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Multiple bacteria associated 
with the more dysbiotic 
genitourinary microbiomes 
in patients with type 2 diabetes 
mellitus
Hua Zha1,2,3,6, Fengping Liu1,4,6, Zongxin Ling1,6, Kevin Chang5, Jiezuan Yang1 & Lanjuan Li1*

Type 2 diabetes mellitus (T2DM) influences the human health and can cause significant illnesses. The 
genitourinary microbiome profiles in the T2DM patients remain poorly understood. In the current 
study, a series of bioinformatic and statistical analyses were carried out to determine the multiple 
bacteria associated with the more dysbiotic genitourinary microbiomes (i.e., those with lower 
dysbiosis ratio) in T2DM patients, which were sequenced by Illumina-based 16S rRNA gene amplicon 
sequencing. All the genitourinary microbiomes from 70 patients with T2DM were clustered into 
three clusters of microbiome profiles, i.e., Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM, 
with Cluster_3_T2DM at the most dysbiotic genitourinary microbial status. The three clustered 
T2DM microbiomes were determined with different levels of alpha diversity indices, and driven 
by distinct urinalysis variables. OTU12_Clostridiales and OTU28_Oscillospira were likely to drive 
the T2DM microbiomes to more dysbiotic status, while OTU34_Finegoldia could play a vital role in 
maintaining the least dysbiotic T2DM microbiome (i.e., Cluster_1_T2DM). The functional metabolites 
K08300_ribonuclease E, K01223_6-phospho-beta-glucosidase and K00029_malate dehydrogenase 
(oxaloacetate-decarboxylating) (NADP+) were most associated with Cluster_1_T2DM, Cluster_2_
T2DM and Cluster_3_T2DM, respectively. The characteristics and multiple bacteria associated with the 
more dysbiotic genitourinary microbiomes in T2DM patients may help with the better diagnosis and 
management of genitourinary dysbiosis in T2DM patients.

Type 2 diabetes mellitus (T2DM) is a global health problem1. It contributes to the increasing rate of non-com-
municable diseases in both developed and developing counties2, and could lead to mortalities3. The associations 
between gut microbiome and T2DM have been well studied4–9, however, genitourinary microbiomes in T2DM 
patients were relatively understudied.

Recently, the genitourinary microbiomes of T2DM cohorts have been studied to achieve different 
objectives10–12. Actinobacteria, Collinsella, Desulfovibrio, Enterobacteriaceae, Flavobacteria, Flavobacteriales, Lac-
tobacillus and Porphyromonas were capable of distinguishing the genitourinary microbiomes of T2DM patients 
from those of healthy subjects9,10. Lactobacillus and Prevotella were predominant in all the four cohorts of T2DM 
patients in a previous study12: (1) T2DM only, (2) T2DM and hypertension, (3) T2DM and hyperlipidemia, and 
(4) T2DM, hypertension and hyperlipidemia. Bifidobacteriaceae, Thermaceae and Shuttleworthia could contribute 
to the presence of interleukin-8 in the urine of T2DM patients11.

The microbiome profiles of the diseased cohorts in different disease studies have attracted increasing scientific 
attention13–16. Cirrhosis dysbiosis ratio was associated with the severity of liver cirrhosis17, and the dysbiosis 
ratio of microbiome has been used to evaluate the dysbiotic statuses of different microbiome profiles18,19, i.e., a 
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greater dysbiosis ratio represented a less dysbiotic status. We hypothesised that there was a specific genitourinary 
microbiome profile of the recruited T2DM cohort was at a more dysbiotic status. In the current study, we aim 
to (1) determine the characteristics and dysbiotic statuses of different genitourinary microbiome profiles in the 
T2DM patients; (2) investigate the phylotypes associated with the more dysbiotic genitourinary microbiome in 
T2DM patients.

Methods and materials
Recruitment of subjects and sample collection.  Seventy female patients with T2DM and 70 healthy 
female subjects were recruited in the present study, and the selection criteria of T2DM patients were described 
in our previous study12. Briefly, both patients and healthy individuals aged between 26 and 85 years old (Supple-
mentary Fig. S1), and had similar body mass indices. Individuals with the following attributes were not included 
in this study: intake of antibiotics, probiotics, prebiotics or synbiotics in the past three months; menstruation 
during the study; with relevant genitourinary diseases or abnormal conditions.

The urine samples were collected by using a modified midstream urine collection technique involving dis-
infection and a four-tube collection method12. Briefly, four opened 50-ml sterile centrifuge tubes were prepared 
with lids upwards. The participants were pants off and squatted on a squat toilet. Antiseptic cotton balls were 
handled by disinfected hand to clean the far labial fold and then the near labial fold. The labia were held apart 
and the participant urinated into the four tubes (tubes 1–4) in order. The urine in tube 2 and 3 were aliquoted 
for three subsequent analyses: 15 ml for urinalysis, 1 ml for urine culture and 40 ml for Illumina sequencing.

Written informed consent was taken from all the participants prior to enrolment, and the study protocol 
was approved by the Institutional Review Board of the First Affiliated Hospital, School of Medicine, Zhejiang 
University (Zhejiang, China). The study was carried out under relevant guidelines and regulations (Declaration 
of Helsinki).

Molecular methods.  Bacterial genomic DNA of all the urine samples from all the T2DM patients and 
healthy subjects, as well as a DNA-free water sample (blank control), was extracted by Liu, et al.12, followed by 
the amplifications of barcoded 16S rDNA primers targeting the V3–V4 regions of all the extracted DNA sam-
ples. The amplicons were purified, quantified, pooled, and then sequenced on the Illumina MiSeq instrument 
using 2-by-300 bp chemistry12.

Processing of the sequencing data.  The raw sequencing data were processed as described by Liu et al.12, 
including sequencing merge, chimera check, quality filtering and taxonomy assignment by using QIIME (ver-
sion 1.9.0). The sample rarefaction was performed using the phyloseq package in R (version 3.6.1).

Microbial dysbiotic status of genitourinary microbiomes in T2DM and healthy cohorts.  Lin-
ear discriminant analysis (LDA) effect size (LEfSe) was carried out in a program run by the Huttenhower lab 
to determine the OTUs associated with the genitourinary microbiomes of T2DM patients or healthy subjects.

The microbial dysbiosis ratio (MDR), i.e., the abundance ratio of “good and bad taxa”, was used to help 
determine the dysbiotic status of microbiomes in different disease studies17,20. In the present study, genitouri-
nary MDR was defined as the abundance ratio of genitourinary OTUs associated with healthy cohort (n = 70) 
and genitourinary OTUs associated with T2DM cohort (n = 70). The genitourinary MDRs of the genitourinary 
microbiomes in healthy and T2DM cohorts were transformed in log10 to satisfy the assumptions of normal 
distribution and equal variance, before being compared by a t test.

A spearman’s test was performed to determine the correlations between the multiple variables and diversity 
indices (i.e., observed species, Shannon and Pielou indices) in all T2DM patients.

Clustering of the genitourinary microbiomes in T2DM patients.  Partition around medoids (PAM) 
clustering analysis has been used in different disease studies for achieving different objectives15,21,22. In the 
current study, PAM analysis was carried out to cluster the genitourinary microbiomes from all the 70 T2DM 
patients, after the optimal number of clusters was determined by the average silhouette method23. Three clusters 
of T2DM microbiomes were determined, i.e., Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM.

Correlations between urinalysis variables and T2DM microbiome in each of the three clus-
ters.  The urinalysis variables with the significant effects on the genitourinary microbiomes were determined 
with one-way ANOVA24, and the variables with P < 0.05 were selected for the distance-based redundancy analy-
sis (db-RDA) in Primer v7 (Primer-e Ltd., New Zealand).

Comparisons of T2DM associated OTUs between the three clustered T2DM microbiomes.  To 
determine whether the T2DM associated OTUs had different associations with the three clusters of T2DM 
microbiomes, the average abundances of T2DM associated OTUs in the three clustered T2DM microbiomes 
were compared with Kruskal–Wallis tests. Mann–Whitney tests were carried out for the pairwise comparisons, 
and Bonferroni correction was used for adjusting the P values. The average abundances of the T2DM associated 
OTUs (that were more abundant in one or two clustered microbiomes) in the three clustered T2DM microbi-
omes were visualized in a heatmap in R version 3.6.1.

Differences between the three clustered T2DM microbiomes.  Permutation analysis of variance 
(PERMANOVA) was applied in R by using adonis command25, to compare the three clustered genitourinary 
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microbiomes from the T2DM patients. Similarity percentage (SIMPER) analysis was performed in Primer v7 to 
determine the similarities within each of the three clustered T2DM microbiomes, as well as the dissimilarities 
between the three clustered microbiomes.

The observed species (richness) of the three clustered T2DM microbiomes were transformed in square root 
to satisfy the assumptions of normal distribution and equal variance. A one-way analysis of variance (ANOVA) 
was performed to compare the transformed observed species, Shannon index (both richness and evenness) and 
Pielou index (evenness) of the three clustered T2DM microbiomes. T tests were used for the pairwise compari-
sons, with Bonferroni correction for adjusting the P values.

Genitourinary MDRs of the three clustered T2DM microbiomes were transformed in log10 before being 
compared with one-way ANOVA. T tests were carried out for the pairwise comparisons of genitourinary MDRs, 
with Bonferroni correction for adjusting the P values.

A LEfSe analysis was used to determine the representative OTUs associated with each of the three clustered 
T2DM microbiomes, with LDA threshold over 2.526,27. Pairwise SIMPER analyses were conducted to determine 
the OTUs contributing most to the dissimilarities between the most dysbiotic microbiomes (i.e., Cluster_3_
T2DM) and each of the less dysbiotic T2DM microbiomes (i.e., Cluster_1_T2DM and Cluster_2_T2DM), with 
a cut-off of 70%28,29. The Venny program version 2.130 was used to determine whether any representative OTUs 
associated with Cluster_3_T2DM could also contribute most to the dissimilarities between Cluster_3_T2DM 
and Cluster_1_T2DM/Cluster_2_T2DM.

Kruskal–Wallis test was used to compare the multiple variables of the T2DM patients in the three clusters. 
Mann–Whitney test was performed for pairwise comparisons of marriage times in the three clustered patients.

Network and fragmentation analyses.  Co-occurrence Network inference (CoNet) program was used 
to determine the correlations of the OTUs within each of the three clustered T2DM microbiomes, based on an 
ensemble of correlation measures as described by Faust, et al.31. The detailed manipulations followed Wagner 
Mackenzie, et al.21. Five coefficients, i.e., Mutual Information, Pearson, Bray Curtis, Spearman and Kullback–
Leibler dissimilarities for the ensemble inference and the greatest 1000 positive and negative correlations were 
determined. The permutations were used to compute the preliminary individual method-specific P values, before 
computing the bootstraps by merging all the initial P values into a final P value by using Brown’s method32.

Network fragmentation calculations and generation of a null distribution were carried out in R using the 
package igraph33, to determine the gatekeeper(s) in each of the three clustered T2DM microbiomes that could 
cause collapse of the corresponding clustered microbiomes. The details of this approach were described in Wagner 
Mackenzie, et al.21. A null distribution of fragmentation scores was created from 10,000 randomly constructed 
networks with identical node and edge distributions to the original network. Statistical significance was defined 
as the number of times a fragmentation score greater than that resulting from the removal of the OTU within 
the null distribution.

Correlations between urinalysis variables and representative OTUs in each of the three clus-
tered T2DM microbiomes.  The correlations between urinalysis variables and representative OTUs in each 
of the three clustered T2DM microbiomes were determined by CoNet analysis and visualized in Cytoscape 
software version 3.7.234. The detailed procedures of CoNet analysis were described above following Wagner 
Mackenzie et al.21.

Functional metabolites associated with each of the three clustered T2DM microbiomes.  The 
functional metabolites for the three clustered T2DM microbiomes were determined with a Tax4fun package 
in R35. A LEfSe analysis was performed to determine the functional metabolites associated with each of the 
three clustered T2DM microbiomes. Those functional metabolites with LDA score over 2.5 and consistently 
significant across either of the three clustered T2DM microbiomes were determined being associated with the 
corresponding clusters of T2DM microbiomes.

Results
Microbial dysbiotic status of genitourinary microbiomes in T2DM and healthy cohorts.  LEfSe 
analysis determined that 27 OTUs were associated with T2DM, and 71 OTUs associated with healthy cohort 
(Supplementary Table S1). The genitourinary MDR was greater in the genitourinary microbiomes of healthy 
subjects (median 34 ± SE 129) compared with T2DM patients (median 0.8 ± SE 0.9) (t test, P < 0.001), suggesting 
the genitourinary microbiomes in T2DM patients were at more dysbiotic status compared with those of healthy 
cohort at baseline.

No variable was determined as confounder to the microbiome diversity indices in T2DM cohort (− 0.37 < all 
correlation coefficient < 0.32) (Supplementary Table S2).

Clustering of genitourinary microbiomes in T2DM patients.  Silhouette analysis determined three 
as the most optimal number for clustering the T2DM microbiomes (Fig. 1A). The three clustered T2DM micro-
biomes, i.e., Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM, contained 16, 42 and 12 individual 
T2DM microbiomes, respectively (Fig. 1B). The three clusters of T2DM microbiomes and healthy microbiomes 
were determined with different abundant families (Supplementary Fig. S2).

Correlations between urinalysis variables and T2DM microbiomes in each of the three clus-
ters.  Different urinalysis variables were determined to influence the different microbiome profiles of T2DM 
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patients according to the db-RDA results. Urine color, urine pH and urine protein greatly influenced the Clus-
ter_1_T2DM (Fig. 2A). Likewise, BMI and urine crystal had great influences on Cluster_2_T2DM (Fig. 2B), 
while electrical conductivity and urine protein greatly influenced Cluster_3_T2DM (Fig. 2C).

Comparisons of T2DM associated OTUs between the three clustered T2DM microbiomes.  The 
average abundances of T2DM associated OTUs in the three clustered T2DM microbiomes were compared 
to determine their associations with the different clusters of T2DM microbiomes. A total of 13 OTUs asso-
ciated with T2DM were determined with different average abundances between the three clustered T2DM 
microbiomes (Kruskal–Wallis test, all P < 0.05), nine of which were more abundant in one or two cluster(s) 
of T2DM microbiomes (Mann–Whitney test, all P < 0.05). OTU53_Lachnospiraceae, OTU92_Enhydrobacter 
and OTU142_Fusobacterium were more abundant in Cluster_1_T2DM (Fig.  3). OTU8_Coprococcus, 
OTU16_Lachnospiraceae and OTU108_Coprococcus were more abundant in Cluster_2_T2DM, while 
OTU85_Ruminococcaceae was more abundant in Cluster_3_T2DM (Fig. 3). OTU74_Dorea had greater abun-
dances in both Cluster_1_T2DM and Cluster_3_T2DM, while OTU65_Fusobacterium had greater abundances 
in both Cluster_2_T2DM and Cluster_3_T2DM (Fig. 3).

Differences between the three clustered T2DM microbiomes.  PERMANOVA showed a significant 
difference between the three clustered T2DM microbiomes (R2 = 0.27, P < 0.001). The similarity within Clus-
ter_2_T2DM (SIMPER average similarity = 46%) was higher than those within Cluster_1_T2DM (SIMPER 

Figure 1.   Clustering of the genitourinary microbiomes in T2DM patients by (A) average silhouette analysis 
and (B) partition around medoids clustering analysis, into three clusters of T2DM microbiomes, i.e., Cluster_1_
T2DM, Cluster_2_T2DM and Cluster_3_T2DM. Note: the analyses were performed in R version 3.6.1.
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Figure 2.   The urinalysis variables determined to affect the three clustered T2DM microbiomes, i.e., (A) 
Cluster_1_T2DM (red), (B) Cluster_2_T2DM (yellow) and (C) Cluster_3_T2DM (blue). Note: the analysis was 
carried out in a PRIMER7 software.
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Figure 3.   Distribution of T2DM associated OTUs in the three clustered T2DM patients visualized in a 
heatmap. Note: the abundance of the OTUs were transformed in log2(raw read + 1) in the heatmap, and the 
heatmap figure was done in R version 3.6.1.
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average similarity = 16%) or Cluster_3_T2DM (SIMPER average similarity = 10%). The dissimilarities between 
the three clustered T2DM microbiomes were all over 90%.

There were significant differences in the observed species, Shannon and Pielou indices between the three 
clustered T2DM microbiomes (one-way ANOVA, all P < 0.001). The observed species and Shannon index were 
both largest in Cluster_1_T2DM compared with Cluster_2_T2DM and Cluster_3_T2DM (t test, all P < 0.02) 
(Table 1). The Pielou index of Cluster_1_T2DM was significantly larger than that of Cluster_2_T2DM (t test, 
P < 0.001), and slightly larger than Cluster_3_T2DM (t test, P = 0.053) (Table 1).

The genitourinary MDR was lower in Cluster_3_T2DM (Median 0.05 ± SE 2.38) compared with Cluster_1_
T2DM (5.33 ± 2.63) and Cluster_2_T2DM (0.92 ± 4.15) (t test, both P < 0.01), while it was similar between Clus-
ter_1_T2DM and Cluster_2_T2DM (t test, P = 0.425). This suggests that Cluster_3_T2DM was at more dysbiotic 
status compared to Cluster_1_T2DM and Cluster_2_T2DM.

LEfSe analysis revealed 32 representative OTUs had different associations with the three clustered T2DM 
microbiomes (Fig. 4). OTU12_Clostridiales, OTU28_Oscillospira, OTU348_Veillonella and OTU56_Candi-
datus Koribacter were the representative phylotypes more associated with Cluster_3_T2DM (Fig. 4), among 
which, OTU12_Clostridiales and OTU28_Oscillospira were also determined largely contributing to the dis-
similarities between Cluster_3_T2DM and the two other clustered T2DM microbiomes according to the pair-
wise SIMPER results (Supplementary Table S3). Among the 26 OTUs more associated with Cluster_1_T2DM, 
OTU22_Citrobacter, OTU463_Rhizobiaceae, OTU77_Corynebacterium and OTU34_Finegoldia were the most 
associated representative phylotypes. In addition, OTU7_Lachnospiraceae and OTU181_Alphaproteobacteria 
were more associated with Cluster_2_T2DM.

No significant difference was determined in the majority of variables (e.g., urine glucose) of the T2DM 
patients in the three clusters (Kruskal–Wallis test, P > 0.5), except marriage times (Supplementary Table S4). The 
marriage times of Cluster_3 was significantly greater than that of Cluster_2 (Mann–Whitney test, P < 0.01), and 
similar to that of Cluster_1 (Mann–Whitney test, P > 0.2).

Network and fragmentation analyses.  The top 10 OTUs with most correlations in each of 
the three clustered T2DM microbiomes were largely distinct (Supplementary Table  S5). Among them, 
OTU9_Enterobacteriaceae, OTU13_Novosphingobium and OTU778_Lachnospiraceae had most correlations in 
Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM, respectively.

The fragmentation analysis is used to evaluate the extent of microbiome network fragmentation. In the 
current study, the fragmentation level of Cluster_1_T2DM (0.611) was larger than those of Cluster_2_T2DM 
(0.564) and Cluster_3_T2DM (0.353). Gatekeepers were OTUs that hold together the microbiome by interact-
ing with different parts of the network21, and they were determined by a fragmentation analysis in the present 
study. One OTU associated with Cluster_1_T2DM, i.e., OTU34_Finegoldia, was also determined as a gatekeeper 
to Cluster_1_T2DM (Fragmentation analysis, P = 0.023). By contrast, none of the OTUs associated with Clus-
ter_2_T2DM or Cluster_3_T2DM could cause a collapse of networks of the two clustered T2DM microbiomes 
(Fragmentation analysis, all P > 0.05).

Correlations between urinalysis variables and T2DM associated OTUs in each of the three 
clusters.  Only negative correlations were determined between the urinalysis variables and representative 
OTUs in the three clustered T2DM microbiomes. In Cluster_1_T2DM, “Genitourinary tract infections over 
the previous year” was negatively correlated with OTU278_Rhizobiales; Urine protein was negatively correlated 
with OTU337_Clostridiales, OTU356_Cytophagaceae and OTU463_Rhizobiaceae; while urine crystal was nega-
tively correlated with OTU524_Bacillus and OTU1142_Lachnospiraceae (Fig. 5A). In Cluster_2_T2DM, asymp-
tomatic bacteriuria was negatively correlated with OTU7_Lachnospiraceae and OTU181_Alphaproteobacteria 
(Fig.  5B). Urine glucose, urine mucus and sick time were negatively correlated with OTU348_Veillonella in 
Cluster_3_T2DM (Fig. 5C).

Functional metabolites associated with each of the three clustered T2DM microbiomes.  A 
total of 82 functional metabolites had different associations with the three clustered T2DM microbiomes, 
i.e., four for Cluster_1_T2DM, 60 for Cluster_2_T2DM and 18 for Cluster_3_T2DM (Fig. 6). Among them, 
K08300_ribonuclease E, K01223_6-phospho-beta-glucosidase and K00029_malate dehydrogenase (oxaloace-
tate-decarboxylating) (NADP+) were most associated with Cluster_1_T2DM, Cluster_2_T2DM and Cluster_3_
T2DM, respectively.

Table 1.   Comparisons of observed species (richness), Shannon index (both richness and evenness) and Pielou 
index (evenness) in the three clusters of T2DM microbiomes, i.e., Cluster_1_T2DM, Cluster_2_T2DM and 
Cluster_3_T2DM. Results were represented in mean ± S.E., and the groups with different alphabets represented 
significant difference between the clustered T2DM microbiomes.

Alpha diversity Cluster_1_T2DM Cluster_2_T2DM Cluster_3_T2DM

Observed species 444 ± 70a 150 ± 13b 237 ± 39b

Shannon index 3.9 ± 0.36a 1.75 ± 0.14b 2.7 ± 0.3c

Pielou index 0.64 ± 0.05a 0.35 ± 0.02b 0.5 ± 0.04a
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Discussion
Genitourinary microbiome in human beings have been well studied36–38. Alterations of genitourinary microbiome 
have been investigated in T2DM female patients and healthy female subjects, and in T2DM patients with or 
without other conditions (i.e., hypertension and hyperlipidemia)9,10,12. However, the genitourinary microbiome 
profiles in the T2DM patients remain poorly understood. The current study investigated the characteristics 
and multiple bacteria associated with different genitourinary microbiome profiles in T2DM patients, aiming to 
determine the phylotypes associated with the more dysbiotic T2DM microbiomes.

In the current study, the genitourinary T2DM microbiomes were clustered into three clusters, i.e., Clus-
ter_1_T2DM, Cluster_2_T2DM and Cluster_3_T2DM, with great difference in the microbiome compositions. A 
group of nine OTUs associated with T2DM were significantly more abundant in one or two of the three clustered 
T2DM microbiomes, suggesting they had different associations with the three clustered T2DM microbiomes. 
Ruminococcaceae was enriched in the gut of mice with T2DM39. In the present study, OTU85_Ruminococcaceae 
was more abundant in the most dysbiotic microbiomes (i.e., Cluster_3_T2DM), suggesting Ruminococcaceae 
could be associated with the microbiomes in more than one organ of the T2DM cohorts. As for the T2DM asso-
ciated OTUs with similar abundances in the clustered T2DM microbiomes, we acknowledge that whether they 
consistently contribute to all the three clustered T2DM microbiomes or have different functions needs further 
investigations.

Dysbiosis ratios of bacterial phylotypes are associated with multiple diseases17,20,40,41. For instance, lower cir-
rhosis dysbiosis ratio (i.e., abundance ratio of “good and bad taxa”) of gut microbiome was associated with more 
severe liver cirrhosis in the cirrhotic patients17. In the present study, the genitourinary MDR was significantly 
larger in the genitourinary microbiomes of healthy subjects than in T2DM microbiomes, suggesting the larger 
genitourinary MDR is associated with less dysbiotic status, which is consistent with the other disease studies17,20. 

Figure 4.   The phylotypes associated with each of the three clustered T2DM microbiomes determined by Linear 
Discriminant Analysis (LDA) Effect Size (LEfSe). Note: the analysis was done on the Huttenhower online 
software (http://hutte​nhowe​r.sph.harva​rd.edu/galax​y).

http://huttenhower.sph.harvard.edu/galaxy
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The lowest genitourinary MDR in Cluster_3_T2DM suggests that Cluster_3_T2DM was at the most dysbiotic 
status, while the greatest genitourinary MDR in Cluster_1_T2DM suggested that Cluster_1_T2DM was at the 
least dysbiotic status. Richness and Shannon indices were both greater in the genitourinary microbiomes of 
healthy subjects compared with T2DM microbiomes10. In the current study, richness and Shannon indices were 

Figure 5.   Correlations between the representative OTUs and urinalysis variables in (A) Cluster_1_T2DM, (B) 
Cluster_2_T2DM and (C) Cluster_3_T2DM. Note: the analysis was performed in Cytoscape 3.7.2. The purple 
and red lines represented positive and negative correlations, respectively.
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greatest in Cluster_1_T2DM, further suggesting Cluster_1_T2DM were at the least dysbiotic status among the 
three clustered T2DM microbiomes. The association of the three genitourinary microbiome profiles and T2DM 
severities/progression stages were not determined, as the information about T2DM severity and progression was 
not well recorded for the current study. We acknowledge that these need to be investigated in the future study.

Figure 6.   Functional metabolites associated with each of the three clustered T2DM microbiomes determined 
by LEfSe analysis. Note: the analysis was done on the Huttenhower online software (http://hutte​nhowe​r.sph.
harva​rd.edu/galax​y).

http://huttenhower.sph.harvard.edu/galaxy
http://huttenhower.sph.harvard.edu/galaxy
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A total of 32 representative phylotypes were associated with the three clustered T2DM microbiomes in this 
study. OTU12_Clostridiales, OTU28_Oscillospira, OTU348_Veillonella and OTU56_Candidatus Koribacter were 
associated with Cluster_3_T2DM. The three taxa, i.e., Clostridiales, Oscillospira and Veillonella, were also reported 
being associated with the other T2DM cohorts in the other studies42–44. Clostridiales was enriched in the gut of 
T2DM patients compared with healthy subjects42. Oscillospira was more abundant in the gut microbiomes of 
obese rodents compared with healthy cohort43. Veillonella was more abundant in the subgingival microbiomes 
of T2DM patients compared with nondiabetic subjects44. Among the four representative phylotypes in Clus-
ter_3_T2DM, both OTU12_Clostridiales and OTU28_Oscillospira were also determined contributing most to 
the dissimilarities between Cluster_3_T2DM and the two other clustered T2DM microbiomes according to the 
pairwise SIMPER analyses, suggesting the two phylotypes could play vital roles in Cluster_3_T2DM. By contrast, 
only one of the two representative phylotypes in Cluster_2_T2DM, i.e., Alphaproteobacteria, was reported being 
enriched in the ocular surface of T2DM patients than healthy individuals45.

Among the 26 representative phylotypes in Cluster_1_T2DM, Citrobacter, Corynebacterium and Finegoldia 
were determined with different correlations with diabetes or relevant conditions46–48. Citrobacter was associated 
with asymptomatic bacteriuria in the urine of T2DM patients46. Corynebacterium was less dominant in the con-
junctival microbiome of diabetes patients compared with healthy subjects47. Likewise, Finegoldia was less abun-
dant in the gut of women with diabetes compared with healthy subjects48. In the current study, OTU34_Finegoldia 
acted as a gatekeeper in Cluster_1_T2DM, suggesting it may help maintain the less dysbiotic status of the T2DM 
patients (i.e., those patients within Cluster_1).

Fragmentation analysis has been used to investigate the fragmentation levels of microbiomes in different 
studies15,21. In the present study, the fragmentation level was greater in Cluster_1_T2DM compared with those 
of Cluster_2_T2DM or Cluster_3_T2DM, suggesting that less co-occurrence patterns and decreased biotic 
interactions in Cluster_1_T2DM.

The urinalysis variables were associated with the microbiomes or phylotypes in different hosts49–52. Our previ-
ous study has demonstrated that the associations between phylotypes and urinalysis variables in T2DM patients 
with or without hypertension or hyperlipidemia12. In the present study, the representative phylotypes had dif-
ferent associations with the different urinalysis variables within each of the three clustered T2DM microbiomes, 
suggesting that the representative phylotypes could be influenced by different urinalysis variables in each of the 
three clustered microbiomes. Likewise, the T2DM microbiomes in the three clusters were driven by relatively 
distinct urinalysis variables, suggesting the health status of the three clustered patients were largely different. 
Urine electrical conductivity and urine protein were determined to influence the more dysbiotic microbiomes 
(i.e., Cluster_3_T2DM) in this study, and the relevant mechanisms deserves further investigation. Confounding 
variables vary greatly in different studies53–55. While no confounding variable was determined in the current 
study, some alternative variables (e.g., hemoglobin A1c and medication regime) could be potential confounders 
to the microbiome diversity, which deserves further investigation. No significant difference was determined in 
the fasting blood glucose and glycosuria levels (i.e., urine glucose) of the three clustered T2DM cohorts, sug-
gesting the two variables were not the driving factors for the microbiome compositions. A significant difference 
was determined in the marriage times among the three clustered T2DM cohorts, suggesting the marriage times 
was associated with the clustering of the T2DM microbiomes.

These results based on our 16S sequencing data could provide some useful information, but we acknowl-
edge that whole genome sequencing and empirical metabolomics could be performed to verify the functional 
metabolites and identify the phylogenetics at a higher resolution in the future work.

In conclusion, there were great differences between the three clustered T2DM microbiomes, while Clus-
ter_3_T2DM was at the most dysbiotic status. OTU12_Clostridiales and OTU28_Oscillospira were likely to drive 
the T2DM microbiomes to more dysbiotic status, while OTU34_Finegoldia could play a vital role in maintaining 
the stability of less dysbiotic microbiomes. The characteristics and multiple bacteria associated with the more 
dysbiotic genitourinary T2DM microbiomes may help with the better diagnosis and management of genitouri-
nary dysbiosis in T2DM patients.

Data availability
The datasets for the current study are available from the corresponding author on reasonable request.
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