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Abstract: The human nervous system lacks an inherent ability to regenerate its components upon
damage or diseased conditions. During the last decade, this has motivated the development of a
number of strategies for nerve regeneration. However, most of those approaches have not been
used in clinical applications till today. For instance, although biomaterial-based scaffolds have been
extensively used for nerve reparation, the lack of more customized structures have hampered their
use in vivo. This highlight focuses mainly on how 3D bioprinting technology, using polymeric
hydrogels as bio-inks, can be used for the development of new nerve guidance channels or devices
for peripheral nerve cell regeneration. In this concise contribution, some of the most recent and
representative examples are highlighted to discuss the challenges involved in various aspects of 3D
bioprinting for nerve cell regeneration, specifically when using polymeric hydrogels.
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1. Introduction

Nerve injuries are very common and serious clinical trauma that may cause partial or total
loss of motor, sensory, and autonomic functions. Every year more than 200,000 nerve repair
procedures are performed by surgeons with a consequent cost of millions of dollars only in the
United States [1]. Most commonly, the autograft method (i.e., tissue transplanted from one part of the
body to another in the same individual) has been used as first-line therapy for repairing damaged
peripheral nerves [2–4]. Nevertheless, there are many unavoidable disadvantages associated to the
autograft method. For example, it requires an additional secondary surgical site, from where the donor
nerve should be taken, while being also a time-consuming and costly process. Moreover, a diameter
mismatch between defected nerves and newly grafted nerves, limited the donor sources [5]. In some
cases, the autograft method achieves limited success in clinical practices mainly due to immunogenic
rejection and disease transmission [6]. In this regard, alternative approaches involving the use of
artificial biomaterials have received increasing attention in the field of nerve regeneration. Initially,
two-dimensional (2D) models [7] or prefabricated hollow channels filled with polymeric scaffolds
have been used to stimulate neurons growth [8]. However, the main disadvantages of 2D models lie
on the facts that they do not provide a natural three-dimensional (3D) environment for neuronal cell
growth under in vivo conditions. Significant efforts have already been made by numerous research
groups to regulate the neuronal growth by using 3D polymeric hydrogel networks [9]. Polysaccharides
such as chitosan, ref. [10] alginate, refs. [11–13] hyaluronic acid and derivatives [14,15] constitute
attractive candidates for in vivo nerve regeneration due to their biocompatible and biodegradable
nature. In this sense, the use of biodegradable polymers for constructing nerve guide channels is ideal
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because it eliminates the need of a second surgery to remove the nerve guide channels from the body
to avoid chronic tissue responses or nerve compression. In particular, poly (phosphoester) [16,17],
collagen [18,19], polyglycolide [20], collagen and poly-glycolide [21], poly (L-lactide-co-glycolide)
(PLGA) [22,23], and poly-L-lactic acid/caprolactone [24] are among the most common biodegradable
polymers used for this purpose.

Moreover, the evaluation of nerve injuries is not an obvious process, especially when the damage
affects several nerves with different lengths and geometries (e.g., branched structures). Different patient
anatomies and injury profiles have encouraged researchers to develop more personalized treatments
for peripheral nerve injuries. In this case, standard nerve conduits with simpler architectures made
from polymeric scaffolds using conventional manufacturing methodologies are not enough to solve this
problem because more customized architectures are needed to mimic the same anatomical structure of
the damaged nerve. In this context, 3D printing techniques have drawn great attention during the
last decade, allowing the preparation of personalized medical devices such as amputee prosthetics,
airway splints, and a variety scaffolds for tissue engineering [25]. 3D printing technology helps
to fabricate more precise nerve growth channels, providing an open inner structure that enhances
the supply of nutrients and nerve growth factors to embedded cells. The toxicity and insufficient
mechanical strength of different synthetic materials constitutes two of the most important limitations
generally found in 3D printing applications (vide infra).

This concise highlight briefly describes how 3D printing of polymeric hydrogels has been used
for nerve regeneration, and what are the main limitations that have been found in such processes.
Thereafter, the most recent progress in 3D bioprinting for nerve regeneration are also discussed along
with a description of the most relevant criteria that must be considered for the selection of suitable
hydrogel scaffolds. The description of biomaterial-based hydrogels for nerve regeneration that have
not been prepared using 3D printing techniques are described elsewhere [9,26] and are out of the scope
of this contribution.

2. 3D Printing Technology

In general, 3D printing refers to any process in which a particular material is joined or
solidified under computer control to create a 3D object of specific geometry, usually by successively
adding material layer-by-layer. Two of the most common technologies for this purpose are the
stereolithography (SLA), where photopolymerization is primarily used to produce a solid part from a
liquid, and fused deposit modeling (FDM), where the desired part is produced by extruding small
beads or streams of material that harden immediately to form layers. The term “3D bioprinting”
alludes to the use of 3D printing techniques to combine cells, growth factors, and biomaterials to
fabricate biomedical parts that mimic natural tissue features [27].

3D bioprinting is based on three main approaches: Biomimicry, autonomous self-assembly and
mini-tissue building blocks [28]. The main objective of the biomimicry approach is to fabricate
structures that are identical to those found in natural tissues and organs. For this, it is necessary
to understand the microenvironment, the nature of the biological forces in such microenvironment,
the specific organization of functional and supporting cell types, solubility factors, and the composition
of extracellular matrix. The autonomous self-assembly approach relies on the physical process of
embryonic organ development as a model to replicate the tissues of interest. In other words,
autonomous self-assembly demands a deeper understanding of the mechanisms involved in the
formation of embryonic tissues. Finally, in the mini-tissue approach, small functional components
manufactured and arranged into larger framework to build organs and tissues.

From the manufacturing point of view, 3D bioprinting generally follows three steps [29,30]:
(1) Pre-bioprinting or creation of the model, (2) bioprinting using the liquid mixture of cells, matrix and
nutrients known as bioinks, and (3) post-bioprinting, a final process to create a stable structure from
the biological material. Nowadays, sophisticated bioreactor technologies [27] have allowed the rapid
maturation of tissues, vascularization of tissues and the ability to survive transplants [30]. Inkjet,
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laser-assisted, and extrusion printers are the three major types of printers used for 3D bioprinting [29].
Inkjet printers are mainly used in bioprinting for fast and large-scale products, while extrusion printers
print cells or hydrogels infused with cells layer-by-layer to create 3D constructs. In addition to just
cells, extrusion printers may also use hydrogels infused with cells.

3. Recent Reports on 3D Printing Technology for Nerve Regeneration

Conventional nerve guidance channels are generally fabricated around tubular structures, and the
resultant devices are integrally restricted to linear structures. For more complex anatomical structures
and internal biofunctionalization, Johnson and co-workers developed a new 3D printing strategy
using silicone as a raw material (Figure 1) [31]. The first step consisted in collecting all the information
about the missing nerve pieces and fed those data into the 3D printer. Subsequently, printing of
the computational model of the image and simultaneous functionalization with physical cues and
path-specific biochemical gradients was carried out (Figure 1) to stimulate the nerve growth in a
specific direction. The obtained silicone 3D printed conduit was then inserted into the rat body by
surgically grafting it onto the damaged ends of the nerve. This successfully resulted in the regeneration
of bifurcated injuries across a 10 mm complex nerve gap in rats (Figure 2) within ca. 10 to 12 weeks.
This method provides a mechanism for redeveloping injured nerve plexuses, which is difficult to
achieve using conventional nerve guidance channels. Although these results open the door for
making different types of nerve regeneration implants more precisely with complex shapes, the main
disadvantage of this approach is the use of non-biocompatible silicone, which should be replaced by
biodegradable alternatives in future studies.
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In many cases, nerve conduits made of synthetic materials may be toxic to the patients, being often
associated to various infections. To address these potential problems, Ikeguchi’s team has recently
developed a novel approach for nerve regeneration without the use of synthetic material by 3D
bioprinting [32]. The authors made scaffold-free bio 3D conduits using human dermal fibroblasts
as base material (i.e., a cell generated ECM support). Subsequently, the conduits were tested for
nerve regeneration in adult male rats and the results were compared to those obtained using synthetic
silicone-based nerve conduits. After 8 weeks of post-surgery, the bio 3D conduits composed entirely
of fibroblast cells showed better nerve regeneration ability than the silicone-based nerve conduits
(Figure 3). However, further studies are still required to determine the efficiency of 3D bio-conduits in
clinical applications. In this sense, the degradation mechanisms of the bio-conduits as well as their
mechanical strength and flexibility should be evaluated in detail.
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Figure 3. (A) Bio 3D conduit was implanted into the nerve defect, and the proximal and distal nerve
stumps were secured 1.5 mm into the tube to create a 5-mm interstump gap in the conduit. (B) The
silicone tube with 8 mm length was implanted in the same procedure. (C) Regenerated sciatic nerve
eight weeks after surgery in the bio 3D group and (D) silicone tube. Scale bar in (C,D) = 5 mm.
Adapted with permission from ref. [32]. Copyright 2017, Public Library of Science.

By using 3D printing technology Hu and co-workers have also developed an interesting
bio-conduit for peripheral nerve regeneration that consist of a cryopolymerized gelatin methacryloyl
(cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs) [33]. The cryoGelMA gel was
designed into conduits with customized architectures such as multichannels and bifurcated structures
by using 3D-printed “lock and key” molds (Figure 4). The main advantage of using cryoGelMA
conduit is that it is biodegradable and could be completely degraded in vivo within 2–4 months,
eliminating the need of a second removal surgery.
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Figure 4. Schematic presentation of the 3D engineered bio-conduit for peripheral nerve regeneration.
Adapted with permission from ref. [33]. Copyright 2016, Nature Publishing Group.

The model nervous system, composed of different biomaterials and cells have different
neurological properties. In order to capture different neurological phenomena such as cell signalling,
communication, infection, regeneration and degradation, advanced in vitro models are required.
Herein, microfluidics, chamber-based technologies, and 3D cell culture models are emerging as the
most effective technologies to study different such processes associated with different biomaterials
and cells. Recently, McAlpine and co-workers have developed a 3D printed peripheral nervous
system on a chip (3DNSC) to study viral infection in the nervous system. The 3D printed system
is partitioned into three chambers by dividers and consists of parallel microchannels and a sealant
layer. Peripheral neurons are cultured in the first chamber, Schwann cells in the middle chamber,
and terminal cell junctions containing successfully formed axon termini and epithelial cells in the third
chamber (Figure 5) [34].
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Figure 5. (A) Scheme of a representative 3DNSC for peripheral nervous system applications,
showing (1) PNS neurons in chamber 1, (2) Schwann cells in chamber 2, and (3) terminal cell junctions
in chamber 3. The Schwann cells and the terminal cells interact with the neurons and each other solely
via the axonal network. (B) Circular pattern of 3D printed silicone microchannels for axonal guidance
in the center of a plastic 35 mm dish. (C) A 3DNSC showing perpendicular assembly of microchannel
and tri-chamber components. Adapted with permission from ref. [34]. Copyright 2016, The Royal
Society of Chemistry.
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4. Basic Criteria for Hydrogel Selection

Various nerve conduits for nerve regeneration made from different hydrogels, but not using
3D printing technology, have been reported elsewhere [35,36]. However, in vivo experiments have
demonstrated that 60% of those tubes showed similar responses to autografts, while 40% were
significantly worse likely due to tube collapse [37]. The development of new suitable and customized
3D printed scaffolds that can direct neuronal growth in the desired direction constitutes a major
scientific challenge. Within this context, hydrogels are very attractive candidates due to their high
water content, and the fact that they provide a suitable 3D environment for cell growth. In addition,
during the gelation process it is possible to incorporate different drug molecules and/or nerve growth
factors into the gel matrix for subsequent release. However, there are a few critical aspects that
should be considered before using any hydrogel for 3D bioprinting such as sufficient biocompatibility,
effective cell adhesion to the gel matrix, and good mechanical stability right after printing and during
culture. For example, collagen is a naturally occurring polymer that possesses low toxicity and has
been widely used for nerve regeneration [38,39]. However, the mechanical strength of the hydrogel
made from collagen is low compared to other synthetic polymers. Thus, in order to increase the
mechanical strength and other critical properties such as permeability rate, compressive modulus,
cell number, and cell metabolic activity, collagen has been modified with other natural and synthetic
polymers [40]. Furthermore, rheological properties such as viscosity, storage modulus, yield stress,
and shear thinning play also a key role in 3D bioprinting [41–43]. Note that for different printing
processes, the values of the above-mentioned parameters are crucial for selecting the optimal gel
formulation. Within this context, Table 1 outlines the main properties of the most representative
hydrogels reported so far as bioinks for 3D bioprinting. Additionally, the swelling behavior of the
hydrogels depends on the crosslinking density. Thus, increasing the crosslinking density in the gel
results in lower swelling ratios, thereby reducing the circulation of oxygen and other nutrients that are
required for the embedded cells to survive into the 3D hydrogel environment.
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Table 1. Properties of different hydrogels used in 3D bioprinting.

Hydrogel Applied Material
Oncentration (w/v)

Mechanical
Roperties a

Viscosity
(Pa/s)

Gelation
Method b

Bioprinting
Technique c

Cell type
Density Cells/mL d

Cytocompatibility
/Biodegradability Refs.

Alginate

Alginate/Ca2+

1%–3%/0.5%
Elastic modulus
λ = 21.35 kPa

2.9 at a shear
rate of 91 s−1 IC Inject RHECs 500,000 83%/yes [44,45]

Sodium alginate 1% - 0.12 shear rate
not reported IC Laser-assisted

HUEVCs (Eahy926),
6 × 107 and Rabbit

carcinoma cells (B16)
4 × 107

High, day 1/- [46]

Gelatin

Methacrylate
GelMA/gelatin 5%/8%

Young’s
modulus Y =

4.85 ± 0.41 kPa

10−100 at a
shear rate of

1–500 s−1
PC EB BMSCs 5.0 × 106 <90%/yes [47]

GelMA/alginate/4-arm
PEGTA 5%–7%/
1%–3%/1%–3%

Compressive
moduli =

24.2–50.7 kPa

28−54 at a shear
rate of 7.74 s−1

0.08 Pa s−1
PC Inject HUVECs MSCs

3 × 106
80%–90%, day

7/yes [48]

GelMA/alginate/Ca2+

4.5%/1%–4%/0.3–0.6
M

λ = 15 – 55 kPa 0.08 shear rate
not reported PC/IC EB HUVECs- 75%, day 5/- [49]

GelMA/GelSH &
heparin 10%/1%

Compressive
moduli = 1 ± 2

kPa
- Thiol-ene -

Human articular
chondrocytes

15 × 106

74%–86%, week
5/- [50]

Poly
(ethylene glycol)

Dimethacrylate
10%; 20%

Compressive
moduli = 395.73
± 80.40 kPa

- PC Inject
Human articular

chondrocytes
5 × 106

89%, day 1/- [51]

Diacrylate/alginate
20%/12.5%

λ = 5.3 ± 0.9 to
74.6 ± 1.5 kPa - PC EB PAVIC 20 × 106 ca. 100%, day

21/- [52]
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Table 1. Cont.

Hydrogel Applied Material
Oncentration (w/v)

Mechanical
Roperties a

Viscosity
(Pa/s)

Gelation
Method b

Bioprinting
Technique c

Cell type
Density Cells/mL d

Cytocompatibility
/Biodegradability Refs.

Hyaluron-ic acid
(HA)

Methacrylate
(HA-MA)/GelMA

1.5%/-

Storage
modulus

G′ = 80–90 Pa
Loss modulus

G” = 40 Pa

- PC Inject

HepG2 C3A
Int-407

NIH 3T3
2.5 × 105

Cell proliferation
p < 0.05/yes [53]

Gelatin-methacrylamide/
HA 20%/2.4%

Compressive
modulus =
7995 kPa

- PC Inject Chondrocytes
5 × 106

82% ± 8%, day
3/yes [54]

HA/hydroxyethyl-
methacrylate

derivatized-dextran
(dex-HEMA)
2%–6%/10%

G′ = 10 kPa

70 at a shear rate
of 0.1 s−1 and
>10 at a shear

rate <10 s−1 for
2% HA and 10%

DexHEMA

PC EB Chondrocytes- 75%±19%, day
3/yes [55]

PEG-tetraacrylate/
yaluronic acid

3%–5%/1.5%–2.5%
G′ = 100–800 Pa - Michael

addition

Microcapillary
tube-style
printing

NIH 3T3; HepG2
C3A; Int 407

25 × 106

ca. 100%, week
4/yes [56]

HA/methyl cellulose
0.25%–2.0%/0.5%–9% G′ = 10–1000 Pa - Thermal EB MSCs- 75%, day 15/- [57]

Hyaluronic acid
hydrogels grafted

with laminin-
- - PC Photopatterned

layer-by-layer Schwann cells-
Cells retained at

36 h/yes
(enzymatically)

[58]

p(HPMAm-lac)-
PEG-p

(HPMAm-lac)
25%–35% λ = 119 kPa - Thermal/PC EB Chondrocytes

5.0 × 106 94%, day 1/yes [59]

Polycaprolactone
(PCL)

PCL with
gelatin/PEGDA-

Y = 1.43 ± 0.33
mPa - PC

Stereolithography
and

electrospinning
NE-4C NSCs -

Enhancement in
cell proliferation,

day 5/-
[60]

Polyurethane Polyurethane with PCL
25%–30%

G′ =
680–4000 Pa -

Supramolecular
(hydrogen
bonding)

Fused-deposition
manufacturing NSCs 4 × 106 ca. 100%, day

3/yes [61]

a Storage modulus = G′; loss modulus = G”; b Ionic crosslinking = IC; photocrosslinking = PC; c Extrusion-based = EB; d Rat heart endothelial cells = RHECS; bone marrow stem cells =
BMSCs; human umbilical vein endothelial cells = HUVECs; human mesenchymal stem cells = MSCs; porcine aortic valve interstitial cells = PAVICs; human hepatoma cells = HepG2 C3A;
human intestinal epithelial cells = Int-407; murine fibroblasts = NIH 3T3; neural stem cells = NSCs.
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5. Conclusions and Future Perspectives

Significant progress has been made over the past few decades in the area of nerve regeneration
and target reinnervation [62]. However, full recovery of complex injuries containing mixed nerves
at a bifurcation is extremely challenged due to imprecise customized shape of nerve guidance
channels. Moreover, nerve regeneration across gaps greater than 30 mm remains a critical challenge,
particularly for patients who suffer multiple injuries due to trauma. Very recently, 3D printing
and additive manufacturing technology have successfully evolved into printing more specified
customized scaffolds for peripheral nerve repair. In this context, polymer chemists and material
scientists are called to develop unique biodegradable hydrogel scaffolds that will fulfill all biological
and mechanical requirements for developing tissue-engineered constructs via automated 3D printing
processes. Advanced 3D in vitro mathematical models are required to mimic faster and more precisely
the anatomical structure and physiological properties of specific nerves. Moreover, better preclinical
models and optimized in vitro–in vivo translatability have been identified in numerous studies as
major needs. In this sense, novel nerve-on-a chip technologies constitute a promising approach for
developing more translatable in vitro models [63].

It should be considered that a successful regenerative process is established not only at the injured
nerve, but also on distal sites that are also affected upon peripheral injuries (e.g., muscle atrophy,
sensory receptor degeneration). Thus, a deeper understanding of the biology and biochemistry
associated to nerve damage is of utmost importance to maximize the interaction between injured
nerves and 3D printed scaffolds. Moreover, continuous improvements in the accuracy of 3D printers
and optimized bioinks are expected in the next few years [64].

Further advances from preclinical animal models in research laboratories to human clinical
trials will require not only a significant reduction of financial costs, but also intense interdisciplinary
cooperations between polymer chemists, material scientists, physicists, computationalists, pharmacists,
and physicians.
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