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Ultrasound is one of the critical methods for diagnosis and treatment in thyroid examination. In clinical application, many
reasons, such as large outpatient traffic, time-consuming training of sonographers, and uneven professional level of physicians,
often cause irregularities during the ultrasonic examination, leading to misdiagnosis or missed diagnosis. In order to standardize
the thyroid ultrasound examination process, this paper proposes using a deep learning method based on residual network to
recognize the ,yroid Ultrasound Standard Plane (TUSP). At first, referring to multiple relevant guidelines, eight TUSP were
determined with the advice of clinical ultrasound experts. A total of 5,500 TUSP images of 8 categories were collected with the
approval and review of the Ethics Committee and the patient’s informed consent. ,en, after desensitizing and filling the images,
the 18-layer residual network model (ResNet-18) was trained for TUSP image recognition, and five-fold cross-validation was
performed. Finally, through indicators like accuracy rate, we compared the recognition effect of other mainstream deep con-
volutional neural network models. Experimental results showed that ResNet-18 has the best recognition effect on TUSP images
with an average accuracy rate of 91.07%. ,e average macro precision, average macro recall, and average macro F1-score are
91.39%, 91.34%, and 91.30%, respectively. It proves that the deep learning method based on residual network can effectively
recognize TUSP images, which is expected to standardize clinical thyroid ultrasound examination and reduce misdiagnosis and
missed diagnosis.

1. Introduction

,e thyroid is one of the largest and most important en-
docrine organs in the human body, and it is vital to the
body’s metabolism. However, thyroid disease seriously
threatens human health, and the incidence of thyroid
cancer is increasing [1–4]. Due to its advantages of non-
invasiveness, low cost, convenient examination, and good
reproducibility, ultrasonography has become an essential
diagnosis and treatment method for thyroid disease ex-
amination [5].

,yroid Ultrasound Standard Plane (TUSP) is a plane for
measuring thyroid parameters, an image that must be pre-
served in a regular thyroid ultrasound examination, and a
requirement and basis for quality control of thyroid exami-
nation. Besides, TUSP can also help doctors quickly find the
location of thyroid disease. In a clinical thyroid ultrasound
examination, due to large outpatient traffic, time-consuming
training of sonographers, and uneven professional level of
physicians, doctors tend to ignore the preservation of TUSP
images, and the ultrasound examination process is often not
standardized. Nonstandard thyroid ultrasound examination
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can easily lead to missed diagnosis; then, repeated exami-
nation of patients will cause a great waste of medical
resources.

One way to effectively solve these problems is to trainmore
sonographers and carry out strict standardized training, but it
requires not only investing a lot of medical funds but also
spending a lot of time and energy. In recent years, with the
development of artificial intelligence, especially the emergence
of convolutional neural networks (CNN), computer-aided
detection (CAD) technology—medical images that are auto-
matically recognized by computer methods to assist doctors in
diagnosis—has been widely used in the medical field [6, 7].

,is paper aims to use TUSP images as research objects
to explore a recognition method of TUSP images. By rec-
ognizing TUSP images, the sonographer can standardize the
ultrasound examination process of the thyroid and reduce
the misdiagnosis and missed diagnosis caused by non-
standard thyroid ultrasound examination. Besides, it is the
exploration of recognition methods based on TUSP images
that will help improve the efficiency of sonographer training
and save medical resources.

2. Related Work

At present, the recognition methods widely used in ultra-
sound images can be divided into two types roughly. One is
the image recognition and classification method based on
traditional features. ,is method performs feature extrac-
tion, feature encoding, and feature classification on the input
image to achieve image automatic recognition.

For example, in 2008, Liu et al. [8] searched for the best
cross-sections of the three-dimensional ultrasound image of
the heart by template matching algorithm. ,ey achieved a
high accuracy rate based on the mutual informationmethod.
In 2012, Zhang et al. [9, 10] proposed a standard plane
screening method for 2D ultrasound images based on cas-
caded AdaBoost classifiers and local context information
and proposed the concept of “intelligent ultrasound scan-
ning”. In 2015, Huo et al. [11] designed and implemented a
navigation visualization system for standard planes of
transesophageal echocardiography. ,is system can guide
doctors to find the 20 planes more and accurately and help
doctors grasp the technology of getting standard planes,
which facilitates it for doctors in analyzing the cases in detail
to make an accurate diagnosis. In 2016, Singh et al. [12] used
ten different evaluation criteria to decide the relevance of a
specific feature. ,ey obtained a classification accuracy rate
of 96.6% for the 178 breast ultrasound images used in the
experiment. In 2017, Khamis et al. [13] studied the automatic
apical view classification method of three longitudinal scans
of the echocardiograms (A2C, A4C, and ALX) for the au-
tomatic cardiac functional assessment of echocardiograms
and proposed a method employing spatiotemporal feature
extraction and supervised dictionary learning. Finally, the
average recognition rate of the apical view of the echocar-
diograms achieved 95%. In 2018, Yuanet al. [14] proposed an
approach based on local shape structure for detecting media-
adventitia border in intravascular ultrasound (IVUS). ,is
approach more accurately recognizes the critical points of

the target border compared with other algorithms in that
time and detects the whole target border successfully.

Another image recognition method is a classification
method based on deep learning [15–17]. A deep network
model is trained by the images to extract image features
automatically, and then the image is automatically classified
through the trained model.

For example, in 2015, Ni Dong’s research group at
Shenzhen University [18] used a pretrained neural network
model to identify fetal abdominal standard plane (FASP)
and used two classic neural network structures, named
T-CNN and R-CNN. ,e network T-CNN was used to
extract the ROI, and R–CNN is used to identify standard
planes. ,e experimental results show that the accuracy of
T-CNN to extract ROI reaches 90%, and the recognition rate
of R-CNN reaches 82%. In 2017, Chen et al. [19] proposed a
composite neural network to automatically identify fetal
ultrasound standard planes: FASP, FFASP, and FFVSP from
ultrasound video sequences. Experiments show that the
accuracy of FASP, FFASP, and FFVSP standard slices based
on ultrasound images are 90.8%, 86.7%, and 86.7%, re-
spectively. ,e accuracy of FASP, FFASP, and FFVSP
standard planes based on ultrasound video is 94.1%, 71.7%,
and 86.4%, respectively. In 2018, Yu et al. [20, 21] proposed
an automatic recognition method for fetal facial standard
planes of ultrasound images based on the deep convolutional
neural network framework. ,ey achieved the recognition
rate to be as high as 94.5%. In the same year, the literature
[22] reported a deep learning network VP-Net used to lo-
calize multiple brain structures in three-dimensional fetal
neurosonography. Based on this network, the localization
results are better than other methods. In 2019, the literature
[23] reported a system based on U-Net and VGG. ,e
system locates the ultrasound standard plane first and then
realizes accurate head circumference estimation based on
the Obstetric Sweep Protocol (OSP) data. In 2020, to solve
the problem that the field of view and orientation of the
image volumes vary greatly due to the fact that clinical head
CT images are obtained with different protocols, Zhang et al.
[24] proposed a deep convolutional neural network called
HeadLocNet. HeadLocNet is trained to classify a head CT
image in terms of its content and localize landmarks to
estimate a point-based registration with the same seven
known landmarks. In the end, they achieved a classification
accuracy of 99.5% and an average positioning error of
3.45mm. Qu et al. [25] proposed a Deep Convolutional
Neural Network (DCNN) method to automatically identify
six fetal brain standard planes. ,rough methods such as
data enhancement and transfer learning, both datasets ob-
tained good experimental results. Wang et al. [26] proposed
an attention-based feature aggregation network. ,is net-
work automatically integrates multiple views of thyroid
nodules obtained from a thyroid examination process and
uses different views of thyroid nodules to improve the
recognition effect of malignant nodules.

Since the image recognition method based on deep
learning can extract the deep features of the image by
constructing a deep network, the method based on deep
learning has great advantages compared with traditional
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machine learning methods in image recognition [27]. Be-
sides, combined with the characteristics of low contrast, low
resolution, and blurred boundaries in ultrasound images, in
this study, we use an 18-layer residual network [28] based on
deep learning to identify TUSP.

With the approval and review of the Ethics Committee
and the patient’s informed consent and through coop-
eration with the Second Affiliated Hospital of Fujian
Medical University, we have collected 5,500 TUSP images
of 8 categories, manually classifying each TUSP image by
the physician. After desensitizing and filling the image, we
input 80% of the TUSP images into the 18-layer residual
network named ResNet-18 model for training, which is
used to train the model to extract the depth features of the
TUSP images, and the remaining 20% of the images are
used to test the recognition effect of the model on TUSP
images. Finally, we conducted a comparative analysis with
other mainstream network models under multiple eval-
uation indicators.

,e main contributions of this paper are summarized as
follows:

(1) Referring to multiple relevant guidelines, 8 TUSP
were determined to standardize clinical thyroid ul-
trasound examination with the advice of clinical
ultrasound experts. It provides a reference for
standardizing other examination processes, like fetal
ultrasound.

(2) A large database including 5,500 TUSP images was
established to solve the clinical problems. To our
best knowledge, this is the largest database of
TUSP.

(3) To overcome the drawback (e.g., low contrast, low
resolution, and so on) from ultrasound images, an
18-layer residual network model (ResNet-18) is
trained to extract the deep features of thyroid ul-
trasound images. To explain this method’s effec-
tiveness objectively, we compared and analyzed with
a five-fold cross-validation method based on mul-
tiple evaluation indicators between ResNet-18 and
other mainstream CNN models.

3. Methods

,is study aims to standardize the thyroid ultrasound ex-
amination process to reduce missed diagnosis and other
situations. Referring to multiple relevant guidelines, we
define 8 TUSP in the video of the sonographer scanning the
thyroid with clinical ultrasound experts’ suggestions. When
all 8 TUSP exist, the sonographer’s examination process can
be considered standard so that our task is transformed into
the recognition of TUSP. To extract deep features from
TUSP images, we propose using the 18-layer residual net-
work ResNet-18 to realize the automatic classification of
TUSP images.

,is section will introduce the ,yroid Ultrasound
Standard Plane definition and the methods we used in our
study, including convolutional neural networks and ResNet
networks.

3.1. Definition of 2yroid Ultrasound Standard Plane. To
observe the thyroid in detail, under the recommendations of
the Clinical Ultrasound Expert Panel and various reference
guides such as “Color Atlas of Ultrasound Anatomy” [29] and
“Ultrasound Standard Section Illustration” [30], we define 8
TUSP during the sonographer scanning the thyroid. ,e 8
TUSP can roughly divide into transverse planes and lon-
gitudinal planes; they are Transverse Plane of ,yroid
Isthmus (TPTI), Longitudinal Plane of ,yroid Isthmus
(LPTI), Upside of the Transverse Plane of the Left lobe of
,yroid (UTPLT), Downside of the Transverse Plane of the
Left lobe of ,yroid (DTPLT), Upside of the Transverse
Plane of the Right lobe of ,yroid (UTPRT), Downside of
the Transverse Plane of the Right lobe of ,yroid (DTPRT),
Longitudinal Plane of the Left lobe of ,yroid (LPLT), and
Longitudinal Plane of the Right lobe of ,yroid (LPRT),
respectively. 8 categories of TUSP images are shown in
Figure 1.

In Figure 1, although many planes have the same or-
ganizational structures, just like thyroid isthmus (TI) shows
in TPTI, LPTI, UTPLT, DTPLT, UTPRT, and DTPRT, the
focus of each plane is different. For instance, TPTI and LPTI
focus on the transverse plane and longitudinal plane of TI,
respectively. LPLTand LPRTfocus on the longitudinal plane
of the left lobe and the right of the thyroid. And UTPLTand
DTPLT focus on the transverse plane of the upside and
downside of the left lobe of the thyroid, respectively. UTPRT
and DTPRT are similar to UTPLT and DTPLT but for the
right lobe of the thyroid.

3.2. Convolutional Neural Network. Convolutional neural
network (CNN) [31–33] is a feedforward neural network
with a deep learning function designed for image recogni-
tion specifically, which has achieved great success in image
recognition and detection [28, 34–37]. CNNmodel is usually
composed of an input layer, multiple convolutional layers,
pooling layers, and one (or more) fully connected layer(s).

,e convolutional layer is the core of CNN, which is
usually composed of multiple convolution kernels. When
the image as the input signal is input into the CNN,
multiple feature maps are generated through cross-corre-
lation operations between the input signal and the first
layer’s convolution kernels. And these output feature maps
as the input signals are input into the next layer of the CNN
until the last layer. It is worth mentioning that, to reduce
the number of networks’ parameters and the complexity of
CNN, unlike traditional artificial neural networks, CNN
adopts a “weight sharing” strategy that the neurons in the
same layer have the same weight. If Xl

j represents the
feature map output by the l-th convolutional layer and Xl−1

i

represents the feature map input by the (l−1)th layer, the
process can be described as

X
l
j � f X

l−1
i ⊗W

l
i,j + b

l
j􏼐 􏼑. (1)

Among them, ⊗ represents the cross-correlation oper-
ation, and Wl

i,j and bl
j represent the weight and bias terms of

the convolution kernel, respectively. Besides, the convolu-
tional layer is usually followed by a nonlinear activation
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function f, for example, Rectified Linear Unit (ReLu), which
is defined as f(x) � max(x, 0).

,e pooling layer is usually designed after the con-
volutional layer, aiming to retain the valuable features and
ignore the useless. And the output of the pooling layer is
always the input data of the next layer of the CNN model.
Commonly, max pooling (max-pool) and average pooling
(avg-pool) are the main pooling methods. As the name
implies, max pooling retains the maximum values in a
specific area of the feature map, and average pooling is to
retain the average values. ,erefore, the pooling layer can
improve the generalization ability while reducing the size of
the feature map. What is more, the CNNmodel can be faster
thanks to the reduction of parameters.

After stacking multiple convolutional layers and pooling
layers, one or more fully connected layers are usually
connected. ,e function of the fully connected layer is in-
tegrating a feature map from the previous layer into a feature
vector and then use a softmax function to convert the feature
vector into a probability distribution of the image category.
Finally, the category with the highest probability is regarded
as the final output of the CNN model.

3.3. ResNet Network Structure. ,ere is no doubt that the
depth of the network is crucial for image feature extraction.
To extract deep features from TUSP images, a deep CNN is
necessary to be trained. However, when the model is deeper,
the degradation problem is prone to occur. As themodel gets
deeper and deeper, the model’s performance will not in-
crease but decrease.

ResNet is a CNNmodel proposed by He et al. to solve the
degradation problem. Residual blocks which are stacked in
the model are the core of ResNet. Unlike conventional CNN
stacked by multiple convolutional layers and pooling layers,
each residual block is composed of 2 convolutional layers

and a short connection [28, 38]. Figure 2 shows the structure
of the residual block.

In Figure 2, x represents the input signal, F(x) denotes
the output of the residual block before the second layer
activation function. If W1 and W2 represent the weights of
the first and the second layer of the residual block, re-
spectively, F(x) can be described as F(x)�W2f(W1X) (for
simplicity, the bias b is omitted here). In this residual block,
activation function f uses ReLU, mentioned in the Con-
volutional Neural Network section. So, the final output of
this residual block is f(F(x)+ x).

Suppose the target output of the residual block is equal
to the input x, which can be seen easily in a deep learning
network. In a network with shortcut connections, we only
need to optimize F(x) + x to x (or F(x) to 0). In contrast, we
need to optimize x to F(x) � x in conventional CNN
without shortcut connections. ,erefore, shortcut con-
nections can make the deep network easier to optimize
and solve the degradation problem caused by deep
networks.

In this study, we trained an 18-layer CNN(ResNet-18)
[28] composed of one 7× 7 convolutional layer, eight re-
sidual blocks, two pooling layers, and one fully connected
layer to realize the automatic classification of TUSP images
after padding and resizing. And each residual block is
composed of two 3× 3 convolutional layers. Figure 3 shows
the detail of the structure of the ResNet-18 model. And
Table 1 shows the architecture of ResNet-18.

4. Material Collection and
Experimental Process

4.1. TUSP Images Acquisition. ,e study protocol was
reviewed and approved by the Ethics Committee of our
institution, and informed consent was obtained from all
subjects. According to the defining principle of TUSP

(a) (b) (c) (d) (e)

(f ) (g) (h)

Figure 1:,yroid Ultrasound Standard Plane images. (TI represents thyroid isthmus, LTand RTrepresent the left and right lobe of the
thyroid, respectively, T represents the trachea, and ES represents esophagus). (a) TPTI, (b) LPTI, (c) UTPLT, (d) DTPLT, (e) UTPRT,
(f ) DTPRT, (g) LPLT, and (h) LPRT.
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mentioned before, we collected lots of TUSP images from
the Second Affiliated Hospital of Fujian Medical University.

To ensure the quality of collected images, each TUSP
image is classified by one sonographer and reviewed by two
other senior sonographers. Finally, we collected 5,500
qualified and unique TUSP images; the distribution of
various categories of TUSP images is shown in Table 2.

4.2. Image Preprocessing. TUSP images acquired from the
hospital have 7 image specifications (most are 1024× 768)
due to the different models of ultrasound equipment used
in hospitals. Firstly, to protect patients’ privacy and uni-
form TUSP image size, we cropped the patient-related
information. And then, we took the longest side of the
image as the side length and filled the short side of the
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Figure 3: ,e specific structure of the ResNet-18 model.

Weight layer 1

Weight layer 2

+

x

Relu

Relu

F (x)

F (x) + x

x
identity

Figure 2: ,e structure of the residual block.

Table 1: Architecture of ResNet-18.

Block Layers Output size

Input Input layer 500× 500×1
Conv 1 7× 7 conv 250× 250× 64
Pooling 2× 2 max pooling 125×125× 64

Residual block 1 3× 3 conv 125×125× 643× 3 conv

Residual block 2 3× 3 conv 125×125× 643× 3 conv

Residual block 3 3× 3 conv 63× 63×1283× 3 conv

Residual block 4 3× 3 conv 63× 63×1283× 3 conv

Residual block 5 3× 3 conv 32× 32× 2563× 3 conv

Residual block 6 3× 3 conv 32× 32× 2563× 3 conv

Residual block 7 3× 3 conv 16×16× 5123× 3 conv

Residual block 8 3× 3 conv 16×16× 5123× 3 conv
Avg pooling 16×16 avg pooling 1× 1× 512
FC layer FC softmax 1× 1× 8
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image symmetrically using 0 pixels to change the rectan-
gular image to a square as shown in Figure 4 (Take the
900× 648 size after clipping the privacy data as an exam-
ple). Finally, the zoomed image is input into the ResNet-18
model.

4.3. Experimental Settings and Evaluation Indicators. ,is
experiment is based on the Windows 10 operating system.
And the specific computer hardware configuration is as
follows: Intel(R) Core(TM) i7-7700, 32GB, NVIDIA
GeForce GTX-1080Ti, and video memory is 11GB. ,e
programming environment is Python 3.6, and the deep
learning framework used in our study is TensorFlow 1.14
[39] and Keras 2.3.1.

To evaluate the recognition effect of each model ob-
jectively, we performed five-fold cross-validation of the
model. ,e TUSP image dataset is divided into five non-
overlapping subdatasets randomly. ,en the model is
trained and verified five times. Four subdatasets are used to
train the model (and one of these for verification), and the
remaining one subset is used to test the model’s perfor-
mance. Moreover, each model needs to be trained and tested
five times, and the subdataset used to test the model is
different each time.

Besides, we applied multiple evaluation indicators to
estimate the performance of the model. Precisions (P), re-
calls (R), and F1 scores (F1) are calculated in each category of
TUSP images. ,e definition of P, R, and F1 are as follows:

P �
TP

TP + FP
, (2)

R �
TP

TP + FN
, (3)

F1 �
2 × P × R

P + R
, (4)

where TP (True Positive) represents the number of cases
correctly recognized as a true category of TUSP, FP (False
Positive) represents the number of cases incorrectly rec-
ognized as a true category of TUSP, TN (True Negative)
represents the number of cases correctly recognized as a false
category of TUSP, and FN (False Negative) represents the
number of cases incorrectly recognized as a false category of
TUSP.

Besides, to compare the recognition effect between the
models, accuracy, macro precision (macro-P), macro recall
(macro-R), and macro F1 score (macro-F1) on the test set
were calculated. In our study, macro-P, macro-R, and
macro-F1 represent the average precision, recall, and F1 of

each type of TUSP image, respectively. ,e relevant formula
is defined as follows:

macro − P �
1
n

􏽘

n

i�1
Pi, (5)

macro − R �
1
n

􏽘

n

i�1
Ri, (6)

macro − F1 �
1
n

􏽘

n

i�1
F1i. (7)

In these equations above, n represents the number of
TUSP image categories (equal to 8 in our experiment). Pi, Ri,
and F1i represent the precision, recall, and F1 score of the i-
th categories of TUSP images, respectively.

What is more, we use the number of models’ parameters
to evaluate the computational cost of different models, and
McNemar’s test is applied to illustrate the difference between
the two models with the closest performance.

5. Experimental Results

We trained the ResNet-18 model using the five-fold cross-
validation method after TUSP images preprocessing, which
was introduced before. Using the 18-layer ResNet residual
network, the average recognition accuracy of TUSP images
reached 91.07%, the average macro precision reached
91.39%, the average macro recall reached 91.34%, and the
average macro F1 score reached 91.30%. Table 3 shows the
details.

In Table 3, ResNet-18 shows the best recognition effect
on TPTI and LPTI, getting more than 98% in precision,
recall, and F1 score. ,e second is identifying standard
planes of UTPLT, DTPLT, UTPRT, and DTPRT, and the
evaluation indicators are all above 90%. ,e worst recog-
nition effect is the recognition of LPLTand LPRT.,e recall,
precision, and F1 of LPLT identification are only 78.52%,
76.80%, and 77.53%, respectively. ,e precision, recall, and
F1 score are 81.70%, 82.72%, and 82.12%, respectively.

Figure 5 shows the confusion matrix of the average result
of the five-fold cross-validation of the ResNet-18 model. In
the confusion matrix, the abscissa represents the label
predicted by the model, and the ordinate represents the true
label of TUSP images. ,e number in the figure represents
the average number of TUSP images recognized by the
model’s five-fold cross-validation.

From the confusion matrix, we can see intuitively that
the ResNet-18 can recognize most TUSP images correctly.

Table 2: Distribution of 8 categories of TUSP images.

Types of TUSP Number Types of TUSP Number
TPTI 635 UTPRT 586
LPTI 1002 DTPRT 489
UTPLT 583 LPLT 733
DTPLT 552 LPRT 920
Sum 5500
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Among them, the ResNet-18 model has the best effect on
TPTI and LPTI. On average, only 0.6 images belonging to
DTPLT are recognized as TPTI, and only 0.6 other TUSP
images are recognized as LPTI incorrectly. ,e recognition
effect of LPRT is the worst. On average, 33.8 LPRT images
are incorrectly recognized as LPLT, and 31.2 LPLT images
are recognized as LPRT incorrectly.

To compare the recognition effects on TUSP images, we
trained other mainstream CNN models from scratch with
random initialization. Under the same experimental con-
ditions and same dataset, the TUSP images are scaled to the
same input image size in their original paper and then
inputted to ResNet-101, ResNet-152 [28], VGG16 [34],
Inception V3 [35], MobileNet [36], and Xception [37]. In
these models, we set the batch size to 2 due to video
memory limitations. At the same time, we used the same
evaluation indicators to evaluate these models. ,e rec-
ognition effects of the comparative experiment are shown
in Table 4.

It can be seen from Table 4 that the average classification
accuracy of mainstream CNN models for TUSP images has
exceeded 86%. And the recognition effect of the ResNet-18
model is better than other mainstream models significantly.
Its accuracy, macro-P, macro-R, and macro-F1, are 0.94%,
0.56%, 0.87%, and 0.83% higher than those of the second-
ranked Xception model, respectively.

To describe the difference between ResNet-18 and
Xception (the second-ranked model in Table 4), we applied
McNemar’s test with the cumulative result (not average
result) of five-fold cross-validation. And the result shows
that the prediction results between ResNet-18 and Xception
are significantly different (x2 � 25.96, p-value< 0.05). Be-
sides, from Table 5, we can find that ResNet-18 achieves
better results using nearly half the parameters than Xception.

6. Discussion

Currently, there are many studies on CAD-based medical
image recognition and classification. As for thyroid ultrasound
images, most academics are paying attention to locate thyroid
nodules and judge whether they are benign or malignant
[26, 40–46], but little attention is paid to the standardization of
thyroid ultrasound examination procedures. It is crucial of
course to locate the position of thyroid nodules, but also to the
process of thyroid ultrasound examinations.

In clinical, due to large outpatient traffic, time-con-
suming training of sonographers, and uneven professional
level of physicians, doctors tend to ignore the preservation of
TUSP images, and the ultrasound examination process is
often not standardized. And it will lead to many problems,
such as misdiagnosis and missed diagnosis.

In our study, we defined 8 TUSP in different positions of
the thyroid to standardize clinical thyroid ultrasound ex-
amination, which can be referenced to standardize other
examination processes (such as fetal ultrasound). ,en,
through cooperation with the Second Affiliated Hospital of
Fujian Medical University, we collected 5,500 TUSP images
in 8 categories with the approval and review of the Ethics
Committee and the patient’s informed consent. Besides, we
trained an 18-layer residual network model (ResNet-18) to
recognize TUSP images.

,e experiment shows that CNN models can recognize
TUSP images effectively, and the 18-layer residual network
ResNet-18 gets the best. To evaluate the recognition effect of
each model objectively, we use five-fold cross-validation and
comparative analysis with other mainstream CNN models
under multiple evaluation indicators, including accuracy,
precision, recall, and F1 score. Besides, McNemar’s test
shows that the performance between ResNet-18 (the first-

Table 3: ,e precision, recall, and F1 score of various categories in the test set.

Types of TUSP Precision Recall F1 score
TPTI 0.9815 0.9953 0.9883
LPTI 0.9980 0.9970 0.9975
UTPLT 0.9410 0.9399 0.9401
DTPLT 0.9328 0.9241 0.9277
UTPRT 0.9512 0.9146 0.9322
DTPRT 0.9046 0.9408 0.9218
LPLT 0.7852 0.7680 0.7753
LPRT 0.8170 0.8272 0.8212
Macro average 0.9139 0.9134 0.9130
Accuracy 0.9107
,e values in the table are the average of five-fold cross-validation.

64
8 

pi
xe

ls

90
0 

pi
xe

ls

900 pixels

50
0 

pi
xe

ls

500 pixels

900 pixels

126 pixels

126 pixels

Padding Resize

Figure 4: Padding and resizing of TUSP images.
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ranked model) and Xception (the second-ranked model) is
significantly different. ,e comparative experiment shows
that ResNet-18 can effectively extract features from TUSP
images and the effect is better than other CNN models (as
shown in Table 4).

However, there are still shortcomings in our study. First,
compared with natural image datasets such as ImageNet
[47], the dataset collected by our research is still small.
Secondly, although CNN models get good performance in
the recognition on the TUSP images, on the whole, the

Table 4: Recognition effects of different CNN models on TUSP images.

Models TPTI LPTI UTPLT DTPLT UTPRT DTPRT LPLT LPRT Macro average Accuracy

ResNet-18
P 0.9815 0.9980 0.9410 0.9328 0.9512 0.9046 0.7852 0.8170 0.9139

0.9107R 0.9953 0.9970 0.9399 0.9241 0.9146 0.9408 0.7680 0.8272 0.9134
F1 0.9883 0.9975 0.9401 0.9277 0.9322 0.9218 0.7753 0.8212 0.9130

ResNet-50
P 0.9845 0.9832 0.9026 0.8956 0.9179 0.8792 0.6884 0.7812 0.8791

0.8744R 0.9843 0.9890 0.9004 0.8842 0.8909 0.9100 0.7329 0.7348 0.8783
F1 0.9843 0.9861 0.9006 0.8890 0.9030 0.8929 0.7078 0.7558 0.8775

ResNet-101
P 0.9922 0.9902 0.9117 0.9281 0.9040 0.8964 0.7492 0.7242 0.8870

0.8795R 0.9906 0.9910 0.9296 0.9041 0.9061 0.8876 0.6127 0.8261 0.8810
F1 0.9913 0.9906 0.9203 0.9156 0.9048 0.8909 0.6710 0.7703 0.8818

VGG16
P 0.9937 0.9851 0.9328 0.8929 0.9039 0.8798 0.7190 0.7461 0.8817

0.8762R 0.9874 0.9900 0.8971 0.9221 0.8911 0.8813 0.6768 0.7815 0.8784
F1 0.9905 0.9875 0.9132 0.9057 0.8956 0.8784 0.6963 0.7626 0.8787

ResNet-152
P 0.9938 0.9813 0.9247 0.9028 0.8826 0.8538 0.7800 0.7024 0.8777

08634R 0.9858 0.9910 0.9057 0.9258 0.8768 0.8569 0.5289 0.8370 0.8635
F1 0.9897 0.9861 0.9143 0.9128 0.8773 0.8507 0.6042 0.7556 0.8613

InceptionV3
P 0.9907 0.9911 0.9359 0.9341 0.9220 0.8960 0.7430 0.7926 0.9007

0.8962R 0.9858 0.9920 0.9398 0.9313 0.9098 0.9140 0.7407 0.7870 0.9000
F1 0.9881 0.9915 0.9374 0.9320 0.9150 0.9038 0.7398 0.7882 0.8995

MobileNet
P 0.9892 0.9921 0.9341 0.9294 0.9162 0.9118 0.7490 0.8028 0.9031

0.8986R 0.9937 0.9960 0.9347 0.9223 0.9199 0.8936 0.7613 0.7880 0.9012
F1 0.9914 0.9940 0.9340 0.9254 0.9174 0.9018 0.7528 0.7932 0.9012

Xception
P 0.9844 0.9913 0.9298 0.9605 0.9504 0.9054 0.7634 0.7812 0.9083

0.9013R 0.9890 0.9900 0.9639 0.9061 0.9148 0.9406 0.7015 0.8315 0.9047
F1 0.9867 0.9906 0.9461 0.9319 0.9318 0.9222 0.7258 0.8030 0.9047

,e values in the table are the average of five-fold cross-validation.
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Figure 5: ,e confusion matrix of the experiment result (the values in the figure are the average of five-fold cross-validation).
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recognition effects on LPLT and LPRT are not very well.
From Figure 5, we can see that the similarity between LPLT
and LPRT is high. From Table 4, the precision, recall, and F1
score of LPLT are only 78.52%, 76.80%, and 77.53%, re-
spectively. ,e precision, recall, and F1 score of LPRT are
only 81.70%, 82.72%, and 82.12%, respectively.

We analyzed the reasons for the lack of experiments.
Regarding the dataset problem, first of all, the acquisition of
medical images is challenging and expensive because
medical images involve ethics, informed consent, and others.
As for the poor recognition effect on LPLT and LPRT, we
believe that it is affected by at least two factors. On the one
hand, the characteristics (low contrast, low resolution,
blurred boundaries, artifacts, speckle noise, etc.) of ultra-
sound images themselves are essential factors. On the other
hand, the high similarity between LPLT and LPRT(see
Figure 1(g) and 1(h)) will significantly interfere with the
model’s recognition.

Although we have established a large database with 5500
TUSP images, and the recognition accuracy rate has reached
91.07%, there are still many challenges before clinical ap-
plication. In the future, we will continue to collect TUSP
images and explore a better performance model for TUSP
recognition. Besides, we will develop a computer-aided
diagnosis (CAD) system to standardize the examination
procedures of clinicians, which can be applied in the field of
clinical and sonographers’ teaching and training.

7. Conclusion

Aiming at problems such as misdiagnosis and missed di-
agnosis caused by irregular thyroid ultrasound examination,
we defined 8 TUSP in different positions of the thyroid. And
we take TUSP as the research object to explore the method to
standardize thyroid ultrasound examination procedure.
Moreover, we trained a residual network-based deep
learning method to recognize TUSP after preprocessing
5,500 TUSP images collected from our cooperative hospital.
What is more, we compare and analyze the recognized effect
from other CNN models (including ResNet models with
different layer structures, VGG16, InceptionV3, MobileNet,
and Xception) by the five-fold cross-validation method.

,e experimental results show that CNN models can
recognize TUSP images effectively. And in this study 18-
layer residual network model ResNet-18 used gets the best
recognition effect on TUSP images. ,e recognition accu-
racy of TUSP reached 91.07%, the macro precision reached

91.39%, the macro recall reached 91.34%, and the macro F1
score reached 91.30%. ,e experimental results show that
the residual network can effectively recognize TUSP images,
laying the foundation for the automatic standardization of
thyroid ultrasound examination procedures and being ex-
pected to reduce misdiagnosis and missed diagnosis caused
by irregular ultrasound examination procedures. And it is
worthy of further exploration. What is more, it may become
an effective way to save medical resources and speed up the
training of sonographers.
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