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 Background: The purpose of this study was to investigate the effects of sevoflurane on cancer immunosurveillance and me-
tastasis in non-small-cell lung cancer (NSCLC).

 Material/Methods: NCI-H23 cells, a human NSCLC cell line, were incubated with or without sevoflurane at the concentrations of 0, 
12.5, 25, 50, 100, and 200 μM for 6 h. Cell viability, the expression of natural killer group 2, member D ligands 
(NKG2D ligands: UL16-binding proteins 1-3 [ULBP1-3] and major histocompatibility complex class I chain-re-
lated molecules A/B [MICA/B]), the expression of matrix metalloproteinases (MMPs), NK cell-mediated cyto-
toxicity, and cancer cell migration were measured.

 Results: At 12.5, 25, 50, and 100 μM, sevoflurane increased the expression of NKG2D ligands (ULBP2-3 and MICA, 
ULBP1-3, ULBP1-3, and ULBP1, respectively). Sevoflurane decreased the expression of NKG2D ligands at 200 μM 
(MICA/B). NK cell-mediated lysis of NCI-H23 cells at 200 μM sevoflurane was significantly reduced compared 
with the control (P=0.025; target cell: effect cell=1: 10). Sevoflurane increased the expression of MMP-1, -2, 
and -9 and increased cell migration in NCI-H23 cells at 50, 100, and 200 μM (P=0.001, 0.035, and 0.039, re-
spectively, compared with the control after 18 h of wound formation).

 Conclusions: Sevoflurane could suppress NKG2D-mediated NK cell cytotoxicity and increased expression of MMPs and mi-
gration in NCI-H23 cells. Further research is needed to determine the effects of sevoflurane on cancer immu-
nosurveillance and metastasis in NSCLC.
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Background

Natural killer (NK) cells, which originate from the lymphatic 
system of white blood cells, are components of innate immu-
nity [1–3]. NK cells play a pivotal role in the defense against 
oncologic disease and viral infections [1]. NK cells interact 
with target cells through a balance of inhibitory and activat-
ing signals, and these signals are transmitted from the engage-
ment of NK cell surface receptors and their ligands on target 
cells [4,5]. NK cell inhibitory receptors, natural killer receptor 
group 2, member A (NKG2A) and killer immunoglobulin-like re-
ceptors, bind to major histocompatibility complex (MHC) class 
I molecules and deliver inhibitory signals [4,5]. Natural killer 
receptor group 2, member D (NKG2D) binds to its ligands and 
delivers activating signals [4,5]. NKG2D serves as a master 
activating NK cell receptor in this process because it is pres-
ent in all NK cells and its activation signal can override oth-
er inhibitory signals [6,7]. NKG2D has multiple ligands, includ-
ing MHC class I chain-related A/B (MICA/B) and UL16-binding 
proteins (ULBPs) [8,9]. In contrast to normal cells, cancer cells 
express NKG2D ligands on their surface, which makes them 
more susceptible to detection and elimination by NK cells [7].

To evade NKG2D-mediated immune surveillance, cancer cells 
secrete matrix metalloproteinases (MMPs) that remove NKG2D 
ligands expressed on the cancer cell surface [6,8,10]. MMPs also 
degrade the extracellular matrix and promote cancer invasion, 
migration, and metastasis [11,12]. Therefore, MMPs play a fun-
damental role in cancer recurrence, which is strongly associ-
ated with advanced cancer stage and poor prognosis [10,12].

As surgery and general anesthesia are frequently inevitable in 
cancer treatment, extensive research has been conducted to 
determine the effect of volatile anesthetics on cancer recur-
rence and treatment outcomes. The results of recent meta-
analyses suggest that volatile anesthetics could be associat-
ed with cancer recurrence and poor outcomes in comparison 
with total intravenous anesthesia [13,14]. However, the results 
concerning the effect of volatile anesthetics on the prognosis 
of non-small-cell lung cancer (NSCLC) remain inconclusive [15].

Accordingly, the present study aimed to investigate the effect 
of sevoflurane on NK cell-mediated immunosurveillance and 
metastatic potential in NSCLC in a dose-response manner.

Material and Methods

Cell lines and reagents

NCI-H23 (Korean Cell Line Bank, Seoul, Korea), a human NSCLC 
cell line, was maintained in Roswell-Park-Memorial-Institute 
(RPMI) 1640 medium (WELGENE, Gyeongsan, Korea) with fetal 

bovine serum (10%; WELGENE) and penicillin (1%; WELGENE). 
The NK92 cell line (American Type Culture Collection, Rockville, 
MD), a human NK cell line, was maintained in the a-minimum 
essential medium with fetal bovine serum (12.5%), horse se-
rum (12.5%), recombinant human interleukin-2 (200 U/mL), 
2-mercaptoethanol (0.1 mM), and l-glutamine (2 mM). The 
cells were incubated at 37°C humidified air containing 5% CO2.

Sevoflurane	exposure

Sevoflurane solutions were prepared following a previously re-
ported method [16,17]. Briefly, sevoflurane solution (Sevoprane; 
Ilsung Pharmaceuticals, Seoul, Korea) was diluted in RPMI 1640 
medium and stirred for 30 min to make a 1 mM sevoflurane 
solution. This 1 mM sevoflurane solution was then serially di-
luted to make 200, 100, 50, 25, and 12.5 μM sevoflurane so-
lutions immediately before the experiments. Sevoflurane ex-
posure was performed on NCI-H23 for 6 h and, to compensate 
for concentration reduction due to evaporation, each sevoflu-
rane solution was replaced on an hourly basis. Previous study 
reported that sevoflurane solutions remain relatively sta-
ble at below 10% additional loss for 1 h [16]. Corresponding 
concentrations of distilled water in RPMI 1640 medium were 
used as controls (0 μM). NCI-H23 cells were harvested after 
18 h of sevoflurane exposure to measure the expression lev-
els of mRNA, while NCI-H23 cells were harvested after 24 h 
of sevoflurane exposure to measure the expression levels of 
protein using the flow cytometry assay, immunofluorescence, 
and western blot analysis.

Viability test

NCI-H23 cells were plated in 96-well plates at a density of 1×104 
cells per well. The cells were treated with 100 μL of 0, 100, and 
200 μM sevoflurane solution for 6 h. After 24 and 48 h of the 
treatment, the cells were incubated with a 3-(4,5-dimethylthi-
azol-2-yl)-2,5-diphenyl-tetrazolium bromide (Sigma-Aldrich, St. 
Louis, MO, USA) solution for 4 h. Then, the supernatant solu-
tion was suctioned, and decrystallization was performed with 
dimethyl sulfoxide. The absorbance was detected using a mi-
croplate-spectrophotometer (μQuant; Bio-Tek Instruments Inc., 
Winooski, VT, USA).

Total	RNA	extraction,	reverse	transcriptase-polymerase	
chain	reaction	(RT-PCR),	and	multiplex-PCR

RNeasy® Mini Kit (Qiagen GmbH, Hilden, Germany) was used 
for the total RNA extraction. One microgram of extracted total 
RNA, 2.5 mM concentration of each deoxynucleotide triphos-
phate (Takara Shuzo, Shiga, Japan), and 100 pmol of random 
primers (Takara Shuzo) were incubated at 65°C for 5 min and 
chilled at 4°C for 4 min to synthesize cDNA. Then, 0.5 μL of 
M-MLV reverse transcriptase and 2 μL of the 5×reaction buffer 
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(Promega Co., Fitchburg, WI, USA) were added and incubated 
at 35°C for 50 min. Multiplex-PCR was performed using the re-
sulting cDNA and QIAGEN® Multiplex PCR Kit (Qiagen GmbH). 
The primer sets used to evaluate the expression of NKG2D li-
gand and MMP genes were as follows: ribosomal protein L19 
(RPL19; degradation marker), MICA, MICB, ULBP1-3, and b-ac-
tin (ACTB; loading control) genes; and RPL19, MMP1-2, MMP9, 
and ACTB, respectively (Table 1). The MultiNA microchip-elec-
trophoresis system (Shimadzu Biotech, Kyoto, Japan) was used 
for quantification. In order to normalize the gene expression 
level, the mRNA band intensity of each NKG2D ligand or MMP 
was divided by the band intensity of the ACTB. Subsequently, 
relative gene expression ratios of specific genes were comput-
ed by a comparison with samples and the control.

Analysis	of	NKG2D	ligand	expression	by	flow	cytometry

To determine the surface expression of NKG2D ligands, the 
NCI-H23 cells were incubated with 10 μg/mL of mouse anti-
MICA, anti-MICB, or anti-ULBP1-3 antibody or the correspond-
ing isotype controls (anti-IgG2a/b; R&D Systems, Minneapolis, 
MN, USA). Then, the cells were incubated with goat anti-mouse 
phycoerythrin-conjugated antibody (BD Pharmingen Inc., San 
Diego, CA, USA). The mean fluorescence intensities were mea-
sured using a FACS Canto™ II flow cytometer (BD Biosciences, 

San Jose, CA, USA) and quantified using the FlowJo software 
(v10.6.1, TreeStar Inc., Ashland, OR, USA). Relative expres-
sion ratios were calculated by comparing the mean fluores-
cence intensity values between the treated samples and the 
control sample.

Immunofluorescence assay

The cells were incubated on fibronectin-coated coverslips. After 
24 h of treatment, the cells were fixed with 4% paraformal-
dehyde for 20 min and washed with phosphate-buffered sa-
line (PBS) and 0.5% bovine serum albumin. Blocking was per-
formed with 5% bovine serum albumin for 1 h. After having 
been washed with PBS, the cells were incubated overnight at 
4°C with the following primary antibodies: goat anti-ULBP2 
polyclonal antibody (1: 100; R&D Systems) and mouse anti-
MICA/B monoclonal antibody (1: 50; Santa Cruz Biotechnology, 
Santa Cruz, CA, USA). The cells were then washed with PBS 
and incubated with fluorescein isothiocyanate-conjugated sec-
ondary antibody (anti-goat or anti-mouse; Sigma-Aldrich) for 
1 h in the dark. The cells were washed with PBS and stained 
with 4’,6-diamidino-2-phenylindole for 10 min. After the cells 
were washed with PBS, the coverslips were mounted onto 
glass slides with a fluorescence mounting medium (Dako, 
Carpinteria, CA, USA). Snapshot images were obtained using 

Name Polarity Sequence (5’®3’) Amplicon length (bp)

MICA
Sense
Anti-sense

TTGAGCCGCTGAGAGGGTGGC
GGGAGAGGAAGAGCTCCCCATC

460

MICB
Sense
Anti-sense

GCCCCCTGACCCCTTGTTCC
GGGCTGGTCAACTTGGCGAAA

358

ULBP1
Sense
Anti-sense

TGGCTGGTCCCGGGCAGGAT
GAATGTCAAGCAGTTGCCCTTTAAGGAAA

266

ULBP2
Sense
Anti-sense

TCAAACTCGCCCTTCTGTCTGGC
GCAGGAATTCCATCAGGTAGCACCA

194

ULBP3
Sense
Anti-sense

AGGTCTTATCTATGGGTCACCTAGAAG
TGAAATCCTCCAGCTCAGTGTCAGC

132

MMP1
Sense
Anti-sense

AGACAAAGGCAAGTTGAAAAGCGGA
TTGCTCCCAGCGAGGGTTCC

195

MMP2
Sense
Anti-sense

ACGGACTCCTGGCTCATGCC
CTGTCCTTCAGCGTTGCCGC

305

MMP9
Sense
Anti-sense

CGACCCGAGCTGACTCGACG
GCGGTGTGGTGGTGGTTGGA

390

RPL19
Sense
Anti-sense

ATGCTCAGGCTTCAGAAGAGGCTCG
TGATGATCTCCTCCTTCTTGGCCTG

550

ACTB
Sense
Anti-sense

TCCATCCTGGCCTCGCTGTC
GCATTTGCGGTGGACGATGG

93

Table 1. List of primer used in multiplex RT-PCR.

RT-PCR – reverse transcriptase-polymerase chain reaction; MICA/B – MHC class I chain-related molecules A/B; ULBP – UL16-binding 
proteins; MMP – matrix metallopeptidase; RPL19 – ribosomal protein L19; ACTB – b-actin.
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Leica TCS SP8 confocal microscope (×400 magnification; Leica 
Microsystems AG, Wetzlar, Germany). The intensity was quan-
tified by measuring the mean gray values of regions of inter-
est using the Leica LAS AF software (Leica Microsystems AG, 
Wetzlar, Germany) under identical exposure settings. Relative 
immunofluorescence intensity ratios were calculated by com-
paring the mean gray values between the treated samples 
and the control sample.

NK	cell-mediated	cytotoxicity	assay

The target cells, 1×105 cells of NCI-H23, were labeled with 
Vybrant® carboxyfluorescein succinimidyl ester Cell Tracer Kit 
(Invitrogen, Eugene, OR, USA). The labeled target cells were co-
cultured with NK92 cells, the effector cells, for 4 h at 1: 1 or 1: 
10 ratio (i.e., target cells vs. effector cells: 1×105 cells: 1×105 or 
1×105 cells: 1×106). These co-cultured cells were then stained 
with 1 μ/mL of propidium iodide (Sigma-Aldrich). The assay 
was performed using a FACS Canto™ II flow cytometer. The 
specific lysis (%) was calculated using Equation (1):

PI� and CFSE� cells
(PI� and CFSE� cells) + (PI� and CFSE� cells)  × 100 

 

 

 

 

Wound closure (%) =  WA��  −  WA��
WA��

 

 
 

Western blot analysis

To evaluate the expression of MMPs, western blot analysis 
was performed. The cells were lysed with PRO-PREP™ solution 
(Intron Biotechnology, Sungnam, Korea), and equal amounts 
of cell extracts were analyzed using 4% to 20% sodium do-
decyl sulfate-polyacrylamide gel electrophoresis. The sepa-
rated proteins were transferred onto polyvinylidene difluo-
ride membranes (Millipore, Billerica, MA, USA) and blocked 
with 4% nonfat milk in Tris-buffered saline and 0.1% Tween 
20 at room temperature. Primary antibodies (MMP 1–2: Cell 
Signaling, Beverly, MA, USA; MMP9: Santa Cruz Biotechnology), 
secondary antibodies (Enzo Life Sciences, Minneapolis, MN, 
USA), and Amersham ECL Select Western blot detection re-
agent (GE Healthcare Life Sciences, Buckinghamshire, UK) were 
used. Anti-ACTB antibody (Sigma-Aldrich) was used for each 
probing. ImageJ software (version 1.52a; National Institutes of 
Health, Bethesda, MD, USA) was used for band intensity quan-
tification. In order to calculate relative protein expression ra-
tios, the protein expressions in the treated cells were divided 
by those of the control cells.

Cell	migration:	wound	healing	assay

NCI-H23 cells were plated on 6-well plates at a density of 
1.5×105 cells per well and incubated at 37°C, with 5% CO2, 
in humidified air until a confluent monolayer was formed. 
After 6 h of treatment, a 20-μL pipette tip was used to form 
a straight scratch in each well of the monolayer of the cell. 

The monolayer was then washed with RPMI 1640 medium to 
remove cell debris, and the cells were returned to 37°C, 5% 
CO2, and humidified atmosphere. Snapshot images were ob-
tained at 0, 18, 24, and 38 h after scratch formation using a 
Nikon TE-300 inverted microscope (×40 magnification; Nikon, 
Tokyo, Japan) and NIS-Elements F 3.0 (Nikon). The migration 
rate was measured through the wound closure (%) calculat-
ed using Equation (2):

PI� and CFSE� cells
(PI� and CFSE� cells) + (PI� and CFSE� cells)  × 100 

 

 

 

 

Wound closure (%) =  WA��  −  WA��
WA��

 

 
 where WA0h is the area of the wound measured immediately 

after scratch (0 h), and WADh is the area of the wound mea-
sured at Dh hours after the scratch was performed. ImageJ 
software was used to calculate the wound area.

Statistical analysis

All analyses were performed using IBM SPSS Statistics (ver-
sion 22; IBM Corporation, Armonk, NY, USA). The variables were 
presented as mean±standard error of the mean (SEM). After 
a normality test, independent t test or Mann-Whitney U test 
was performed. Two-sided P-values below 0.05 were consid-
ered statistically significant.

Results

Viability

Sevoflurane was not found to affect the viability of NCI-H23 
cells. No significant differences in cell viability of the control and 
treatment groups were observed. After 24 h of the treatment, 
the mean absorbances (SEM) at 450 nm were as follows: con-
trol, 0.560 (0.032); 100 μM, 0.487 (0.018); and 200 μM, 0.548 
(0.033); (P=0.076 and 0.804; sevoflurane 100 and 200 μM vs. 
the control, respectively; n=6 per each group). After 48 h of 
the treatment, the mean absorbances (SEM) at 450 nm were 
as follows: control, 0.770 (0.062); 100 μM, 0.739 (0.022); and 
200 μM, 0.689 (0.015); (P=0.651 and 0.250; sevoflurane 100 
and 200 μM vs. the control, respectively; n=6 per each group).

Expression	of	NKG2D	Ligands

mRNA expression of NKG2D ligands

Sevoflurane 12.5 and 25 μM upregulated mRNA expression 
of NKG2D ligands, while 200 μM sevoflurane downregulated 
mRNA expression of NKG2D ligands (Figure 1; n=6 per each 
group). The relative mRNA expression ratio of ULBP1 at sevo-
flurane 200 μM was downregulated compared with the control 
(P=0.048). The relative mRNA expression ratio of ULBP2 with 
sevoflurane at 12.5 and 25 μM was upregulated compared with 
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the control (P=0.048 and 0.002, respectively). Relative mRNA 
expression ratio of ULBP3 was upregulated compared with the 
control at sevoflurane 12.5 μM (P=0.048) and downregulated 
compared with the control at sevoflurane 200 μM (P=0.048). 
The relative mRNA expression ratio of MICA and MICB at sevo-
flurane 200 μM was downregulated compared with the con-
trol (P=0.048 and 0.048, respectively).

Surface expressions of NKG2D ligands

In line with mRNA expression, sevoflurane 12.5 to 100 μM 
upregulated the expression of NKG2D ligands, while 200 μM 
sevoflurane downregulated mRNA expression of NKG2D li-
gands (Figure 2; n=9 per each group). The relative surface ex-
pression ratio of ULBP1 was upregulated at sevoflurane 25, 50, 
and 100 μM compared with the control (P<0.001, P=0.007, and 
P=0.007, respectively). The relative surface expression ratio of 
ULBP2 and 3 at sevoflurane 12.5, 25, and 50 μM was upreg-
ulated compared with the control (ULBP2: P=0.002, P<0.001, 
and P<0.001; ULBP3: P=0.035, P=0.035, and P<0.001, respec-
tively). The relative surface expression ratio of MICA was up-
regulated compared with the control at sevoflurane 12.5 μM 
(P<0.001) and downregulated compared with the control at 
sevoflurane 200 μM (P=0.002). The relative surface expres-
sion ratio of MICB at sevoflurane 200 μM was downregulated 
compared with the control (P<0.001).

Immunofluorescence assay

Relative immunofluorescence intensity ratio of ULBP2 and 
MICA/B at sevoflurane 200 μM also decreased compared 
with the control (Figure 3; n=3 per each group, P=0.037 and 
P=0.037, respectively).

NK	cell-mediated	cytotoxicity

No significant differences in NK cell-mediated lysis between 
the control and treatment groups in the target and effect 
cells at the 1: 1 ratio were observed. NK cell-mediated lysis 
of NCI-H23 at sevoflurane 200 μM was significantly reduced 
compared with the control in target cells and effect cells at 
the 1: 10 ratio (Figure 4; P=0.025, n=6).

Expression	of	MMPs

mRNA expression of MMPs

Sevoflurane upregulated mRNA expression of MMP-1, -2, and 
-9 in NCI-H23 cells (Figure 5; n=6 per each group). At sevoflu-
rane 200 μM, all relative mRNA expression ratios of MMP-1, -2, 
and -9 were upregulated compared with the control (P=0.048, 
P=0.048, and P=0.048, respectively).
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Figure 1.  Gene expression of natural killer group 2, member D (NKG2D) ligands. The variables are presented as mean±SEM (n=6 
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Protein expression of MMPs

Sevoflurane increased protein expression of MMP-1, -2, and -9 
in NCI-H23 cells (Figure 6; n=6 per each group). Relative pro-
tein expression ratio of MMP-1 and -9 was upregulated com-
pared with the control at sevoflurane 200 μM (P=0.048 and 
P=0.002). The relative protein expression ratio of MMP-2 was 
upregulated compared with the control at sevoflurane 100 and 
200 μM (P=0.048 and P=0.048, respectively).

Cell migration

Sevoflurane increased cell migration in NCI-H23 cells (Figure 7; 
n=8 per each group). In sevoflurane 50, 100, and 200 μM, the 
mean wound closure was increased compared with the con-
trol after 18 h of wound formation (P=0.001, P=0.035, and 
P=0.039, respectively). After 24 and 38 h of wound forma-
tion, an increase in the mean wound closure was observed at 
sevoflurane 200 μM compared with the control (P=0.017 and 
P=0.018, respectively).

Discussion

In the present study focused on NSCLC, sevoflurane increased 
the expression of NKG2D ligand at 12.5 to 100 μM, but de-
creased the expression of NKG2D at 200 μM. NK cell-mediat-
ed cell death was inhibited as the sevoflurane dose increased. 
Moreover, sevoflurane upregulated the expression of MMP-1, 
-2, and -9, and increased cell migration in NSCLC.

Lung cancer is one of the most common causes of death world-
wide, with about 85% of cases being diagnosed as NSCLC 
[18,19]. However, despite significant advances in understand-
ing the pathogenesis and progression mechanisms of NSCLC, 
the cure rate and survival rate remain low, especially in the 
case of metastasis [20]. In the early stages of NSCLC, surgical 
treatment is considered to be the most efficient treatment. 
However, the effects of surgery-related factors on NSCLC re-
main poorly understood [21,22].

Previous research demonstrated that sevoflurane directly inhib-
its NK cell activity [23–25]. Tazawa et al. [23] found that sevo-
flurane attenuated NK cell-mediated conjugation, polarization, 
and cytotoxicity by inhibiting leukocyte function-associated an-
tigen-1 in NK cells. Furthermore, in a randomized controlled 
trial to study the effect of anesthetic techniques on human NK 
cell function and cytotoxicity, Buckley et al. [24] found that, in 
contrast to the serum from patients with propofol-paraverte-
bral block, the serum from the patients with sevoflurane-opi-
oid anesthesia downregulated the expression of NK cell-ac-
tivating receptor CD16, reduced NK cell cytokine interleukin 
(IL)-1b and IL-10, and suppressed NK cell-mediated cell death 
against breast cancer cells. In addition, Cho et al. [25] demon-
strated that the cytotoxicity of NK cells decreased postopera-
tively in patients who received sevoflurane-remifentanil. In the 
present study, the suppression of NK cell-mediated cytotox-
icity by sevoflurane is consistent with the results of previous 
studies [23–25]; however, the research on the effects of sevo-
flurane on the expression of NK cell ligands remains scarce, 
which necessitates further evaluation of this field.
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NKG2D ligands, known as “stress-induced ligands,” are ex-
pressed in damaged and transformed cells [9]. Cancer cells 
also express NKG2D ligands on their surface, which plays an 
important role in cancer immunosurveillance by sensitizing 
cancer cells to NK cell- mediated elimination [7]. While MICA, 
MICB, and ULBP1-6 have been identified as human NKG2D li-
gands, the roles of ULBP4-6 remain poorly understood [8,9].

The 50 μM sevoflurane increased the expression of NKG2D li-
gands in NSCLC, but no significant change was observed in NK 
cell-mediated cytotoxicity in co-culture assays with NK cells. 
Previous research demonstrated that there is a threshold for 
NK cell activation [7,26], and that the relationship between 
the expression levels of activating and inhibitory ligands for 
NK cells on target cells and susceptibility to NK cell-mediat-
ed cytotoxicity is nonlinear [26,27]. This finding suggests that 
the increased expression of the ligands may not have been 
sufficient to reach the threshold level for the NK cell activa-
tion in the present study. Other possible causes of the unex-
pected results may be the increased expression of some other 
genes encoding anti-apoptotic molecules or some molecules 
that transduce NK cell inhibitory signals such as MHC class 1 
molecules [28].

MMPs, a family of zinc-dependent proteases, degrade and re-
model the extracellular matrix, thereby creating a favorable 
microenvironment for cancer cell angiogenesis, migration, and 
invasion [10,29]. Proteolytic activities of MMPs also remove 
NKG2D ligands from the cancer cell surface, which helps can-
cer cells escape from NK cell-mediated surveillance [6,8,10]. 
Ultimately, this series of actions by MMPs might lead to can-
cer recurrence and metastasis [10,29]. Specifically, MMP-1, 
-2, and -9 were reported to play key roles in NSCLC progres-
sion and metastasis and are strongly associated with a poor 
survival rate [10].

In the present study, sevoflurane not only increased the tran-
scription and translation of MMP-1, -2, and -9, but also in-
creased NSCLC cell migration ability depending on the exposed 
dose. Consistent with our results, Wang et al. [30] found that 
sevoflurane anesthesia during lung cancer surgery increased 
the serum MMP-9 level compared with propofol anesthesia. In 
contrast, in a study using A549 cells, another NSCLC cell line, 
Liang et al. [31] demonstrated that sevoflurane inhibited MMP-
2 and -9 expression and cancer cell invasion and migration in 
a dose- and time-dependent manner. These inconsistent find-
ings could be due to the differences in study subjects and the 
protocol of sevoflurane exposure, which highlights the need 
for further in-depth research on the effects of sevoflurane on 
the expression of MMPs.

Previous studies found that sevoflurane could cause the accu-
mulation of intracellular reactive oxygen species (ROS) and the 

loss of ROS homeostasis [32–34]. ROS act as inducing mole-
cules of C-X-C chemokine receptor type 4 (CXCR4), resulting in 
an increased expression of CXCR4 [35,36]. The signal delivered 
through CXCR4 activates phosphoinositol-3-kinase (PI3K) and 
mitogen-activated protein kinase (MAPK) signaling pathways, 
and upregulates the expression of MMPs [35–38]. Therefore, 
an increase in ROS triggered by sevoflurane could underlie 
the upregulated expression of MMP-1, -2, and -9. With re-
gard to the downregulation of NKG2D ligands at a high con-
centration of sevoflurane, the result could have been partially 
caused by the increased removal of cell surface NKG2D ligands 
by MMP-1, -2, and -9. However, further research is needed to 
explain how a high dose of sevoflurane inhibits the transcrip-
tion of NKG2D ligands.

According to the results of a previous study, during balanced 
anesthesia, the arterial sevoflurane concentration is about 100 
to 300 μM [39]. The average age for lung cancer diagnosis is 
about 70 years old, and this type of cancer is very rarely diag-
nosed in younger patients [40]. Patients become significantly 
more sensitive to anesthetic agents with aging [41]. In elder-
ly patients, a lower concentration of sevoflurane is usually re-
quired to achieve an adequate depth of anesthesia, and the 
effect of sevoflurane is frequently prolonged [41,42]. In addi-
tion, the deeper level of anesthesia is closely associated with 
an increase in postoperative morbidity and mortality in elder-
ly patients [43,44]. In consideration of these points, anesthetic 
management using a relatively low concentration of an anes-
thetic agent is recommended in elderly patients. These clini-
cal characteristics were considered in the determination of the 
range of sevoflurane concentrations used in the present study.

The present study has several limitations. First, considering 
that this is an in vitro study, our results are not directly appli-
cable to animals or humans. Second, since the present study 
did not elucidate the molecular mechanism of NKG2D ligands 
and expression of MMPs, further research is needed to better 
understand the impact of sevoflurane on NKG2D ligands and 
expression of MMPs.

Conclusions

Sevoflurane could suppress NKG2D-mediated NK cell cyto-
toxicity and increase the expression of MMPs and migration 
in NCI-H23 cells. Further research is needed to determine the 
effects of sevoflurane on cancer immunosurveillance and me-
tastasis in NSCLC.
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