
ARTICLE

Large-scale diet tracking data reveal disparate
associations between food environment and diet
Tim Althoff 1✉, Hamed Nilforoshan2, Jenna Hua3,4 & Jure Leskovec 2,5

An unhealthy diet is a major risk factor for chronic diseases including cardiovascular disease,

type 2 diabetes, and cancer1–4. Limited access to healthy food options may contribute to

unhealthy diets5,6. Studying diets is challenging, typically restricted to small sample sizes,

single locations, and non-uniform design across studies, and has led to mixed results on the

impact of the food environment7–23. Here we leverage smartphones to track diet health,

operationalized through the self-reported consumption of fresh fruits and vegetables, fast food

and soda, as well as body-mass index status in a country-wide observational study of

1,164,926 U.S. participants (MyFitnessPal app users) and 2.3 billion food entries to study the

independent contributions of fast food and grocery store access, income and education to diet

health outcomes. This study constitutes the largest nationwide study examining the rela-

tionship between the food environment and diet to date. We find that higher access to grocery

stores, lower access to fast food, higher income and college education are independently

associated with higher consumption of fresh fruits and vegetables, lower consumption of fast

food and soda, and lower likelihood of being affected by overweight and obesity. However,

these associations vary significantly across zip codes with predominantly Black, Hispanic or

white populations. For instance, high grocery store access has a significantly larger association

with higher fruit and vegetable consumption in zip codes with predominantly Hispanic

populations (7.4% difference) and Black populations (10.2% difference) in contrast to zip

codes with predominantly white populations (1.7% difference). Policy targeted at improving

food access, income and education may increase healthy eating, but intervention allocation

may need to be optimized for specific subpopulations and locations.
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D ietary factors significantly contribute to risk of mortality
and chronic diseases such as cardiovascular diseases, type
2 diabetes and cancer globally1–3. Emerging evidence

suggests that the built and food environment, behavioral, and
socioeconomic factors significantly affect diet7. Prior studies of
the food environment and diet have led to mixed results7–23, and
very few used nationally representative samples. These mixed
results are potentially attributed to methodological limitations of
small sample size, differences in geographic contexts, study
population, and non-uniform measurements of both the food
environment and diet across studies. Therefore, research with
larger sample size and using improved and consistent methods
and measurements is needed9,24,25.

Commercially available and widely used mobile applications
allow the tracking of health behaviors and population health26, as
recently demonstrated in physical activity27,28, sleep29,30, COVID-
19 pandemic response31–33, women’s health34, as well as diet
research35–40. With ever increasing smartphone ownership in the
U.S.41 and the availability of immense geospatial data, there are
now unprecedented opportunities to combine various data on
individual diets, population characteristics (gender and ethnicity),
socioeconomic status (income and educational attainment), as
well as food environment at large scale. Interrogation of these
rich data resources to examine geographical and other forms of
heterogeneity in the effect of food environments on health could
lead to the development and implementation of cost-effective
interventions42. Here, we leverage large-scale smartphone-based
food journals of 1,164,926 participants across 9822 U.S. zip codes
(Fig. 1) and combine several Internet data sources to quantify the
independent associations of food (grocery and fast food) access,
income and educational attainment with food consumption and
body-mass index (BMI) status (Fig. 2). This study constitutes the
largest nationwide study examining the relationship between the
food environment and diet to date.

Results
Data validation: diet tracking data correlates with existing
large-scale measures. To determine the ability of our dataset to
identify relationships between fast food, grocery store access,
income, educational attainment and diet health outcomes, we
confirmed that this studies’ smartphone-based food logs correlate
with existing large-scale survey measures and purchase data.

Specifically, the fraction of fresh fruits and vegetables (F&V) that
participants logged is correlated with Behavioral Risk Factor
Surveillance System (BRFSS) survey data43 (Fig. 3a; Pearson
Correlation R= 0.63, p < 10−5; Two-sided Student’s t-test;
Methods). Further, the reported BMI of MyFitnessPal (MFP)
participants is correlated with BRFSS survey data44 (Fig. 3b;
Pearson Correlation R= 0.78, p < 10−5; Two-sided Student’s t-
test; Methods). Lastly, the digital food logs data replicate previous
findings of relative consumption differences in low-income, low-
access food deserts based on Nielsen purchase data45 (Fig. 3c;
Pearson Correlation R= 0.88, p < 0.01; Two-sided Student’s t-
test; Methods). These results demonstrate that smartphone-based
food logs are highly correlated with existing, gold-standard survey
measures and purchase data.

Associations between food environment, demographics and
diet. Using these data across all 9822 U.S. codes, we found that
high income, high educational attainment, high grocery store
access, and low fast food access were independently associated
with higher consumption of fresh F&V, lower consumption of
fast food and soda, and lower prevalence of BMI levels categor-
ized as overweight or obesity (Fig. 4; BMI > 25). The only
exception to this pattern was a very slight (0.6%) positive differ-
ence in BMI levels categorized as overweight or obesity associated
with income. Specifically, in zip codes of above median grocery
store access participants logged 3.4% more F&V, 7.6% less fast
food, 6.4% less soda and were 2.4% less likely to be affected by
overweight or obesity (all P < 0.001). In zip codes of below
median fast food access participants logged 5.3% more F&V, 6.2%
less fast food, 13.3% less soda and were 1.5% less likely to be
affected by overweight or obesity (all P < 0.001). In zip codes of
above median education, participants logged 9.2% more F&V,
8.5% less fast food, 13.8% less soda and were 13.1% less likely to
be affected by overweight or obesity (all P < 0.001). Finally, in zip
codes of above median household income (referred to as higher
income below), participants logged 3.3% more F&V, 6.8% less fast
food, 8.6% less soda (all P < 0.001), but had a 0.6% higher like-
lihood of being affected by overweight or obesity (P= 0.006).
Note that the reported effect size are based on comparing above
and below median zip codes for any given factor. We found a
general pattern of consistent, and in many cases higher effect sizes
when comparing top versus bottom quartiles (Supplementary

# Participants

1
5
10
15
20
25
30
40
50
75
100
1,000
10,000

Fig. 1 Number of participants in our study across U.S. counties. A choropleth showing the number of participants in each U.S. county. This country-wide
observational study included 1,164,926 participants across 9822 U.S. zip codes that collectively logged 2.3 billion food entries for an average of 197 days
each. This study constitutes the largest nationwide study examining the relationship between food environment and diet to date (e.g., with 511% more
counties represented compared to BRFSS data93).
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Fig. 2), suggesting the possibility of a dose-response relationships
across most considered variables. We found that zip codes with
high educational attainment levels compared to low educational
attainment levels had the largest relative positive differences
across F&V, fast food, soda, and BMI levels categorized as
overweight or obesity.

Significant differences across zip codes with predominantly
Black, Hispanic, and Non-Hispanic white populations. We
separately repeated our data analyses within zip codes with pre-
dominantly Black (3.7%), Hispanic (5.6%), and non-Hispanic
white populations (78.4%) (Fig. 5). Results within zipcodes with
predominantly non-Hispanic white populations closely resembled
results within the overall population, since most zip codes in this
study had predominantly white populations (78.4%; not unlike
the overall U.S. population at 61.3%)46. However, restricting our
analyses to zip codes with predominantly Black and Hispanic
populations led to significantly different findings. Specifically,

within zip codes with predominantly Black populations we found
associations of higher income in the inverse direction of the
population average and towards low healthful food consumption,
across four out of four outcome variables, resulting in lower F&V
consumption (−6.5%), higher fast food consumption (5.5%), and
higher likelihood of BMI levels categorized as overweight or
obesity (8.1%). Higher income was also associated with higher
soda consumption (14.1%) but was not statistically significant
(P= 0.061). On the other hand, low fast food access and high
educational attainment access were generally associated with
higher diet health, with low fast food access correlating with the
highest significant negative difference in fast food consumption
(−12.0%) and high educational attainment with the highest
positive difference in fresh fruit and vegetable consumption
(11.2%), although lower fast food access was associated with
worse outcomes for one of the outcome variables. Specifically,
lower fast food access was associated with a slightly higher like-
lihood of being affected by overweight or obesity (3.1%). Higher

         Average Fresh Fruits and Vegetables Entries Logged Per Day                    Average Fast Food Entries Logged Per Day 

                             Average Soda Entries Logged Per Day                                  Fraction Affected by Overweight/Obesity (BMI 25+)

0th Percentile     (11%)
20th Percentile   (66%)
40th Percentile   (69%)
60th Percentile   (72%)
80th Percentile   (75%)
100th Percentile (92%)

0th Percentile     (0.31/day)
20th Percentile   (0.46/day)
40th Percentile   (0.52/day)
60th Percentile   (0.57/day)
80th Percentile   (0.64/day)
100th Percentile (0.95/day)

0th Percentile     (0.004/day)
20th Percentile   (0.026/day)
40th Percentile   (0.032/day)
60th Percentile   (0.038/day)
80th Percentile   (0.046/day)
100th Percentile (0.144/day)

0th Percentile     (0.15/day)
20th Percentile   (0.35/day)
40th Percentile   (0.41/day)
60th Percentile   (0.47/day)
80th Percentile   (0.53/day)
100th Percentile (0.78/day)

Fig. 2 Dietary consumption and BMI status across U.S. counties. A set of choropleths showing the main study outcomes of the number of entries that are
classified as fresh fruit and vegetables, fast food, and soda consumption as well as the fraction affected by overweight/obesity (BMI > 25) participants
across the USA by counties with more than 30 participants. We observe that food consumption healthfulness varies significantly across counties in the
United States.
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grocery store access had a positive association with diet health
across all outcome variables in zip codes with predominantly
Black populations, and was associated with higher F&V con-
sumption (10.2%), lower fast food consumption (12.6%), lower
likelihood of BMI levels categorized as overweight or obesity
(9.0%), and lower soda consumption (5.3%), although the asso-
ciation with soda consumption was not statistically significant
(P= 0.060).

In contrast, within zip codes with predominantly Hispanic
populations we found a significant association between higher,
above-median, income and higher F&V consumption (5.7%), but
not with the remaining three outcome variables. Zip codes with
higher proportion of people with high educational attainment had
the most positive association with diet health across all variables.
Specifically, higher educational attainment was associated with
higher F&V consumption (8.9%), lower fast food consumption
(11.9%), lower soda consumption (16.5%), and lower likelihood
of BMI levels categorized as overweight or obesity (13.7%).
Higher grocery store access and lower fast food access had similar
effect sizes as on the overall population for some outcome
variables (i.e. similar associations with likelihood of BMI levels
categorized as overweight or obesity and fast food consumption).
However, in some cases the magnitude of association was higher
(i.e. grocery store access was associated with 7.4% higher F&V
consumption in areas with predominantly Hispanic population,
which is more than twice than the difference within the overall
population) and in others, unlike the overall population, there
was no significant association (i.e. no significant relationship
between fast food access on soda consumption, or between fast
food access and F&V consumption).

Summary. Few factors were consistently associated with better
outcomes across all three subpopulations. Across all three groups,
F&V consumption was significantly higher in zip codes with high
grocery store access and high educational attainment. Fast food
consumption was lower across all potential intervention targets
besides higher income. Soda consumption was lowest most with

lower fast food access for Black and white-majority zip codes,
whereas it was lowest with higher educational attainment in His-
panic zip codes. Lastly, BMI levels categorized as overweight or
obesity were far lower with higher educational attainment levels
compared to all other intervention targets, across all three groups.

Discussion
Commercially available and widely used mobile applications and
devices enable the individuals to track their own health, and in
aggregate may inform our understanding of population health.
These emerging data sources capture health behaviors from
millions of participants26 and have uniquely enabled large-scale
research studies, including in physical activity27,28, sleep29,30,
COVID-19 pandemic response31–33, women’s health34, as well as
diet research35–40.

While many of our results were consistent with previous
studies47–49, importantly, we found that zip codes with higher
proportion of people with high educational attainment had the
largest relative difference in the likelihood of BMI levels categorized
as overweight or obesity (13.1% lower). It is well established that
social determinants of health are linked to obesity50–52. As an
important component of social determinants of health, our study
suggests that having higher educational attainment is the most
predictive of reduced overweight and obesity for all ethnicities.

When we restricted our analyses to zip codes with predominantly
Black, Hispanic, and non-Hispanic white populations, we found the
independent associations of food access, income and educational
attainment with food consumption and BMI status varied sig-
nificantly across these three groups. These findings suggest that
tailored intervention strategies are needed based on neighborhood
population distributions, assets and contexts.

Within zip codes with predominantly Black populations, the
association between having higher income and diet health was
negative. Having higher income was associated with lower F&V
consumption, higher fast food and soda consumption, and higher
likelihood of overweight and obesity. This could be explained by the
“diminishing return hypothesis”, which suggests that Black people

Fig. 3 This studies’ smartphone-based food logs correlate with existing large-scale survey measures and purchase data. a Fraction of fresh fruits and
vegetables logged is correlated with BRFSS survey data43 (Pearson Correlation R= 0.63, p < 10−5; Two-sided Student’s t-test; Methods). b Body-mass
index of smartphone cohort is correlated with BRFSS survey data44 (Pearson Correlation R= 0.78, p < 10−5; Two-sided Student’s t-test; Methods). Lines in
a, b show best linear fit along with shaded 95% bootstrap confidence intervals. c Digital food logs replicate previous findings of relative consumption
differences in low-income, low-access food deserts based on Nielsen purchase data45 (Pearson Correlation R= 0.88, p < 0.01; Two-sided Student’s t-test;
Methods). These results demonstrate that smartphone-based food logs are highly correlated with existing, gold-standard survey measures and
purchase data.
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receive fewer protective health benefits from increases in SES than
white people53,54. A combination of factors, including neighborhood
economic disadvantage55,56, racial/ethnic discrimination57,58, and
stress associated with educational attainment and mobility59, may
prevent Black people from higher SES backgrounds from achieving
their fullest health potential relative to white people60.

Within zip codes with predominantly Hispanic populations,
higher income was not associated with lower likelihood of BMI
levels categorized as overweight or obesity. The absence of a rela-
tionship between higher income and BMI, compared to in zip codes
with predominantly Black and non-Hispanic white populations,
could be partially explained by the “Hispanic health paradox” and
“Hispanic health advantage”61–66. The Hispanic health paradox
suggests that even though the first-generation Hispanic people have
lower SES, they experience better health outcomes including
lower prevalence of cardiovascular diseases, asthma, diabetes and
cancer compared to those who were U.S.-born61–63. Hispanic
health advantage suggests that Hispanic people have lower rates of
harmful health behaviors, such as smoking, which in turn positively
influence other health outcomes compared to non-Hispanic white

people61,64–66. Additionally, through acculturation or adopting
American culture, Hispanic immigrants may engage in less healthy
behaviors, which in turn put themselves at higher risk for chronic
diseases61–63,67–71.

While it is challenging to close the education and income gaps,
establishing more grocery stores and limiting fast food restaurant
access may help improve diet health across the population. Pre-
vious reviews suggested that government policies that addressing
food affordability and purchase, such as the Healthy Food
Financing Initiative (HFFI), increasing food stamp (SNAP) ben-
efit and provide incentives to create healthy retail food environ-
ment have been effective in reducing food insecurity and dietary
behaviors72–77. While several studies showed that the establish-
ments of new supermarkets had little improvement in BMI78–80;
however, the investments in the new supermarkets have
improved economic opportunity and social cohesion81–83. Our
results showed that higher grocery store access was associated
with 2–3 times higher fresh fruit and vegetable consumption and
lower fast food consumption more for Black people than for
white people. Although previous literature has shown null effects

Fig. 4 The association between income, educational attainment, grocery store and fast food access, with food consumption and BMI status.
Independent contributions of high income (median family income higher than or equal to $70,241), high educational attainment (fraction of population with
college education 29.8% or higher), high grocery store access (fraction of population that is closer than 0.5 miles from nearest grocery store is greater
than or equal to than 20.3%), and low fast food access (less than or equal to 5.0% of all businesses are fast-food chains) on relative difference in
consumption of a fresh fruits and vegetables, b fast food, c soda, and d relative difference in fraction affected by overweight or obesity (BMI > 25). Cut
points correspond to median values. Y-axes are oriented such that consistently higher is better. Estimates are based on matching experiments controlling
for all but one treatment variable, across N= 4911 matched pairs of zip codes (Methods). Bar height corresponds to mean values; error bars correspond to
95% bootstrap confidence intervals (Methods). While the most highly predictive factors vary across outcomes, only high educational attainment was
associated with a sizeable difference of 13.1% in the fraction affected by overweight or obesity.
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of grocery store access84,85, these studies have focused on the
general population, which is white-skewed. Therefore, policies
and strategies in increasing grocery store access and decreasing
fast food access could potentially be the most effective approaches
in changing dietary habits among locations with predominantly
Black populations.

Furthermore, having more grocery store access and lower fast
food access, in the food environment may work in synergistic
ways that may lead to even lower obesity prevalence and obesity-
related lifestyle and behavior changes. This is demonstrated in a
recent study by Cantor et al. that HFFI boosted the effects
of SNAP participation on improving food security and healthy

Fig. 5 Effect sizes for food consumption and BMI status disaggregated across zip codes with predominantly Black, Hispanic, and non-Hispanic white
populations (i.e., 50% or more). Independent contributions of high income (median family income higher than or equal to $70,241), high educational
attainment (fraction of population with college education 29.8% or higher), high grocery store access (fraction of population that is closer than 0.5 miles
from nearest grocery store is greater than or equal to than 20.3%), and low fast food access (less than or equal to 5.0% of all businesses are fast-food
chains) on relative difference in consumption of a fresh fruits and vegetables, b fast food, c soda, and d relative difference in fraction affected by overweight
or obesity (BMI > 25). Cut points correspond to median values. Y-axes are oriented such that consistently higher is better. Estimates are based on
matching experiments controlling for all but one treatment variable, across N= 4277, 4102, 3510, 3205 matched pairs of non-Hispanic white-majority zip
codes, treated on income, educational attainment, fast food access, grocery store access respectively; N= 42, 74, 259, 259 matched pairs of Black-
majority zip codes, treated on income, educational attainment, fast food access, grocery store access respectively; N= 67, 61, 297, 471 matched pairs of
Hispanic-majority zip codes, treated on income, educational attainment, fast food access, grocery store access respectively (Methods). Bar height
corresponds to mean values; error bars correspond to 95% bootstrap confidence intervals (Methods). We observe significant differences in outcomes
between zip codes with predominantly Black, Hispanic, and non-Hispanic white populations.
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food choices in food desserts86. This synergy could be multiplied
when combining with effective education programs that could
potentially lower obesity prevalence further by increasing
individuals’ SES (e.g., income and educational attainment)87,88,
health literacy and behaviors87–91, as well as sense of control and
empowerment92.

Due to the cross-sectional nature of the study, we were not able
to make any causal inferences between SES, food environment
variables, dietary behavior, and BMI, as unobserved neighbor-
hood and individual demographic and social characteristics could
lead to confounding. However, we used a matching-based
approach to mimic a quasi-experimental design to disentangle
the individual associations of income, educational attainment and
food access with participants’ food consumption. Our analysis did
not include other demographic variables such as gender and age,
as both variables were naturally balanced across treatment and
control groups and we observed minimal zipcode-level correla-
tions between age/gender and any of our four outcome measures
(Supplementary Table 13). In addition, we confirmed that results
were virtually identical (Pearson Correlation R= 0.95), when
explicitly controlling for age and gender in our matching-based
approach. However, we jointly considered the potential impacts
of neighborhood income, neighborhood educational attainment
and food environment access on participants’ food consumption
with consistent measures across the U.S., whereas previously
published studies examined one or a few at a time. Our study
population, based on a sample of MFP users, is an imperfect
representation of the United States national population. Com-
paring our study population to nationally representative survey
data, we found that our study population had significant overlap
with the U.S. national population in terms of population demo-
graphics, educational attainment and BMI status, but that it was
skewed towards women and higher income (Supplementary
Table 3). We used individuals’ food loggings to estimate their
consumption (specifically, the number of food entries as the
logged amount consumed varied highly across foods without
standardization; e.g., specifying weight, volume, or number).
Food loggings may not capture what individuals actually ate and
participants may be particularly motivated or care about their diet
and weight. Importantly, we conducted multiple validation
experiments through comparisons with high quality and highly
representative datasets which demonstrated high correlations to
gold-standard approaches (Fig. 3). The majority of food envir-
onment studies used screeners, food frequency questionnaires or
24-h recalls for dietary assessment, and very few used diaries9. In
contrast, our participants logged their food intakes for an average
of 197 days each. We also harnessed other large datasets such as
Yelp to examine participants’ food environments. Considering
both the strengths and limitations of this study, more research
is needed especially based on longitudinal study design and
detailed individual level data to enable causal inference and
precise interpretation of the results.

In conclusion, we analyzed 2.3 billion food intake logs and
BMIs from 1.2 million MFP smartphone app participants over 7
years across 9822 zip codes in relation to educational attainment,
ethnicity, income, and food environment access. Our analyses
indicated that higher access to grocery stores, lower access to fast
food, higher income and educational attainment were indepen-
dently associated with higher consumption of fresh F&V, lower
consumption of fast food and soda, and lower likelihood of being
affected by overweight or obesity, but that these associations
varied significantly across zip codes with predominantly Black,
Hispanic and white subpopulations. Policy targeted at improving
food access, income and education may increase healthy eating.
However, intervention allocation may need to be optimized for
specific subpopulations and locations.

Methods
Study design and population. We conducted a United States countrywide cross-
sectional study of participants’ self-reported food intake and BMI in relation to zip
code level demographic (educational attainment, ethnicity), socioeconomic
(income), and food environment factors (grocery store and fast food access) by
combining datasets from MFP, US Census, USDA and Yelp.

Overall, this cross-sectional matching-based study analyzed 2.3 billion food
intake logs from U.S. smartphone participants over 7 years across 9822 zip codes,
which is 24% of overall USA zip codes (U.S. has a total of 41,692 zip codes).
Participants were users of the MFP app, a free application for tracking caloric
intake. We analyzed anonymized, retrospective data collected during a 7-year
observation period between 2010 and 2016 that were aggregated to the zip code
level. Comparing our study population to nationally representative survey data, we
found that our study population had significant overlap with the U.S. national
population in terms of population demographics, educational attainment and BMI
status, but that it was skewed towards women and higher income (Supplementary
Table 3). Our matching-based statistical methodology controls for observed biases
between comparison groups in terms of income, educational attainment, grocery
store access, and fast food access (Methods: Statistical Analysis). Data handling and
analysis was conducted in accordance with MFP policies and with the guidelines of
the Stanford University Institutional Review Board.

Study data: MyFitnessPal. We compute outcome measures of food consumption
and BMI status from 2.3 billion food intake logs by a sample of 1,164,926 U.S.
participants of the MFP smartphone application to quantify food consumption
across 9822 zip codes. The scale and geographic distribution of our study parti-
cipants, as well as our outcome measures, are illustrated in Figs. 1 and 2 respec-
tively. To ensure participant privacy as well as reliability of our measures, we
decided to only include zip codes in which we had access to 30 or more participant
food logs, which reduced the dataset size from 27,027 zip codes (spanning 3117
counties) to the final 9822 zip codes (spanning 1730, or 55% of all counties in the
United States). Nevertheless, the geographical breadth of this dataset far exceeds
existing food surveys. For example, our final dataset contained 511% more counties
than the BRFSS survey of 283 counties, with 370% more participants per county on
average93. While size and coverage compare favorably to BRFSS, it is important to
understand what is not covered by our study. Figure 1 illustrates that our study
lacks representation in the Midwest of the USA as well as in Alaska. In our study
data, we further observed under-representation of zip codes with majority non-
white population (Supplementary Table 3) and rural zip codes (RUCA codes 7
through 1094,95), as well as over-representation of high-income zip codes (median
family income higher than $70,241).

During the observation period from January 1, 2010 to November 15, 2016, the
average participant logged 9.30 entries into their digital food journal per day. The
average participant used the app for 197 days. All participants in this sample used
the app for at least 10 days. We classified the 2.3 billion food intake entries into
three categories of public health interest, fresh F&V, fast food, and sugary non-diet
soda, and excluded them from analysis if they did not match these categories. Our
classification method is consistent with USDA MyPlate with one divergence of the
exclusion of juices. The healthiness of juice as a fruit and vegetable serving is
contested due to its sugar content and limited nutritional profile96–98. For more
details on the definition of a food entry, our classification method, and the choice
of outcome measure, see Details on outcome measures subsection in Methods.

We intentionally use a cross-sectional rather than longitudinal study design,
since fine-grained and large-scale temporal data on changes in the food
environment were not available.

Study data: demographic and socioeconomic factors. We obtained data on
demographic and socioeconomic factors from CensusReporter99. Specifically, for
each zip code in our data set we obtained median family income, fraction of
population with college education (Bachelor’s degree or higher), and fraction of
population that is white (not including Hispanic), Black, or Hispanic from the 2010
to 2014 American Community Survey’s census tract estimates99. While data were
available only on zip code level, previous studies have shown that area-level income
measures are meaningful for health outcomes and describe unique socioeconomic
inequities100.

Study data: grocery store and fast food access. Grocery store access was defined
as the fraction of population that is more than 0.5 miles away from a grocery store
following the food desert status definitions from the USDA Food Access Research
Atlas101. Contrary to the USDA definition, we found evidence that even in rural
zipcodes, the fraction of population greater than 0.5 miles away from grocery stores
has the strongest association with food consumption (compared to 10 and 20 miles
away), and thus we used 0.5 miles as the threshold across rural and urban zipcodes
(Methods: Details on food environment measures). We measured fast food access
through the fraction of restaurants that are fast food restaurants within a sample
from Yelp, querying the nearest 1000 businesses from the zip code’s center, up to a
maximum radius of 40 km (25 miles). See subsections Data Validation and
reproducing State-of-the-art Measures using Population-scale Digital Food Logs
for details and validation of these objective food environment measures.
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We release all data aggregated at zipcode level in order to enable validation,
follow-up research, and use by policy makers.

Details on food environment measures. We obtained data on grocery store
access (fraction of population that is more than 0.5 miles away from grocery store)
and food desert status from the USDA Food Access Research Atlas101. A census
tract is considered a food desert by the USDA if it is both low-income (defined by
Department of Treasury’s New Markets Tax Credit program) and low-access,
meaning at least 500 people or 30 percent of residents live more than 0.5 miles
from a supermarket in urban areas (10 miles in rural areas)45.

Although the USDA uses different thresholds for urban and rural areas (0.5 and
10 miles respectively), we found that even in rural zipcodes (defined as USDA
rural-urban continuum RUCA scores of 7 through 1094,95), the fraction of
population that is farther than 0.5 miles from grocery stores had the highest
correlation to fruit and vegetable consumption (Pearson Correlation R=−0.20),
compared to 1 miles (Pearson Correlation R=−0.17), 10 miles (R=−0.05), and
20 miles (Pearson Correlation R= 0.03). This suggests that the fraction of the
population farther than 0.5 miles from a grocery store has the strongest
relationship with healthy food consumption, even in rural zipcodes. Hence, we
decided used 0.5 miles distance as a standard measure of grocery store access for
rural and urban zip codes, contrary to the USDA definition. We subsequently
sanity checked for any downstream confounding of urbanicity in our primary
matching experiment of above/below median grocery store access, and found a
negligible difference (Standardized Mean Difference (SMD) of 0.18) in urbanicity
between control and treatment, suggesting that the effect size was not due to
grocery store distance functioning as a proxy for urbanicity, but rather directly due
to differential grocery store access.

We aggregated these data from a census tract level to a zip code level using
USPS Crosswalk data, which provides a list of all census tracts which overlap with a
single zip code102. We related these data on census tract level to the zip code level
by taking the weighted average of each census tract food environment measure
(both grocery store access and food desert status), weighted by the number of
people in the tract102. For instance, if zip code A overlapped with Census Tract A
(2500 people, food desert) and Census Tract B (7500 people, not a food desert), the
food desert measure of zip code A would be estimated as 25%. We defined the
binary threshold for food desert, used in Fig. 3, as 50% or higher.

We measured fast food access through the fraction of restaurants in a zip-code
that are fast food restaurants. Data on local restaurants and businesses were
obtained through the Yelp API103. For each zip code, we consider up to 1000
restaurant businesses that are nearest to the zip code center up to a distance of
40 km (67.8% of zip code queries resulted in 1000 restaurant businesses within
40 km; Yelp API results are restricted to 1000 results). This resulted in a varying
sample radius depending on urbanicity. For example, Urban zipcodes (RUCA code
of 1) had an average effective centroid size of 15 miles, which we calculated by
taking the distance from the zipcode center to the furthest restaurant returned by
Yelp. We further used Yelp-based environment variables that we expected not to
influence food consumption, such as the availability of waterproofing services,
countertop installers, or electronic stores, as null experiments to demonstrate
discriminant validity of our statistical analysis pipeline (see Supplementary Fig. 3).

Details on outcome measures (food consumption and BMI status). We used
2.3 billion food intake logs by a sample of 1,164,926 U.S. participants of the MFP
smartphone application to quantify food consumption across 9822 zip codes.
During the observation period from January 1, 2010 to November 15, 2016, the
average participant logged 9.30 entries into their digital food journal per day. The
average participant used the app for 197 days. All participants in this sample used
the app for at least 10 days.

Clustering of food consumption observations within individuals and zip codes
was handled through multiple levels of aggregation. First we aggregated within
participant and day (i.e., someone eating a banana at breakfast and another for
dinner), then we aggregated across all days with tracking within each participant,
and then across all participants within one zip code. We computed non-parametric
confidence intervals and p-values through bootstrapping with 1000 replications on
zip code level (last level of aggregation)104.

The unit of analysis for each zipcode was the average number of daily entries per
person. An entry is a single food consumption event logged in the app MFP. Each
entry contains a separate food component (e.g., banana, yogurt, hamburger, ...),
brand name (e.g., “Campbells”), description (e.g., “Chicken Soup”), serving size unit
(e.g., “cup”), and number of servings (e.g., “1”). Supplementary Fig. 1 shows the
application interface for logging a food entry (e.g., 1 Banana from Whole Foods).
We decided to use entries based on the observation that there was little variance in
the number of servings per food category logged by participants in a single entry,
and since the amount consumed varied highly across foods without standardization
(e.g., specifying weight, volume, or number). Participants typically log “standard
portion sizes” of each food individually (e.g., one bowl of cereal, one banana) on the
MFP app. For example, for participants that logged a banana, and listed the serving
size as “Banana”, the median entry was for 1 banana, the mean was for 0.88
bananas, and 95% of food entries were for between 0.5 to 1.5 bananas. The MFP app
strongly encourages this behavior through a large library of foods to log that follows
these standard portion sizes.

We classified all entries into three categories using brand name and description,
and three separate binary classifiers: fresh F&V (through a proprietary classifier by
MFP which used key words in the brand name and description), fast food (if the
brand name contained the name of a fast food chain listed in Supplementary
Table 8, and sugary (non-diet) soda (if the brand name contained the name of a
soda drink listed in Supplementary Table 9 and the description did not contain
“diet”, “lite”, “light”, or “zero”). In all cases, descriptions, as well fast food and soda
drink keywords, were normalized by lower-casing and removing punctuation. Each
binary classifier thus took a food entry as input (i.e., “Coca Cola, Diet Cherry Coke,
8oz”) and outputted a binary label (i.e., soda or NOT soda). Entries which were
predicted to be in none of the three categories based on all three models were
excluded from the study.

Our classification method for fresh F&V is consistent with USDA MyPlate. The
only divergence from USDA MyPlate is that we intentionally excluded juices, for
which MFP has a separate classifier, which does not separate sweetened juice drinks
or sports drinks and 100% juice. For our definition of Fresh F&V, we chose to
exclude juices because the healthiness of juice as a fruit and vegetable serving is
contested96,98, as even 100% fruit juices are typically high in sugar and calories, and
low in fiber, and vegetable juices are often mixed with other high-sugar ingredients.
We thus took a conservative approach to estimating diet healthiness by excluding
these food entries.

We evaluated the accuracy of each of the three binary classification model by
estimating the precision (# True Positive / # Predicted Positive) from a random
sample of 50 entries belonging to each category. Precision estimates are
summarized in Supplementary Table 1, and Supplementary Tables 10, 11, and 12
show random samples of 50 food items from all elements predicted to be in each
category (where asterisk “*” indicates an incorrect prediction). Note that across 2.3
billion food logs it was not possible to measure recall, but were able to measure
precision by manually inspecting the food entry brand and description and
assigning it a category.

We then calculated the average number of food entries logged per participant,
per day, for each of the F&V, fast food, and soda categories (e.g. average number of
F&V logged per participant per day), excluding days in which the participant was
inactive (i.e., consistently did not log anything). Finally, we aggregated these
participant-level measures to the zip code level by taking the mean of each
category’s measure for all participants in each zip code. We further used BMI
health in each zip code as a BMI status outcome, specifically the fraction of
participants in a zip code which are affected by overweight or obesity (BMI > 25).
BMI was self-reported by participants of the smartphone application (99.92% of
participants did report BMI). Supplementary Table 2 shows basic summary
statistics for the outcome measures used in this study. In our statistical analyses, we
compared two sets of zip codes that differ in a dimension of interest (e.g., grocery
store access access) as treatment and control group and use the relative difference
in F&V consumption, fast food consumption, soda consumption, and BMI health
of the treated group relative to the control group. To generate confidence intervals,
as well as to compute p-values to test for statistical significance of differences in
outcome, we use non-parametric bootstrap resampling with 1000 replications104.
Specifically, we follow the method proposed by Austin and Small105, which is to
draw bootstrap samples post-matching from the matched pairs in the propensity-
score-matched sample after the Genetic Matching stage106. We confirmed the
validity of this method empirically by also calculating t-tests for each experiment,
which gave qualitatively similar results. We note that we perform bootstrapping on
zip code level (highest level of aggregation). While, multilevel bootstrapping
methods exist, they do not scale well with our dataset size of 2.3 billion food items.
However, due to the large number of 9822 zip codes our analyses are well-powered
statistically even with bootstrapping at zip code level.

Data validation. We find that our study population has significant overlap with the
U.S. national population (Supplementary Table 3) but is skewed towards women
and higher income. We demonstrate that food consumption measured based on
this population are highly correlated with state-of-the-art measures (Fig. 3).
Smartphone apps such as MFP feature large databases with nutritional information
and can be used to track one’s diet over time. Previous studies have compared app-
reported diet measures to traditional measures including 24-h dietary recalls and
food composition tables. These studies found that both measures tend to be highly
correlated107,108, but that app-reported measures tend to underestimate certain
macro- and micronutrients107,108, especially in populations that were previously
unfamiliar with the smartphone applications109. In contrast, this study leverages a
sample of existing participants of the smartphone app MFP. Yelp data has been
used in measures of food environment110 and a study in Detroit found Yelp data to
be more accurate than commercially available databases such as Reference USA111.
This study uses a combination of MFP data to capture food consumption, Yelp,
and USDA data to capture food environment, and Census data to capture basic
demographics. As a preliminary, basic test, we investigated correlations between
the Mexican food consumption, the fraction of Mexican restaurants, and the
fraction of Hispanic people in the population, on a zip code level. We found that
Mexican food consumption (entries labeled as Mexican food by a proprietary MFP
classifier, logged per participant, per day) was correlated with the fraction of
Mexican restaurants (Pearson Correlation R= 0.72; < 10−4) and the fraction of
Hispanic people in the population (Pearson Correlation R= 0.54; P < 10−4).
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Further, the fraction of Mexican restaurants was correlated with the fraction of
Hispanic people in the population as well (Pearson Correlation R= 0.51; P < 10−4).

Reproducing state-of-the-art measures using population-scale digital food
logs. A primary concern in studying diet health via food logs is the bias inherent to
the MFP population, which is not a representative sample of the US population. To
investigate the applicability of population-scale digital food logs to study the
relationship between food environment, income and educational attainment with
food consumption, we measured the correlation between our smartphone app-
based measures and state-of-the-art measures of food consumption including the
BRFSS, based on representative surveys of over 350,000 adults in the United
States43,44, and the Nielsen Homescan data112, which is a nationally representative
panel survey of the grocery purchases of 169,000 unique households across the
United States, based on UPC records of all consumer packaged goods participants
purchased from any outlet (Fig. 3). We used the latest survey data from BRFSS43,44

available at the county-level. Specifically, we used variables FV5SRV from BRFSS
2011 representing the faction of people eating five or more servings of fresh fruit
and vegetables43, and BMI5 from BRFSS 2012 representing BMI44. We compare
against BRFSS rather than National Health and Nutrition Examination Survey
(NHANES), since BRFSS is significantly larger than NHANES, it is remotely
administered matching our study, and it has much better geographical coverage
than NHANES and geographical comparisons are central to our study. Despite
these advantages, no reference dataset is without limitations113–115, motivating this
study’s use of large-scale digital food journals.

Comparing our data to BRFSS on county level, we found moderate to high
correlations between the amount of fresh F&V consumed (Fig. 3a, Pearson
Correlation R= 0.63, p < 10−5) and BMI (Fig. 3b, Pearson Correlation R= 0.78,
p < 10−5). We further compared to published results by the USDA45, which used
data from the 2010 Nielsen Homescan Panel Survey that captured household food
purchases for in-home consumption (but did not capture restaurants and fast food
purchases). We attempted to reproduce published findings on the differences in
low-income, low-access communities (food deserts) compared to non-low-income,
non-low-access communities45 across categories of fruit, vegetable, sweets, red
meat, fish/poultry, milk products, diet drinks, and non-diet drinks (Table 4 in
Rahkovsky and Snyder45). We used proprietary MFP classifiers to categorize foods
logged into these categories. We found that our app-based food logs were very
highly correlated with previously published results (Fig. 3c, R= 0.88, p < 0.01) and
that the absolute differences between food deserts and non-food deserts were
stronger in the MFP data compared to Nielsen purchase data. Overall, these results
demonstrate convergent validity and suggest that the employed non-representative
sample of population-scale digital food logs can reproduce the basic dynamics of
traditional, state-of-the-art measures, and they can do so at massive scale and
comparatively low cost.

Statistical analysis. In this large-scale observational study, we used a matching-
based approach116,117 to disentangle contributions of income, educational attain-
ment, grocery store access, and fast food access on food consumption. We con-
sidered multiple statistical strategies, including regression modeling and propensity
score matching. We decided to employ a full matching on all variables, which
avoids parametric assumptions and is a more conservative method for matching
than for example propensity score-based techniques117. To estimate the treatment
effects of each of these factors, we divided all available zip codes into treatment and
control groups based on a median split; that is, we estimated the difference in
outcomes between matched above-median and below-median zip codes. We cre-
ated matched pairs of zip codes by selecting a zip code in the control group that is
closely matched (i.e., less than 0.25 SMD between the treated and control
groups)117 to the zip code in the treatment group across all factors, except the
treatment factor of interest. Since we repeated this matching process for each zip
code in the treatment group, this approach estimated the Average Treatment Effect
on the Treated (ATT). Through this process, we attempted to eliminate variation of
plausible influences and to isolate the effect of interest. We repeated this process for
each treatment of interest; for example for the results presented in Fig. 4, we
performed four matchings, one for each of income, educational attainment, grocery
store access and fast food access. For the sub-population experiments (Fig. 5), we
repeated the same method on the subset of the zip codes in which the majority of
inhabitants were of a particular ethnic group. Lastly, although we considered
controlling for age and gender in the matching procedure, as these are related to
diet health at the individual-level, we did not include them in our final analysis
after observing (1) minimal zipcode-level correlations between age/gender and any
of our four outcome measures (Supplementary Table 13; largest Pearson Corre-
lation was 0.12) and (2) virtually identical results (Pearson Correlation R= 0.95)
when comparing before and after controlling for age and gender by adding them
the genetic matching algorithm. See subsection on Details on Matching Approach
for further details and statistics that demonstrate that treatment and control groups
were well-balanced on observed covariates after matching.

We tested discriminant validity of our statistical approach by measuring the
effect of null-treatments that should not have any impact on food consumption.
We chose examples of null-treatments by selecting variables that had little
correlation with study independent variables (income, educational attainment,
grocery store access, fast food access) and were plausibly unrelated to food

consumption. This selection process lead to use of the fraction of countertop
installers, electronics stores, and waterproofing services nearby as measured
through Yelp. Applying our analysis pipeline to these null-treatments, we found
that all of these null-treatments had zero effect on food consumption. This
demonstrated that our statistical analysis approach did not produce measurements
that it was not supposed to measure; that is, discriminant validity (Supplementary
Fig. 3 and Supplementary Table 7).

Details on matching approach. Specifically, we use a one-to-one Genetic
Matching approach,106 with replacement, and use the mean of the SMD between
treatment and control groups, across all matched variables, as the Genetic
Matching balance metric in order to maximize balance (overlap) between the
treated and the control units. Some definitions of SMD use the standard deviation
in the overall population before matching116. However, we choose the standard
deviation in the control group post-matching, which typically is much smaller and
therefore gives more conservative estimates of balance between treated and control
units118.

After matching, we evaluated the quality of balance between the treated and the
control units by the SMD across each of the variables that were controlled for and
included in the matching process. A good balance between treated and control
groups was defined as a SMD of less than 0.25 standard deviations117 across each
variable. By default, we do not enforce a caliper in order to minimize bias in
matching process, although in rare cases in which a good balance was not achieved,
a caliper was enforced, starting at 2.5 standard deviations between matched and
controlled units, and decreased by 0.1 until the matched and control groups had a
SMD smaller than 0.25 across all matched variables.

For the vast majority of matching experiments the SMD across all matched
variables was well below 0.25, with a mean of 0.040 and median of 0.016 for the
four overall population matching experiments. The SMD for the ethnicity-majority
zipcode experiments was slightly higher, but still very significantly below 0.25
across all 12 experiments, with a mean of 0.055 and median of 0.036. Thus, no
caliper was necessary to ensure a good balance, with the exception of one out of the
12 of sub-population experiments (white, high educational attainment). Detailed
balancing statistics for each of the matches are available in the Supplementary
Information (Supplementary Tables 14–36b), as well as a supplementary matching
experiment in which a top/bottom quartile split was used instead of a median split
(Supplementary Fig. 2).

Details on the use of zip codes. A zip code is a postal code used by the US
Postal Services. Zip codes consist of 5 digits and were introduced in their current
form in 1983 in order to provide granular demarcations of US geography for
mail purposes119. Most previous surveys such as BRFSS aggregate individuals at
the less fine-grained levels of granularity: city, county, or MSA (Metropolitan
statistical area) level. By contrast, we chose to use zip codes in order to study diet
health and obesity at a more fine-grained level of analysis. As a point of refer-
ence, there are currently 41,692 zip codes in the USA compared to 3143 counties
and county equivalents (i.e., 13.2 zip codes per county on average). Zip codes are
on average 91 square miles and contain 7872 people120, compared to counties
and county-equivalents which are on average 1208 square miles and contain
104,422 people121. Neighboring zip codes which may be in the same county
have sharply contrasting demographics122. A zip code-level analysis better
enables us to measure the disparate impacts of educational attainment, income,
and food environment on diet health and obesity, and to stratify our analyses by
ethnicity.

Disclaimer. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the NIH or sponsors.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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