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Abstract

N-acetylglucosamine (NAG) belongs to the eight essential saccharides that are

required to maintain the optimal health and precise functioning of systems

ranging from bacteria to human. In the present study, we have developed a

method, NAGbinder, which predicts the NAG-interacting residues in a protein

from its primary sequence information. We extracted 231 NAG-interacting

nonredundant protein chains from Protein Data Bank, where no two

sequences share more than 40% sequence identity. All prediction models were

trained, validated, and evaluated on these 231 protein chains. At first, predic-

tion models were developed on balanced data consisting of 1,335 NAG-

interacting and noninteracting residues, using various window size. The model

developed by implementing Random Forest using binary profiles as the main

principle for identifying NAG-interacting residue with window size 9, per-

formed best among other models. It achieved highest Matthews Correlation

Coefficient (MCC) of 0.31 and 0.25, and Area Under Receiver Operating Curve

(AUROC) of 0.73 and 0.70 on training and validation data set, respectively. We

also developed prediction models on realistic data set (1,335 NAG-interacting

and 47,198 noninteracting residues) using the same principle, where the model

achieved MCC of 0.26 and 0.27, and AUROC of 0.70 and 0.71, on training and

validation data set, respectively. The success of our method can be appraised

by the fact that, if a sequence of 1,000 amino acids is analyzed with our

approach, 10 residues will be predicted as NAG-interacting, out of which five

are correct. Best models were incorporated in the standalone version and in

the webserver available at https://webs.iiitd.edu.in/raghava/nagbinder/

Abbreviations: Acc, Accuracy; AUROC, Area Under Receiver Operating Characteristics; ETree, ExtraTree classifier; KNN, K-Nearest Neighbor;
LPC, Ligand Protein Contact; MCC, Matthews Correlation Coefficient; MLP, Multilayer Perceptron; NAG, N-acetylglucosamine; PDB, Protein Data
Bank; PSI-BLAST, Position-Specific Iterative Basic Local Alignment Search Tool; PSSM, Position Specific Scoring Matrix; RFC, Random Forest
classifier; Sen, Sensitivity; Spc, Specificity; SVC, Support Vector Classifier.
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1 | INTRODUCTION

One of the primary hurdles in today's world of science is
the annotation of a protein at structural as well as func-
tional level. Due to the swift headway in sequencing
innovations, the number of protein sequences are
increasing at an exponential rate in the respective data-
bases, but they lack annotation, and this gap is increasing
every moment.1 Therefore, there is a pressing necessity
for the development of computational methods, which
can determine the function of the proteins at the residue
level. The interaction between the proteins and their
ligands is crucial for the well-being of an organism.2 In
the last few decades, substantial efforts have been made
toward the identification of the ligand-binding residues
in a protein as shown in the review Sousa et al.3 At first,
nonspecific methods were developed to predict the bind-
ing sites or pockets in the proteins, irrespective of their
ligands,4,5 but soon it was realized that each ligand pos-
sesses different physical and chemical properties. There-
fore, new computational methods specific to the ligands
came into the picture,6–10 which performed better as
compared to nonspecific methods.11,12

Broadly, computational methods can be divided into
two categories, structure-based and sequence-based.13,14

In the case of structure-based methods, ligand binding to
the protein structure can be studied using docking tech-
niques.15,16 These methods fail if the structure of a pro-
tein is not available. To overcome this limitation,
sequence-based methods have been developed in the past
for predicting the protein residues that interact with spe-
cific ligands such as ATP,6,17 GTP,18 NAD,19 and SAM.10

To the best of our knowledge, the method described here
is the first for predicting NAG interacting residues in a
protein from its amino acid sequence.

The monosaccharide N-acetylglucosamine (NAG) is
ubiquitous in the environment. It is known for playing
essential structural roles at the cell surface ranging from
bacteria to human.20 It is the principal component of the
bacterial cell wall peptidoglycan,21 and of chitin in the
fungal cell wall.22 Glycosaminoglycans are also present
on the extracellular matrix in animal cells.23,24 It is also
involved in processes such as cell signaling in fungi and
bacteria,23 and regulation of gene expressions.22 Plants
and animal cells also use NAG for cell signaling and act
as the sensors for the status of the nutrition that lead to
the modification of the protein by the attachment of O-

GlcNAc.20 In recent years, NAG is suggested as a treat-
ment for autoimmune disorders.25 In the case of human,
NAG signaling facilitates the coexistence of the extensive
range of bacteria, fungi, and human cells in the gut.26

In this study, we made a methodical attempt to pre-
dict the NAG interacting residues in the given protein
sequence. We believe this study will be advantageous to
the researchers working in the field of drug discovery. In
order to facilitate the scientific community, a web server
and standalone software has been developed for
predicting the NAG interacting residues in a protein.

2 | RESULTS

2.1 | Compositional analysis

In this study, we analyzed NAG interacting and non-
interacting residues to understand NAG interactions in
protein. A residue is assigned as NAG interacting if any
of its atoms are within the 4Å distance of bound NAG.
The contact between residue and NAG was computed
using Ligand Protein Contact (LPC) software and this is
standard protocol commonly used in most of the previous
studies.6,18,19 We also analyzed the amino acid composi-
tion of NAG interacting and noninteracting residues in
the NAG binding proteins. As shown in Figure S1, cer-
tain types of residues like N, Q, R, T, W, Y, and H were
more abundant among the NAG interacting residues
than the non-NAG interacting ones. It has been shown
that residues like N, Y, and W are preferred in the NAG
interacting sites,27 which corresponds with our analysis.

2.2 | Propensity analysis

The propensities of N and W are higher in the NAG
interacting sites in comparison to other amino acids as
shown in Figure S2.

2.3 | Physiochemical properties analysis

Small, polar, and aromatic amino acids had higher preva-
lence in the NAG-interacting sites, whereas NAG non-
interacting sites were rich in nonpolar and aliphatic
amino acids (Figure S3).
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2.4 | Two sample logo

As shown in the past, the properties of a given residue
can be influenced by its neighbor residues.28 The sample
logo (Figure S4) shows that the NAG interacting residues
are different than the NAG noninteracting ones.

2.5 | Performance of machine learning
models on balanced data set using binary
profiles

Binary profiles show the composition as well as posi-
tional information of the residues present in the
sequence.18,29 We generated binary profiles for window
sizes ranging from 5–23 amino acids in length and
used to develop various machine learning models
based on the balanced data set, where balanced data
set consists of equal number of NAG interacting and
noninteracting residues, which is 1985 in number. The
best results for each window size is shown in Table 1
and AUROC plot was created for the best performing
model for training and validation data set as exhibited
in Figure 1a and 1b, respectively. On analyzing the
performance of each prediction model, we determined
that the Random Forest (RF)-based model performed
best among all the other models for window size
9. The model gained the Acc of 65.58%, MCC of 0.31,
and AUROC of 0.73 on training data set and Acc of
62.69%, MCC of 0.25, and AUROC of 0.70 on the vali-
dation data set. Detailed performance achieved on var-
ious machine learning techniques on each window
size is provided in Tables S1-S10.

2.6 | Performance of machine learning
models on balanced data set using PSSM
profile

As shown in the literature, evolutionary information
provides more information about a protein than a single
sequences.30,31 In this study, evolution information is
represented in the form of PSSM profiles. PSSM profiles
were generated for each window size, to develop differ-
ent machine learning models on the balanced data set.
The best results for each window size are reported in
Table 2, and AUROC plot was created for the best per-
forming model for training and validation data set as
exhibited in Figure 1a and 1b, respectively. On evaluat-
ing the performance of each model, we determined that
the prediction model for RF on window size 9 performed
best. This model obtained an Acc of 62.17%, MCC of
0.24, and AUROC of 0.69 on training data set and Acc
of 61.15%, MCC of 0.22, and AUROC of 0.66 on the vali-
dation data set. In previous studies it has been shown
that PSSM profile based model performs better than the
binary profile-based model.19,32 However, in our case we
observed that the binary profile-based model performed
better than the evolutionary profile (or PSSM profile)
based model. One possible reason for this could be the
nonconservation among residues present in the NAG
binding proteins. Therefore, we randomly selected few
proteins and analyzed the multiple sequence alignment
file of those proteins obtained during PSSM profile gen-
eration. We observed that the sequence similarity of
these proteins with the other proteins present in the
nonredundant database was very low, due to which the
PSSM profile generated is not suitable for developing

TABLE 1 Performance of the machine learning classifiers using binary profile on balanced data set for various window sizes

Pattern (classifier)

Training data set Validation data set

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

Pat5(SVC) 67.42 60.90 64.16 0.28 0.71 67.18 55.69 61.43 0.23 0.68

Pat7(SVC) 66.52 64.12 65.32 0.31 0.72 66.26 60.00 63.13 0.26 0.70

Pat9(RF) 65.39 65.77 65.58 0.31 0.73 65.69 59.69 62.69 0.25 0.70

Pat11(RF) 66.07 65.17 65.62 0.31 0.72 69.08 60.62 64.85 0.30 0.71

Pat13(RF) 65.62 65.77 65.69 0.31 0.72 69.69 62.31 66.00 0.32 0.71

Pat15(RF) 66.52 65.24 65.88 0.32 0.72 68.00 59.23 63.62 0.27 0.71

Pat17(RF) 67.64 61.12 64.38 0.29 0.71 68.15 58.92 63.54 0.27 0.69

Pat19(RF) 66.37 62.47 64.42 0.29 0.71 67.69 59.54 63.62 0.27 0.70

Pat21(RF) 67.87 61.57 64.72 0.29 0.71 67.38 60.15 63.77 0.28 0.70

Pat23(RF) 67.57 62.02 64.79 0.30 0.71 66.00 59.85 62.92 0.26 0.69

Note: Various classifiers were used for building models and the performance obtained by the best classifier (mentioned in the bracket) for each window size

has been reported.
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the model to predict the NAG interacting residue in
new protein. The multiple sequence alignment file of
the selected proteins along with its sequence similarity
is provided in Table S11.

The performance achieved by different classifiers on
each window size is provided in the Tables S12-S21.

2.7 | Performance of machine learning
models on balanced data set using hybrid
feature

The hybrid feature is obtained by the elementwise addi-
tion of binary profile matrix and PSSM profile and then
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FIGURE 1 AUROC plots obtained for window length 9 developed using, binary profiles on balanced data set (binary_balanced), PSSM

profiles on balanced data set (pssm_balanced), binary profiles on realistic dataset (binary_realistic) for (a) training data set and (b) validation

data set

TABLE 2 The performance of the machine learning classifiers developed using PSSM profile on balanced data set for various window

sizes

Pattern (classifier)

Training data set Validation data set

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

Pat5(RF) 61.27 61.57 61.42 0.23 0.67 52.00 64.46 58.23 0.17 0.64

Pat7(RF) 61.27 61.87 61.57 0.23 0.68 56.46 66.92 61.69 0.24 0.66

Pat9(RF) 62.47 61.87 62.17 0.24 0.69 55.38 66.92 61.15 0.22 0.66

Pat11(RF) 62.92 62.55 62.73 0.25 0.68 56.15 66.31 61.23 0.23 0.66

Pat13(RF) 64.27 62.17 63.22 0.26 0.68 56.92 66.46 61.69 0.23 0.66

Pat15(RF) 62.47 62.17 62.32 0.25 0.68 56.62 64.92 60.77 0.22 0.66

Pat17(RF) 63.67 61.8 62.73 0.25 0.68 54.15 63.23 58.69 0.17 0.65

Pat19(ETree) 64.04 62.77 63.41 0.27 0.68 53.85 65.38 59.62 0.19 0.65

Pat21(ETree) 65.02 62.25 63.63 0.27 0.69 54.31 65.69 60.00 0.20 0.66

Pat23(ETree) 63.45 63.00 63.22 0.26 0.68 54.62 66.77 60.69 0.22 0.65

Note: Various classifiers were used for building models and the performance obtained by the best classifier (mentioned in the bracket) for each window size

has been reported.
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used as the feature to develop the prediction model.
Table S22 holds the best results for each window size and
Figures S5a and S5b exhibit the AUROC plots for training
and validation data set respectively. The best results were
obtained for Extratree classifier (ET) on window size
13 with an accuracy of 65.51%, MCC of 0.31, and AUROC
of 0.73, where in case of the validation data set accuracy of
64.46%, MCC of 0.29, and AUROC of 0.70 was obtained.
The performance reached by different classifiers on each
window size is provided in the Tables S23-S32.

2.8 | Performance of the machine
learning models on the realistic data set

On analyzing the results for various features, we found
that the window size 9 is the optimum window size, as
models developed using binary profiles and PSSM pro-
files exhibiting the consent and model developed using
binary profiles performed best among them. Hence, we
used window size 9 for developing the prediction models
for the realistic dataset using binary profiles as the input
feature. Maximum MCC 0.26 was achieved on RF classi-
fier for the training data set and 0.27 for validation data
set as shown in Table 3. The AUROC obtained
corresponding to the training and validation data set are
0.70 and 0.71 respectively, as shown in Figure 1.

2.9 | Model implementation in the web
server

To serve the scientific community, we have developed the
web server “NAGbinder”; for predicting the NAG inter-
acting residues, we have implemented our best models in
the server. The web server consists of various modules
such as “Sequence,” “PSSM Profile,” “Standalone,” and
“Download.” The detailed description of each module is as
follows.

2.9.1 | Sequence

This module allows users to predict the NAG interacting
residues in an uncharacterized protein from its sequence.
The user can provide the sequence in FASTA format, can
select the desired probability threshold and machine
learning techniques. The user can provide either single or
multiple sequences; on the other hand, the user can
upload the sequence file in the FASTA format. In the out-
put page, the NAG interacting residues are highlighted in
red color with bigger font size, in the protein sequence.
The output is downloadable in different formats such as
pdf, txt, and png.

2.9.2 | PSSM profile

This module generates the PSSM profile of all the pro-
vided sequences in FASTA format and predicts the NAG
interacting residues. As the server permits users to select
the threshold, we suggest a higher value for high specific-
ity and lower value for higher sensitivity. The output
would show NAG interacting residues highlighted in red
color with bigger font size, in the protein sequence. The
output is downloadable in pdf, txt, and png format.

2.9.3 | Standalone

This module allows the user to predict the NAG inter-
acting residues in a protein, even if the Internet is not
present. The standalone has the compatibility with
macOS, Linux, and Windows. Our best models are
implemented in the back-end, which takes FASTA
sequence of proteins as input and provides the results
that are comparable to the online server. This software is
equipped with all the required files in the zip format and
can download from the “Standalone” module of the
online server “NAGbinder.” Moreover, this module also

TABLE 3 The performance of the various machine learning classifiers developed using binary profile on realistic dataset for window

size 9

Classifier

Main data set Validation data set

Sen Spc Acc MCC AUROC Sen Spc Acc MCC AUROC

SVC 14.91 99.47 97.15 0.25 0.71 18.95 99.43 97.59 0.28 0.72

RF 16.70 99.41 97.14 0.26 0.70 19.69 99.35 97.53 0.27 0.71

ETree 17.30 99.22 96.97 0.25 0.70 19.69 99.26 97.44 0.26 0.70

KNN 08.61 98.88 96.40 0.11 0.61 10.92 98.99 96.97 0.13 0.63

MLP 13.78 98.94 96.60 0.18 0.71 17.85 98.78 96.92 0.20 0.72

Ridge 13.11 99.11 96.74 0.18 0.70 16.62 99.2 97.31 0.22 0.71
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guides the user to use the standalone using docker
technology.

2.9.4 | Download

This module allow the users to download the data sets
that we have used in this study. The training and valida-
tion data sets are provided separately and each data sets
are comprises of NAG-interacting and noninteracting
chains. The data sets are provided in three different types,
as first type contains annotated protein chains, type two
and three comprises of binary and PSSM profiles for win-
dow size 9, respectively. These data sets are freely down-
loadable from the “Download” module of the online
server of NAGbinder.

2.10 | Standalone

The NAGbinder standalone is Python-based and available
on GitHub. The user can access it from the URL: https://
github.com/raghavagps/nagbinder/. The standalone ver-
sion of NAGbinder is also executed in the docker technol-
ogy, its complete usage, and implementation is provided
in the manual of “GPSRdocker” that can be downloaded
from https://webs.iiitd.edu.in/gpsrdocker/.

3 | DISCUSSION

NAG is ubiquitous in the environment, hence showing
its importance in the maintenance and coordination in
various systems ranging from bacteria to humans.20 For
understanding the mechanisms behind the interactions,
the determination of the structure is prerequisite, which
is a very intricate process. The determination of the pro-
tein structure is a highly complex process, and moreover,
due to the shortcomings of the present technology, a
sequence-based computational method to predict the
NAG interacting residues in a protein, is the need of the
current time. We investigated various properties of
the NAG interacting protein chains such as composi-
tional analysis, propensity, and physiochemical proper-
ties and developed various prediction models using
machine learning techniques to predict the NAG inter-
acting residues in the uncharacterized proteins using
their sequence information. Initially, the models were
developed on balanced data using different window sizes.
We found that the prediction model developed on binary
profiles using window size 9 performed best among all
the models, and the performances of the models were
validated on the independent data set. To serve the

scientific community, we have provided the standalone
version as well as “NAGbinder” web server, in the hope
that it will allow the biologists in the identification of
NAG binding proteins and their interacting residues for
the purpose of annotation and functional analysis. The
server is freely available on https://webs.iiitd.edu.in/
raghava/nagbinder. The comprehensive workflow of
NAGbinder is exhibited in Figure 2.

4 | MATERIALS AND METHODS

4.1 | Data set creation

Initially, we extracted 5,736 NAG binding proteins’ PDB
IDs from the PDB April 2019 release, which resulted in
15,349 protein chains. Next, using CD-HIT software33 fur-
ther filtration of the sequences was done by applying the
criteria of 40% sequence identity and obtained 1,279 pro-
tein chains having sequences bearing identity up to 40%.
As demonstrated in the past, the quality of the protein
structure is one of the principal components for reliable
annotation.18 Hence, we have put the threshold of 3Å for
resolution; therefore including only those chains having
a resolution equal to or less than 3 Å. We were left with a

FIGURE 2 Architecture of NAGbinder

206 PATIYAL ET AL.

https://github.com/raghavagps/nagbinder/
https://github.com/raghavagps/nagbinder/
https://webs.iiitd.edu.in/gpsrdocker/
https://webs.iiitd.edu.in/raghava/nagbinder
https://webs.iiitd.edu.in/raghava/nagbinder


total of 231 protein chains. Finally, we ran the LPC34 soft-
ware on these chains and extracted the contact informa-
tion of NAG interacting residues present in the protein
chains with threshold cut off of 4 Å that is a standard
criteria followed in many previous studies.18,35 In total
we obtained 1985 NAG interacting and 74,931 non-
interacting residues from the 231 protein chains and
average number of NAG-interacting residues was found
to be 3.75 residues per NAG binding site.

4.2 | Internal and external validation

Following the findings of previous studies, the data sets
are created at the protein sequence level, rather than
pattern or residue level, as previous studies proposed
that the data sets generated at the pattern level are
biased and leads to higher performance.1 By pattern
level we mean, generating patterns of a given window
length using all proteins and then creating five folds.
The data set (231 protein chains) was divided into two
parts (a) training data set, which is comprised of 80%
(186 protein chains) and (b) validation data set, which
includes the remaining 20% (45 protein chains) of the
data set. In total, 1,335 NAG interacting and 47,198
noninteracting residues were present in internal valida-
tion data set and 650 NAG interacting and 27,733 non-
interacting residues were present in external validation
data set.

Two types of data sets were generated for model
development and analysis studies that is, (a) realistic data
set, which consists of the original NAG interacting and
noninteracting residues (i.e., 1985 NAG interacting
and 74,931 NAG noninteracting) obtained initially and
(b) balanced data set, in which an equal number of NAG
interacting and noninteracting residues were present
(i.e., 1985 NAG interacting and 1985 NAG non-
interacting). As the noninteracting data were several fold
higher, an equal number of noninteracting residues was
randomly selected in order to avoid bias.

4.3 | Five fold cross-validation

The five fold cross-validation technique was implemented
to evaluate the performance of the various prediction
models. In this technique, all the instances were divided
into five different sets. Out of these five sets, four sets are
kept for training, and last set is used for testing. The pro-
cess is repeated five times such that each set gets the
chance to be used for testing once. The overall perfor-
mance is the average of performances of all these five
sets.36

4.4 | Window/pattern size

The overlapping patterns of each sequence were created
with varying window size, where the length of the win-
dow ranges from five to 23 amino acids. The central resi-
due of the generated pattern is the representative of the
sequence segment. If this central residue is NAG inter-
acting then the segment is designated as positive pattern;
if not, then negative. For the terminus residues, (k-1)/2
dummy residues as “X” are added at both termini of the
protein chain (where k signifies the length of the
pattern).

4.5 | Percent amino acid composition

The realistic data set was used to compute percent amino
acid composition of the NAG interacting and non-
interacting residues using Equation 1.

Ci =
Ai

N

� �
X100 ð1Þ

where Ci is the percent composition of residue of type i.
Ai and N are number of residues of type i, and the total
number of residues, respectively.

4.6 | Residue propensity

Preference or nonpreference of residue in NAG binding
site is very crucial. Therefore, to address this issue, we
computed residue propensity using our realistic data set.
The propensity for each type of residue is computed using
Equation 2 as used in previous studies.37

Pi =
Ai

Ni

� �
X100 ð2Þ

where Pi is the propensity score for residue of type i. Ai

and Ni are number of residues of type i, and total the
number of residues (interacting and noninteracting) of
type i, respectively.

4.7 | Percent composition based on
physiochemical property

Each amino acid possesses the unique physiochemical
property that exhibits its functionality. We have consid-
ered important eight physiochemical properties that is,
aromatic, aliphatic, polar, nonpolar, charged, small,
acidic, and basic amino acids. We utilize the realistic data
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set to compute the percent composition of each residues
of these eight properties (or composition of physicochem-
ical property) using Equation 3.

PCi =
Ai

N

� �
X100 ð3Þ

where PCi is the percent composition of a
physiochemical property type i. Ai and N are number of
residues possessing physiochemical property of type i,
and total the number of residues, respectively.

4.8 | Binary profile

The binary profiles are generated for each pattern, by
providing the binary values to each amino acid in the
fixed length pattern. A vector of size 21 designates each
amino acid in the pattern, and hence a vector of size
N*21 will be generated for pattern having the length
equal to N. For example, Alanine residue was represen-
ted by [1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]; which com-
prises 20 amino acids and one dummy amino acid “X,”
where X was designated as [0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0].29

4.9 | Evolutionary profile (PSSM)

The evolutionary profile was used as the second input
feature, which is represented by the position-specific
scoring matrix (PSSM) generated for patterns.11 This was
consolidated by using the PSSM generated during the
PSI-BLAST38 by searching against the SwissProt data-
base.39 Three iterations were performed with the cutoff
for e-value was 0.001 for each sequence. Then, all the
values were normalized between 0 and 1 using Equa-
tion 4, following calculation of the position-specific score.
The final matrix has the dimensions of N X 21, where N
is the length of the pattern.

PSSMnorm =
1

1+ e−val
ð4Þ

where val refers to PSSM score and PSSMnorm is the nor-
malized value.

4.10 | Machine learning techniques

We have used python-based machine learning libraries/
modules contained in the package SCIKIT-learn,40 to
develop the prediction models. Before developing the

prediction models, the Grid Search module of scikit-learn
was used to optimize the parameters on the internal
training data set. We have executed Random Forest clas-
sifier (RF), ExtraTree classifier (ET), Support Vector Clas-
sifier (SVC), MultiLayer Perceptron (MLP), K-Nearest
Neighbor (KNN), and Ridge classifier to develop the pre-
diction models.

4.11 | Performance evaluation

The performance of the prediction models is evaluated
on various threshold-dependent and threshold-
independent parameters. In this study, Sensitivity (Sen),
Specificity (Spc), Accuracy (Acc), and Matthews Correla-
tion Coefficient (MCC) are used as the threshold-
dependent parameters. Performance of the model were
evaluated in terms of Sensitivity (Sen), which is the per-
centage of correctly predicted NAG interacting residues;
Specificity (Spc), which is the percentage of correctly
predicted noninteracting residues; Accuracy (Acc),
defined as percentage of correct prediction (NAG inter-
acting and noninteracting residues); Matthews Correla-
tion Coefficient (MCC), which is the correlation between
observed and predicted values. Area Under Receiver
Operating Characteristics (AUROC) is used as the
threshold-independent parameter, which is the plot
between Sen (True Positive Rate) and 1-Spc (False Posi-
tive Rate), where Sen is on y-axis and 1-Spc is on x-axis.
It is the measure of separability, it signifies that how well
the model is capable of distinguishing between the clas-
ses. AUROC was computed using the “pROC” package
of R.41 The equations for the parameters are as follows:

Sensitivity =
TP

TP+FN
× 100 ð5Þ

Specificity =
TN

TN+FP
× 100 ð6Þ

Accuracy =
TP+TN

TP+FP+TN+FN
× 100 ð7Þ

MCC=
TP*TNð Þ− FP*FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP+FPð Þ TP+FNð Þ TN+FPð Þ TN+FNð Þp ð8Þ

TP refers to true positive; FN refers to false negative;
TN refers to true negative; FP refers to false positive.
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