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Abstract
Epidemiologists have for many decades reported on the patterns and distributions of diabetes within and between populations and
have helped to elucidate the aetiology of the disease. This has helped raise awareness of the tremendous burden the disease places
on individuals and societies; it has also identified key risk factors that have become the focus of diabetes prevention trials and
helped shape public health recommendations. Recent developments in affordable high-throughput genetic and molecular pheno-
typing technologies have driven the emergence of a new type of epidemiology with a more mechanistic focus than ever before.
Studies employing these technologies have identified gene variants or causal loci, and linked these to other omics data that help
define the molecular processes mediating the effects of genetic variation in the expression of clinical phenotypes. The scale of
these epidemiological studies is rapidly growing; a trend that is set to continue as the public and private sectors invest heavily in
omics data generation. Many are banking on this massive volume of diverse molecular data for breakthroughs in drug discovery
and predicting sensitivity to risk factors, response to therapies and susceptibility to diabetes complications, as well as the
development of disease-monitoring tools and surrogate outcomes. To realise these possibilities, it is essential that omics tech-
nologies are applied to well-designed epidemiological studies and that the emerging data are carefully analysed and interpreted.
One might view this as next-generation epidemiology, where complex high-dimensionality data analysis approaches will need to
be blended with many of the core principles of epidemiological research. In this article, we review the literature on omics in
diabetes epidemiology and discuss how this field is evolving.
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Introduction

The aetiology and clinical presentation of diabetes often differ
greatly from one patient to the next, as do patients’ responses
to therapies and the rates at which they develop complications.
Identifying biomarkers that aid the prediction and prevention
of diabetes by helping stratify populations depending on (1)
sensitivity to risk factors, (2) likely response to therapies, and
(3) susceptibility to diabetes complications, as well as identi-
fying biomarkers for disease monitoring and as surrogate
outcomes, are major priorities in diabetes research.

Biomarkers are also used extensively in diabetes epidemi-
ology as intermediate exposure or outcome variables when
seeking to understand disease aetiology. For example,
HbA1c and blood glucose concentrations are the principal
biomarkers of diabetes, and measures of blood concentrations
of insulin, proinsulin, lipids, inflammatory cytokines and
adipokines are often used to study the determinants or conse-
quences of diabetes.
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The development of high-throughput molecular genotyp-
ing and phenotyping assays has led to a new field of omics
research, which has seen the discovery of many types of
biological variants influencing diabetes. This review explores
diabetes epidemiology, with specific focus on omics research.
How the next generation of epidemiological studies and
methods are likely to evolve and contribute to understanding
diabetes is also discussed.

What are biomarkers? The term ‘biomarker’ was first used in
the field of petroleum chemistry in the late 1960s [1],
appearing a few years later in the biomedical literature to
describe the role of serum RNase as an indicator of renal
function [2]. The National Institutes of Health’s Biomarkers
DefinitionsWorking Group subsequently defined a biomarker
as ‘A characteristic that is objectively measured and evaluated
as an indicator of normal biological processes, pathogenic
processes, or pharmacologic responses to a therapeutic inter-
vention’ [3]; while other definitions have followed, this early
one remains widely used. Biomarkers have multiple uses in
biomedicine, including in drug trials, though discussion of
their use in such trials is outside the remit of this article.
Nevertheless, the US Food and Drug Administration’s
(FDA) ‘context of use’ framework for the use of biomarkers

in drug trials provides a reasonable foundation upon which
biomarkers in many areas of epidemiology research can be
considered. Briefly, the FDA cites seven specific contexts
within which biomarkers can be used in drug trials: (1) diag-
nosis (for patient selection), (2) monitoring (disease develop-
ment, toxicity, exposure), (3) prediction (effects of interven-
tions or exposures), (4) prognosis (patient stratification and/or
enrichment), (5) pharmacodynamics/response (efficacy:
surrogate endpoints and/or biological response to treatment),
(6) safety, and (7) susceptibility/risk (potential to develop
disease or exposure sensitivity) (see www.fda.gov/drugs/
cder-biomarker-qualification-program/context-use) [4, 5]. An
extended overview is provided in the Text box ‘Context of use
of biomarkers’ [6].

The evolution of omics in epidemiology

Comprehensive molecular phenotyping in very large cohort
collections has facilitated the discovery of many previously
unknown biological pathways, providing substrates for drug
development pipelines, the optimisat ion of non-
pharmacological interventions, disease-monitoring technolo-
gies and disease-prediction algorithms. This has involved

Context of use of biomarkers [6]

Biomarker Context of use

Diagnostic Stratification of disease or condition into subclass

Monitoring Measured serially and used to detect a change in the degree or extent of disease. 

May also be used to indicate toxicity or assess safety, or to provide evidence of 

exposure, including exposure to medical products

Predictive Used to identify individuals who are more likely than similar patients without the 

biomarker to experience a favourable or unfavourable effect from a specific inter-

vention or exposure

Prognostic Identify likelihood of a clinical event, disease recurrence or prognosis

Pharmacodynamic/response Used to show that a biological response has occurred in an individual who has 

received an intervention or exposure

Safety Used to indicate the presence or extent of toxicity related to an intervention or 

exposure

Susceptibility/risk Indicates the potential for developing a disease or medical condition or sensitivity 

to an exposure in an individual without clinically apparent disease or medical con-

dition

Surrogate endpoint Used in clinical trials as a substitute for a direct measure of how a patient feels, 

functions or survives. A surrogate endpoint does not measure the clinical benefit of 

primary interest in and of itself, but rather is expected to predict that clinical benefit 

or harm based on epidemiological therapeutic, pathophysiological or other scientific 

evidence
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genome-wide association studies (GWAS) and their statistical
aggregation through meta-analysis [7].

GWAS usually require large cohort collections to afford
adequate power, mainly because many parallel hypotheses
are tested (>1 million) and risk of type 1 error (false-positive
discovery) is consequently high. A limitation of GWAS is the
inability to detect certain types of variants, either because they
were absent within the populations used to inform the content
of GWAS arrays or imputation panels, or because the array is
simply not designed to detect certain types of variant. This can
prove problematic when studying rare variants [8], but also
applies to non-SNP variants such as insertion–deletion poly-
morphisms (indels) [9, 10], although this may be less of a
concern than initially thought [8]. Alternatively, whole-
genome sequencing involves the interrogation of each acces-
sible base pair in the nuclear genome in a manner that is
largely agnostic to the identity of the specific variants. Thus,
with sequencing, previously unknown variants (or at least
those not included in genotyping arrays) can be discovered
and related to phenotypic variation. As an example, homozy-
gote carriers of the TBC1D4 nonsense p.Arg684ter allele,
common in the Greenland Inuit population but rare elsewhere,
have ~10-fold increased odds of type 2 diabetes [11]. This
causal variant is tagged by genotypes captured in certain
arrays, but the causal variant itself is not captured; thus, its
detection required de novo exome sequencing of DNA from
Inuit trios (mother, father and a child).

Many other types of omics data (e.g. transcriptomics,
proteomics, microRNAs, epigenetics, peptidomics, metabolo-
mics, lipidomics, metagenomics) can also be derived from
stored biosamples using targeted assays, arrays or sequencing
technologies, depending on storage procedures [12] (see
Table 1, and Fig. 1 and Text box: Potential challenges during
the retrieval of omics data).

Epidemiology and its role in diabetes
research

Epidemiology, the study of disease, its risk factors and its
consequences within human populations, has been a cardinal
feature of diabetes research for almost a century. In the
Whitehall II Study, for example, 6538 British civil servants,
initially free from diabetes, were studied repeatedly for about a
decade [13]. An analysis of these data showed that over the
decade preceding type 2 diabetes diagnosis, fasting and post-
load blood glucose concentrations gradually increased, dete-
riorating sharply in the final 3 years. Compensatory changes
in estimated insulin production and insulin sensitivity also
occurred, whereby insulin sensitivity declined rapidly during
the final 5 years before diagnosis and insulin production
initially increased from years four to three pre-diagnosis, only
to decline rapidly thereafter. In those who did not develop

diabetes, fasting blood glucose concentrations and insulin
production remained materially unchanged throughout
follow-up, whereas post-load glucose rose gradually, and
insulin sensitivity declined throughout follow-up at rates simi-
lar to those seen in participants who developed diabetes.

‘Correlation’ does not necessarily mean ‘causation’; some
types of epidemiological analyses, such as those focused on
prediction (for example, of risk of developing diabetes, of
susceptibility to risk factors or of treatment success/failure)
do not always require that the relationships between exposures
and outcomes are causal for the results to be clinically useful.
Similarly, descriptive epidemiology does not seek to establish
cause and effect, instead focusing on detailing the patterns and
distributions of disease. However, in aetiological epidemiolo-
gy, where attention is often placed on understanding mecha-
nisms of action, establishing causality is paramount, especial-
ly where focus is on discovery of novel drug targets that
perturb pathways influencing diabetes or diabetes
complications.

The major barriers to causal inference in epidemiology are
chance, bias and confounding. These challenges can be
addressed to some extent by applying certain data analysis
conventions, such as the Bradford Hill criteria [14] (see Text
box: Bradford Hill criteria in next-generation epidemiology).
Of the many quantitative approaches for causal inference,
Mendelian randomisation (MR), which often utilises genetic
variants as the ‘causal instrument’, is popular. SNPs, unlike
most other types of biomarker, remain constant throughout
life. Thus, unlike most other biomarkers, there is no need to
reassess genotypes once on file. This stability also means that
cross-sectional associations between genotypes and traits can
be considered unidirectional. MR exploits these strengths as
well as the random assortment of genotypes to minimise the
impact of confounding and reverse causality [15].

Several branched-chain amino acids (BCAAs) such as
isoleucine, leucine and valine have been among the ~100
biomarkers reproducibly associated with type 2 diabetes inci-
dence in large observational studies [16]. Of these, alanine
aminotransferase, proinsulin and uric acid are also supported
by causal evidence from MR studies [17]. Early studies
exploring the causal link between vitamin D and diabetes,
using a genetic instrument comprised of variants associated
with circulating levels, showed conflicting evidence [18–20].
However, in later studies, when the sample size and the instru-
mental variables were expanded and the genetic instrument
included variants regulating the synthesis, transport and catab-
olism of vitamin D, a causal relationship was evident [21].

Most MR studies have focused on prevalent diabetes, with
relatively few (about ten) biomarkers being causally associat-
ed with incident type 2 diabetes [22]. A recent elegant analysis
[23] of biomarkers in incident diabetes reported that 35
biomarkers have been studied in cohorts totalling at least
1000 individuals with type 2 diabetes, only one of which
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Potential challenges during the retrieval of omics data

Stage Challenge Mitigation strategies

Sample collection Collect biosamples (e.g. urine, blood, 

plasma) in appropriate vessels

Compliance to SOPs

Amounts of sample Procure sufficient quantities

Processing Automated vs semi-automated vs man-

ual steps in the process:

aliquoting/mixing/centrifugation/separa-

tion

Maintain valid standardisation certificates

Compliance to SOPs

Centralised vs in situ Procure within appropriate time frame

Store at appropriate temperature

Storage/archiving/preser-

vation

Consistent (−−80°C) temperature 

throughout the chain

Compliance to SOPs

Use of mechanical freezers vs liquid 

nitrogen

Prespecify temperature according to goal, 

time to retrieve and biospecimen

Assay selection Selection procedure to assay analytes Use sensitive/specific techniques and plat-

forms according to biospecimen and study 

objectives

Sensitivity analyses

Analytical approach: non-targeted, 

semi-targeted and targeted

Sample clusters Established robust selection algorithms

Data integration and 

sharing

Quality assessment Lab accreditation

Internal and external quality control

Filtering and cleaning Compliance to good data management and 

documentation practices
Data transformation and normalisation

‘Centre effect’

‘Batch effect’

Imputation to reference panel

Annotation

Application Longitudinal measurements from the 

same individual over time

Maintain communication with participants

Correspondence to relevant phenotypes 

(preferably continuous traits)

Repeated measurements under similar con-

ditions

Independence from different path-

ways/conditions

Exploratory and integrative pathway 

analyses (bioinformatics)

Clinical definition of outcomes Clinical trial registration (if applicable)

Carefully designed research protocols

Statistical analysis plan (SAP)

Approval by institutional review board (IRB)

Account for potential confounders (i.e. 

age, sex, comorbidities, diet, environ-

ment)

Generalisability and validation Replication in an independent population

SOP, standard operating procedure

2525Diabetologia (2020) 63:2521–2532



(ferritin) yielded strong observational and MR evidence to
support a causal role in diabetes incidence. In general, the
biomarkers examined did not enhance the accuracy of type 2
diabetes prediction models, and those that did were generally
markers of glycaemic control.

Although MR is often viewed as a highly robust means of
inferring causal relationships, the approach has noteworthy
caveats [24]. For example, Haworth and colleagues [25]
describe geographically aligned genetic structures associated
with traits such educational attainment, BMI and number of
siblings, using data from the UK Biobank, which raises
concerns about the validity of some published MR analyses.

The value of biobanked samples
and longitudinal cohorts

Biorepositories have existed for several decades, although the
term ‘biobank’ was first used in the late 1990s [26]. The
manner in which biobanks would be used today could not
have been known when they were first init iated.
Nevertheless, modern genotyping and phenotyping technolo-
gies have helped raise the value of many biobanks that were
initiated long before these technologies were invented. In the
UK, the Department of Health, theMedical Research Council,
the Scottish Executive, and the Wellcome Trust invested UK
£62m to establish UK Biobank, a prospective cohort study of
500,000 adults from the UK. Roughly 5% of the cohort has
prevalent or incident diabetes [27], representing a large case
group that is set to expand as the cohort ages. Established as a
non-profit project in the early 2000s, UK Biobank has proved
to be an outstanding resource for aetiological epidemiology
owing to the extensive genotyping, relatively deep

phenotyping and linkage with electronic health records. The
thousand or so papers published in the past 7 years using UK
Biobank data have spanned many health topics, with several
dozen papers relating explicitly to diabetes. A common criti-
cism of biobank research is that many are too small to stand
alone and have thus formed parts of larger biobank networks,
where data harmonisation has been challenging owing to the
variety of methods deployed to assess the same underlying
exposures and outcomes. Thus, as a single, large, standardised
bioresource, UK Biobank has helped to address this criticism.

Next-generation epidemiology

The idea of genotyping and repeatedly phenotyping the same
individual using multiple omics platforms was stimulated by a
study in a single adult man who underwent deep omics profil-
ing (genomics, transcriptomics, proteomics, metabolomics
and autoantibodies) once daily for 14 months [28]. This anal-
ysis provided evidence that by integrating dense personal
omics data, temporal patterns could be identified to predict
subsequent shifts in health and disease markers. While the ‘n
of 1’ nature of this study limits its generalisability, the techni-
cal approaches deployed inspired others to undertake epide-
miological studies involving deep phenotyping of existing
biosamples, as well as new studies where participants were
repeatedly assessed using digital and serological assays to
profile temporal patterns related to the development or
progression of diabetes.

Applying modern molecular phenotyping technologies to
samples stored from historical cohorts is highly pragmatic,
particularly when the cohort has a long follow-up and clinical
events have accrued. The European Prospective Investigation

Bradford Hill criteria in next-generation epidemiology

Bradford Hill criterion Consideration in next-generation epidemiology

Strength Size of the estimated effect

Consistency Consistency of evidence across studies

Specificity How specific the mechanisms of the effect are

Temporality Whether the temporal relationship between exposure and outcome is plausible

Biological gradient Whether there is evidence of a biological gradient (dose–response)

Plausibility Whether a plausible mechanism between exposure and outcome can be estab-

lished

Coherence Whether other types of coherent evidence exist

Experiment Whether experimental evidence supports the observational data

Analogy Whether similar exposures are expected to lead to similar outcomes

2526 Diabetologia (2020) 63:2521–2532



into Cancer and Nutrition (EPIC)-InterAct (n = 12,500 inci-
dent cases and n = 16,000 reference cohort) is one of the larg-
est nested case–cohort studies of incident diabetes. The study
comprised subgroups of participants identified from a larger
European prospective cohort study (EPIC, N = 500,000). The
aim of InterAct was to assess gene–lifestyle interactions, but it
has subsequently been used to address many other questions,
including those focused on the role of diet in diabetes. Among
the biomarkers analysed were plasma phospholipid fatty acids
by gas chromatography. Imamura et al [29] used these data to
derive a dietary fatty acid score, which they found to be
inversely related to incident diabetes. In post hoc analyses,
the same score was inversely associated with higher levels
of liver enzymes, inflammatory markers, fasting glucose,
triacylglycerols and adiposity. Genetic analyses were
performed to determine whether these findings might be
confounded by obesity or insulin resistance, which they were
not.

UK Biobank has addressed some of the limitations of older
cohorts by undertaking deep phenotyping at an unprecedented
scale, with MRI scans being performed to determine tissue
composition, serological samples collected for GWAS,
metabolomic and telomere analyses, and validated health
outcomes obtained through record linkage. A recent public–
private partnership contributed a further UK£200m to under-
take whole-genome sequencing of 500,000 UK Biobank
participants and pilot work is underway to explore the use of
proteomics assays.

In Europe, the Innovative Medicines Initiative (IMI), a part-
nership between the European Commission, top academic insti-
tutions, the European Federation of Pharmaceutical Industries
and Associations (EFPIA) and other partners, has invested more
than €230m in projects seeking to discover biomarkers thatmight
lead to novel diabetes drug targets, enhance monitoring and/or
aid the design of diabetes drug trials. Of these, one IMI

consortium (Diabetes Research on Patient Stratification
[DIRECT]) established new prospective cohort studies enrolling
~3000 participants at risk of or with newly diagnosed diabetes
[30, 31]. The project’s primary objective was to discover
biomarkers for glycaemic deterioration before and after the onset
of type 2 diabetes and included extensive deep phenotyping at
baseline and throughout follow-up. Several other IMI diabetes
projects have relied predominantly on assimilating, assaying and
mining data from existing epidemiological cohorts for the
discovery of diabetes-relevant biomarkers (see Table 2). In the
US, theAcceleratingMedicines Partnership has genotypedDNA
frommultiple diabetes case−control studies and assimilated these
and other genetic and phenotypic summary data to provide
pub l i c - a cce s s genomic s r e sou r ce s ( e . g . www.
type2diabetesgenetics.org) [32]. In Finland, the FinnGen
project [33] has brought together universities, hospitals,
biobanks and pharmaceutical companies to study the genetic
bases of common and rare diseases, with a focus on biomedical
innovation and drug development. In Sweden, academic
institutions, hospitals, government and charitable trusts have
partnered to research and deliver genomic medicines through
Genome Medicine Sweden (https://genomicmedicine.se/en/)
[34]. Elsewhere, the UK Government established a company
(Genomics England) to deliver genomics medicine to the
population of England, with several highly ambitious projects,
including the 100,000 Genomes project [35], which is primarily
focused on cancers and rare diseases, but which will also include
~8000 families with rare inherited metabolic and endocrine
diseases.

Epidemiological cohorts are sometimes used to provide
sampling frames from which participants with specific pheno-
typic or genetic characteristics are recalled for experimental
studies or complex in vivo measurements. Recall-by-
genotype studies are especially appealing, as the feature upon
which participants are recalled (genotype) is not subject to

Gene�cs Epigene�cs

Transcriptomics

Metabolomics

Other
biomarkers

Metagenomics

Proteomics

Data genera�on

Fig. 1 Omics studies workflow. Initial stages of omic studies involve the
ethical approval of the study protocol (research ethics) and written
consent (participant recruitment) provided by the participants where
biological samples are drawn for further analyses. Downstream stages

include critical steps, i.e. sample storage and processing, data generation,
and data analysis (integration, interpretation and dissemination). This
figure is available as a downloadable slide
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change and this paradigm can be much more powerful for the
assessment of gene–treatment interactions than conventional
trials [36]. METSIM is a prospective cohort study of Finnish
men. In a recent recall-by-genotype study (n = 45) nested
within METSIM [37], p.Pro50Thr AKT2 variant carriers
and common allele homozygous controls were recalled to
investigate the effects of the p.Pro50Thr AKT2 variant on
insulin-stimulated glucose uptake. In this study, carriers of
the risk allele showed reductions in glucose uptake (39.4%)
and rate of endogenous glucose production (55.6%) after insu-
lin stimulation compared with non-carriers. Glucose uptake
was reduced primarily in musculoskeletal tissue.

Analytical challenges and emerging solutions

The analysis of dense multiomics datasets has proven formi-
dable. To address some of the computational challenges,
machine learning methods have been applied to determine
hidden structures that are informative of disease aetiology or
prognosis [38, 39]. Emphasis has been placed on the reclassi-
fication of the diagnosis of type 2 diabetes into subtypes. The
principle of subclassifying diabetes using genetics and apply-
ing this knowledge to guide therapeutic decision making has
proof of principle in the monogenic form of diabetes called
MODY, which is characterised by defects in the development
of the pancreatic islet cells and insulin secretion. The effective
stratification of polygenic diabetes (type 1, type 2 and gesta-
tional diabetes), while highly appealing, is more challenging
though, as complex diabetes manifests through defects in
multiple organs, tissues and pathways [40] and is influenced
by a wide range of environmental risk factors [41].

The stratification approaches reported to date for polygenic
diabetes have used clinical phenotypes (e.g. BMI, C-peptide
or HbA1c) [42], continuous glucose monitor-derived data [43]
or genotypes [44–46] to stratify diabetes into aetiological
subclasses. One of the earliest attempts to do this derived three
diabetes subtypes by clustering data from electronic medical
records and regressed genotype array data against each
subtype to provide sets of SNPs from which pathophysiolog-
ical inferences were made [44]. This approach is prone to type
1 error, owing to the large number of parallel hypothesis tests
performed, the liberal significance threshold employed when
selecting SNPs and the manner in which biological function
was assigned to SNP sets (which may be prone to bias owing to
the type of data available at that time). By contrast, the more
recent studies using SNP clustering approaches [45, 46] are less
prone to bias or type 1 error, as a very conservative p value
threshold is used when selecting SNPs and the pathogenicity of
variants is determined through very large and well-phenotyped
independent datasets. Key barriers to the clinical translation of
these approaches is that most use probabilistic soft clustering
methods, which do not classify most individuals into discrete

subtypes of diabetes, but instead assign one or more probabilities
linking the individual to one or more subtypes of diabetes.

Udler et al derived process-specific clusters using enhancer
enrichment from multi-cell epigenomic data [46], which were
used to inform the design of polygenic risk scores (PRS),
where higher scores were associated with relevant clinical
outcomes (e.g. hypertension, coronary artery disease and
stroke). These process-specific clusters characterised: (1)
elevated beta cell function, (2) diminished beta cell function,
(3) insulin resistance, (4) lipodystrophy-like adipose distribu-
tion and (5) disrupted liver lipid metabolism. Mahajan et al
described similar clusters [45], but did not proceed to link
these with clinical traits through participant-level association
analyses. Thus, using these approaches to re-diagnose an indi-
vidual with a new subtype of diabetes in a clinically meaning-
ful and actionable manner is challenging.

Overall, these studies have provided intriguing insights
into the aetiology of diabetes and helped to elucidate the
factors that drive disease progression. However, many of these
clustering methods do not assign most individuals to distinct
clusters or risk misclassifying people to incorrect diagnostic
categories (because most people are not defined by a distinct
subtype of diabetes). Those methods that do not seek to assign
individuals to distinct clusters focus on assigning probabilities
of belonging to one or more clusters, which may be difficult to
utilise in current clinical settings and may be less powerful
than algorithms using continuous data [47].

Richardson et al [48] have categorised the existing omics
integration approaches into vertical and horizontal methods.
Vertical integration can be viewed as the combination of
multiple ‘layers’ of data usually derived from the same indi-
vidual. By contrast, horizontal data integration incorporates
the same type of data derived from separate cohorts. Ritchie
et al [49] describe multi-staged analyses, where associations
are tested within data types (i.e. SNP datasets), filtered and
then tested against traits, with the limitation of assuming line-
arity; meta-dimensional analysis simultaneously integrates
various data types into a single model.

In a step towards clinical translation of omics data, a recent
analysis assigned the participants whole-genome sequences path-
ogenicity scores according to the American College of Medical
Genetics guidelines, revealing that one in every six participants
carried at least one pathogenic variant [50]. Clinical biochemis-
try, metabolomic and digital imaging data (fromMRI, CT, ECG,
echocardiography, continuous glucose monitoring), as well as
information from the participant’s medical records and family
history were subsequently combined to derive a set of clinically
relevant phenotypes relating mainly to cardiac and endocrine
disorders (including type 2 and syndromic forms of diabetes).
Associations were then tested between pathogenic variants and
these clinical phenotypes, revealing that one in nine participants
carried pathogenic variants that mapped to relevant clinical traits
[50]. These findings imply that the appropriate use of deep-
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phenotyping data may enhance the ability to discriminate
between high- and low-risk individuals with conventional risk
factors and/or disease characteristics.

Summary and conclusions

The major expansion of accessible omics data in large epidemi-
ological cohorts provides unprecedented opportunities for diabe-
tes research and practice. Breakthroughs in knowledge will
require training in analytical methods to keep pace with data
generation; with very large and complex datasets, tasks that were
once considered simple, such as data handling and quality
control, now often require specialist training. The analyses that
follow, possibly focusing on casual inference, gene–environment
interactions, pharmacogenomics or functional annotation, will
require other types of specialist knowledge. Many of these anal-
yses will make use of external datasets that help establish biolog-
ically meaningful connections between molecular phenotypes,
which requires specialist knowledge to access, integrate and
interpret this information. Thus, appropriate training in specialist
analytical tasks will be increasingly important for the next gener-
ation of epidemiologists. Importantly though, this should be
balanced against the need for education in the core tenets of
epidemiology, so that conclusions drawn from complex analyses
are accurate and meaningful.
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