects in the rest of the
clusters (n= 99). All biophysical features in the JHMI cohort were ranked by the area under the receiver
operating characteristic (AUROC). R packages “ROCR” (84) and “pROC” (85) were employed for ROC curve
generation and AUROC calculation.

A polyfunctionality score was defined for each validation (DHMC) cohort serum sample as follows.
Minimum activities were assigned a value of zero, and maximum activity was assigned a value of one.
Relative activity for each function was defined as (observed 2 minimum)/(maximum 2 minimum), and
polyfunctionality was defined as the sum of these relative activity scores across functional assays.

Availability of data. Cohort characteristic, Fc Array, and functional assay data are available at https://
github.com/AckermanLab/Natarajan_et_al_COVID_2021.
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