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ABSTRACT

The Genome-Linked Application for Metabolic Maps
(GLAMM) is a unified web interface for visualizing
metabolic networks, reconstructing metabolic net-
works from annotated genome data, visualizing
experimental data in the context of metabolic net-
works and investigating the construction of novel,
transgenic pathways. This simple, user-friendly
interface is tightly integrated with the comparative
genomics tools of MicrobesOnline [Dehal et al.
(2010) Nucleic Acids Research, 38, D396-D400].
GLAMM is available for free to the scientific com-
munity at glamm.lIbl.gov.

INTRODUCTION

As the volume of genomic, experimental and metabolic
network data increases, so has the need for clean, unob-
trusive methods for visualizing and contextualizing these
data. With this in mind, we have developed the Genome-
Linked Application for Metabolic Maps (GLAMM).
GLAMM provides a unified web interface for visualizing
metabolic networks, reconstructing metabolic networks
from annotated genome data or custom user-defined
networks, visualizing experimental data in the context of
metabolic networks and investigating the construction of
novel, transgenic pathways.

Other web resources (1-6) such as the KEGG Atlas,
iPath, Pathway Projector, MetaCyc and Reactome offer
similar, web-based mapping-style interfaces, but GLAMM
also incorporates an interface for biological retro-
synthesis (7-9), visualization of thousands of publicly
accessible experimental or other user-defined data in
the context of metabolic pathways, and integration
with MicrobesOnline (10). This integration provides
GLAMM users access to MicrobesOnline’s powerful com-
parative phylo-genomic and functional genomic tools and

a database of nearly 2000 prokaryotic and fungal genomes,
allowing rapid analysis of genome context, regulon discov-
ery and so on.

GLAMM was developed using the Google™ Web
Toolkit (GWT, http://code.google.com/webtoolkit/) for
the client UI and server implementation. The underlying
maps are Scalable Vector Graphics (SVG) documents ren-
dered in real time on the client side in a GWT widget, with
UI components and event handling provided by the GWT.
Both of these technologies have the advantage of consist-
ent cross-browser support, as well as a highly optimized
execution path, with JavaScript and SVG rendered by the
browser’s own internal implementations. As such,
GLAMM will only work with browsers that support
both JavaScript and SVG (e.g. Firefox, Chrome and
Safari). This implementation performs well for thousands
of on-screen elements on a typical personal computer.

In addition to a client-side interface, we have imple-
mented a server that is integrated with MicrobesOnline.
The GLAMM server communicates with the client via
highly modularized and separable XML. The client can
request any combination of pathways, reactions, genes
and compounds. It also can request functional data, cur-
rently gene expression data, but data associated with re-
actions (e.g. flux) and metabolites (e.g. concentrations)
will be supported in the near future. We chose to create
a new, lightweight XML format that only included the
features needed by the interface rather than employ an
existing format such as SBML (11) or BioPAX (12) in
order to minimize the data necessary to transfer and be-
cause we needed to add support for features not already
captured by SBML or BioPAX. We expect to support
export to BioPAX and perhaps SBML in the future.

UNDERLYING METABOLIC NETWORK

We have developed a method for aggregating and
normalizing compound, reaction and pathway data from
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several different metabolic databases. We chose to first
focus our attention on combining KEGG (13), MetaCyc
(4) and the compound and reaction databases provided
for the Escherichia coli 1JR904 model (6). We also
included reconciliation of metabolites with PubChem
(14) and ChEBI (15). The database aggregation and nor-
malization code is general enough to accommodate infor-
mation from any similar database with the addition of a
compatible parser with an eye toward inclusion of custom
pathways, such as those found in organisms of interest to
bioremediation and bio-fuel production.

Compounds and reactions were extracted from flat-file
representations of the databases and converted to a
normal form. For compounds, this normal form includes
information such as common name, mass, formula,
SMILES representation (16), InChl representation (17),
compound name synonyms and external references to
the compound in other databases. Similarly, for reactions,
the normal form includes a normalized form of the bal-
anced reaction equation, a human-readable reaction
definition, external references to this reaction in other
databases, E.C. numbers (18) (if applicable), KEGG
RPAIR role information for the reactants and products
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and the KEGG pathway to which this reaction belongs.
The normalized format is flexible enough to be expanded
as custom reactions are introduced.

Compounds present in multiple databases are resolved
into single entries by comparing the external reference IDs
(e.g. PubChem) and merging normalized entries if a match
is found. For consistency, KEGG common names, masses
and formulae take precedence over those from other data-
bases. We are continuing to investigate schemes for
normalizing reactions, a more complicated endeavor as
a consequence of the numerous similar but non-identical
names given to reactants, products and secondary metab-
olites and which are included in the definition of each re-
action (e.g. the inclusion of chirality information, different
protonation states, polymers, etc.).

The data aggregation and normalization code is written
entirely in object-oriented Perl and therefore can be run
on almost any platform. This will no doubt change, as
we intend to develop a fully automatic update and recon-
ciliation mechanism. While the individual databases we
have incorporated are curated, there remain some reac-
tions that do not always account for mass balance or
possess other eccentricities. Regrettably, it is beyond the
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Figure 1. Metabolic reconstruction of E. coli K12 substr. MG1655 with metabolite information for Sedoheptulose 7-phosphate in a pop-up window.
Reactions with genes identified in the reconstruction are shown in color, missing reactions in gray.
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scope of this project to rectify those issues, but we will
update our imported network as improved data becomes
available.

AUTOMATED METABOLIC RECONSTRUCTION

GLAMM uses the gene annotations in MicrobesOnline
to automatically reconstruct the metabolic networks of
almost 2000 organisms. It combines MicrobesOnline’s
E.C. assignments [derived from hits to TIGRFAMs (19),
KEGG annotations and orthologs from reference
genomes] with the E.C. number to reaction ID mappings
from the public databases aggregated in GLAMM. Taken
together, these mappings loosely determine the set of re-
actions available for a given organism. We recognize that
automated E.C. assignments based solely on homology
to a gene family are limited and by no means comparable
to that of dedicated reconstruction pipelines such as
ModelSEED (20) or manually curated reconstructions
(6). GLAMM therefore supports custom, user-uploaded
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reconstructions (see below) and will support reconstruc-
tions from other databases in the future.

When the user selects a host organism, GLAMM
prunes the set of reaction edges in the global map to
only include those reactions available to that organism
(Figure 1). The remaining reaction edges on the displayed
map are grayed out. Based on the connectivity informa-
tion supplied with the map, GLAMM also prunes com-
pound nodes that have no reactions associated with them.
This not only yields the metabolic reaction network, but
also the set of all compounds endogenous to the host,
within the constraints of the displayed map which is, by
necessity, a subset of the actual metabolic network of
known chemical transformations.

There are obvious limitations to this technique, inclu-
ding the incompleteness of E.C. assignments for genes and
that E.C. numbers often specify a broad class of reactions
and therefore may not be substrate-specific. We aim to
overcome these limitations in the future by augmenting the
MicrobesOnline database with direct gene to reaction
mappings (e.g. using KEGG orthologs.)
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Figure 2. Route finding and retrosynthesis ‘Getting directions’ between the metabolites L-Phenylalanine and Homovanillate using E. coli K12 substr.
MG1655 as the host organism. Both endogenous (white) and exogenous reactions (colored) are shown, including the species names for the source of

candidate genes for the transgenic steps in the pathway.



CUSTOM METABOLIC RECONSTRUCTION

GLAMM also provides a mechanism for uploading cus-
tom metabolic networks. Initially, this is in the form of
tab-delimited files containing gene ID to E.C. number or
gene ID to reaction ID mappings. Eventually we aim to
support SBML and BioPAX specified pathways directly.
The default metabolic reconstruction for any organism
in MicrobesOnline may be downloaded, modified and
re-uploaded.

GLAMM FEATURE HIGHLIGHTS
Metabolites and metabolic pathways

The current GLAMM global view presents the KEGG
Atlas map, but can be updated with any metabolic map
using a standard format that we have designed. The re-
sultant visualized map is pannable and zoomable as typical
of web-mapping applications. Compounds are represented
as nodes on the map. Reactions, along with their corres-
ponding genes in the organism-specific metabolic network
reconstructions, are represented as edges. Clicking on the
nodes presents a popup window (Figure 1) containing
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the compound’s name, its formula, its mass and a struc-
tural diagram, if available. Similarly, clicking on the edges
of the map presents a pop-up window containing the
reaction’s human-readable definitions, its E.C. numbers
and the number of genes corresponding to those E.C.
numbers in the target organism. The global map also
contains textual labels for the various sub-pathways,
and clicking on those labels presents pop-up windows con-
taining schematic representations of the more detailed
KEGG pathway maps. All pop-ups include links back
to the corresponding pathways, genes or metabolites in
MicrobesOnline.

Route finding and retrosynthesis

For convenience, we have included a search dialog box
that re-centers the map around any compound, reaction
or gene name specified by the user. Additionally, the global
view will allow the user to ‘get directions’ in finding opti-
mal pathways between a starting metabolite and a desired
target metabolite (Figure 2). In the event of ambigu-
ous compound search results, often due to the presence
of multiple isomers on the map (e.g. glucose may specify
a-D-glucose or B-p-glucose,) a disambiguation popup will
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Figure 3. Experimental data visualization. Overlay of expression data collected during a metabolism experiment on E. coli K12 substr. MG1655. The
reactions corresponding to upregulated genes are shown in yellow, reactions corresponding to downregulated genes are shown in blue.
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appear, allowing the user to specify the desired compound.
Suggested pathways may offer routes for retrosynthesis
and traverse all annotated organisms or otherwise con-
ceivable reaction steps using a variety of appropriate
pathway/gene set cost functions, returning the necessary
genes to add to the host in order to complete the path-
way from the chassis network to the target molecule.
The routes are overlaid on top of the main map view,
and all non-participating reactions are grayed out.
If a host organism is selected, the E.C. number links to
MicrobesOnline for candidate genes and retrosynthetic
pathways are enabled in order to facilitate further exam-
ination with its powerful comparative systems biology
tools, including gene trees, genome context and operon
predictions, functional residue alignments, basic structural
models and functional expression data. These tools are
provided with the intent of developing a mutually consist-
ent set of genes for introducing the pathway into the host
organism.

Experimental data visualization

Additionally, the global view can be used to visualize any
data as an ‘overlay’, including *omics data such gene ex-
pression, protein levels, flux, source organism for a given
reaction in a synthetic network, kinetic and thermo-
dynamic parameters, optimal paths between metabolites
and so on (Figure 3). For example, *omics data will
permit the user to analyze the global behavior of the
network when challenged by stressful conditions or par-
ticular nutrient levels and to identify key pathways that
are either directly involved in target molecule synthesis or
may otherwise impact metabolic engineering.

Custom data overlay

In addition to public experimental data available on
MicrobesOnline, the user may upload tab-delimited files
with a list of genes and numerical data values for those
genes. Similar to the downloadable metabolic reconstruc-
tions, one may also download experimental data sets that
contain gene names consistent with metabolic reconstruc-
tions, to which new data values may be applied.

Future directions

GLAMM will continue to be developed to support add-
itional data types and custom display of data associated
with reactions and metabolites. Additional bounds on
retrosynthesis pathways, as well as longer pathways
will be implemented to permit the user to require routes
that pass through or avoid user-defined intermediates,
that maximize or minimize use of particular cofactors, that
maximize predicted flux and so on. Source code will be
made available freely for academic research.
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