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Ethical debates amidst flawed healthcare
artificial intelligence metrics
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Healthcare AI faces an ethical dilemma between
selective and equitable deployment, exacerbated
by flawed performance metrics. These metrics
inadequately capture real-world complexities and
biases, leading to premature assertions of
effectiveness. Improved evaluation practices,
including continuous monitoring and silent
evaluation periods, are crucial. To address these
fundamental shortcomings, a paradigm shift in AI
assessment is needed, prioritizing actual patient
outcomes over conventional benchmarking.

Artificial intelligence (AI) is poised to bridge the deployment gap with
increasing capabilities for remote patient monitoring, handling of diverse
time series datasets, and progression toward the promise of precision
medicine. This proximity also underscores the urgency of confronting the
translational risks accompanying this technological evolution and max-
imizing alignment with fundamental principles of ethical, equitable, and
effective deployment. The recentwork byGoetz et al. surfaces a critical issue
at the intersection of technology and healthcare ethics: the challenge of
generalizationand fairness inhealthAI applications1. This is a complex issue
where equal performance across subgroups can be at odds with overall
performance metrics2.

Specifically, it highlights one potential avenue to navigate variation in
model performance among subgroups based on the concept of “selective
deployment”3. This strategy asserts that limiting the deployment of the
technology to the subgroup in which it works well facilitates benefits for
those subpopulations. The alternative is not to deploy the technology in
the optimal performance group but instead adopt a standard of equity in the
performance overall to achieve parity among subgroups, what might be
termed “equitable deployment”. Some view this as a requirement to “level
down” performance for the sake of equity, a view that is not unique to AI or
healthcare and is the subject of a broader ethical debate4–6. Proponents of
equitable deployment would counter: Can a commitment to fairness justify
not deploying a technology that is likely to be effective but only for a specific
subpopulation?

Discussions around selective deployment do not take place in a
vacuum and must be had with an awareness of the broader context of the
attributes at hand and the sociopolitical context of healthcare. Healthcare
inherently involves unequal distribution of resources—however it is not
the unequal allocation per se, but rather the underlying basis for such
allocation that demands scrutiny. While selective deployment may, by a

first-pass utilitarian calculus, lead tomorepatient benefit thanwithholding a
model until equitable performance can be achieved, the second-order
impacts are more complicated.

This article seeks to offer reflections on not only the ethical tensions
between selective and equitable deployment but also on themyriad barriers
that render real-world equity much more complicated than in silico vali-
dations imply. Without significant improvements in health AI metrics and
evaluation practices, these debates will continue to take place in an envir-
onment of insufficient information to determine a policy’s ultimate impact.

Informational challenges in selective deployment
One formulation of selective deployment posits that models should be
confined to subpopulations with robustly validated efficacy and safety. This
is framed as a prudent exercise in risk mitigation. After all, deploying
unvalidatedmodels in clinical settingswithout demonstrable efficacy invites
a litany of ethical and legal complications, potentially compromising patient
care and contravening medical ethics principles. This concern intersects
with a much broader challenge in AI in medicine—what does it mean for a
model to be “validated” for any subpopulation, let alone the population
at large?

At its core, a model’s objective should be to elucidate and reflect the
actual causal factors underlying patient conditions, aiming to enhance,
predict, and ultimately improve patient outcomes. Nonetheless, this pursuit
must address the inevitable presence of ‘bias exhaust’—residual biases not
directly related to biological determinants but rather emerge from systemic
discrepancies in care, data processing, and various operational protocols.
Identifying models that most accurately capture these causal relationships
represents the zenith of machine learning applications in healthcare.
However, this objective encounters substantial hurdles given the often
incomplete understanding of causal pathways in medicine and the fact that
training data is a mere abstraction of complex biological, clinical, and
sociocultural realities faced by patients and healthcare providers.

The ability ofmodels to represent these pathways dependably is further
abstracted via processing, selection, and imputation. When combined with
modern high-powered architectures, such as neural networks, which are
particularly susceptible to overfitting, we can compound errors relying on
spurious correlations and superficial features that boost apparent perfor-
mance in development but may not accurately represent the underlying
causalmechanisms of health outcomes at the bedside. Critically, therefore, a
model’s ultimate veracitymust be demonstratednot during its development
phase but upon its deployment in real-world clinical settings.

Given that the initial developmentperiod represents themost favorable
context for claimed performance, it is particularly concerning if there is
already an assertion of ineffectiveness in other groups at the development
stage. Further, even optimal performance in a particular subgroup during
initial benchmarking represents, at best, a premature and unvalidated
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assertion of effectiveness. In many contexts, the claimed subgroup benefits
that provide the foundation for justifying selective deployment despite
equity costs may be far from as great as they initially seem.

Contextual relevance and irrelevance
The arguments for selective deployment raise an adjacent problem sur-
rounding evaluating real-world differences in model outcomes: distin-
guishing between which factors should reasonably influence results and
which factors reflect impermissible bias. Bias, a generally elusive term often
regarded as pejorative, suggests a model’s failure to accurately mirror the
multifaceted realities of patient conditions and health determinants7. While
certain factors may be felt to play a legitimate causal role, others simply
embed and reflect societal biases that should not be reproduced.

Assessing when differential performance across groups is acceptable
depends in large part upon distinguishing between these acceptable and
unacceptable drivers of performance. Thismay sometimes be predicated on
legitimate variability of medical conditions, their manifestations, and bio-
logical makeup. For instance, the clinical presentation and diagnostic
markers may inherently differ between sexes, necessitating distinct mod-
eling approaches to predict outcomes accurately, such as the breast cancer
example in Goetz et al. However, when a model’s performance is dis-
proportionately influenced by factors that should not significantly affect the
diagnostic or prognostic accuracy—such as a patient’s race in contexts
where it should not bear relevance8—this disparity signals a deviation from
the pursuit of accurate causal representation.However, part of the challenge
in this field lies in the complexity of identifying relevant subgroups and how
to handle intersectionality, particularly when definitions are based on social
and legal constructs, such as race, rather than biological differences.

In addition to embeddingproblematic societal biases, predictive factors
that reflect social contingencies rather than legitimate biological causality
may be particularly brittle when applied within the complex and unpre-
dictable environment of clinical practice. These factors may lead to a
degradation of model performance upon deployment in the real world,
underscoring a fundamental misalignment between the model’s training
and the realities it is intended to navigate9.

Towards better metrics for performance
This discussion underscores a critical paradigm shift: the evaluation of
machine learning models in healthcare must extend beyond conventional
metrics of accuracy attained during the benchmarking phase (Box 1). High

accuracy in a controlled test environment may not translate to effectiveness
at the bedside, where the intricacies of patient care unfold in real-time.Once
the model is deployed, the samemetrics used for training may no longer be
applicable for post-deployment monitoring, as the model itself can modify
clinicians’ actions and patients’ trajectories. The ultimate measure of a
model’s value lies in its ability to improve patient outcomes in authentic
deployment contexts.

Nuanced evaluation of complex downstream metrics at the time of
model deployment is required, yet such data is, by its nature, unavailable to
AI teams at the time of initial development. Therefore iterative silent eva-
luation can help to bridge this gap, wherein models’ performance is eval-
uated in the background of ongoing clinical activity without yet impacting
patient care10,11. This is but a portion of a robust framework for continuous
evaluation and accountability that encompasses the entire lifecycle ofmodel
development, from data collection and curation to deployment, including a
rigorous regimen of post-market surveillance to monitor a model’s per-
formance in live healthcare settings. Such mechanisms must act to ensure
that disparities do not widen, models receive timely recalibration and error
detection processes, ensure models adapt to the evolving landscape of
healthcaredata andpatientdemographics. This is particularly relevant given
the significant subpopulation shifts thesemodelswill encounter and the rate
of change in clinical knowledge being deployed by physicians in practice.

Moreover, contemporary debates regarding selective and equitable
deployment are driven by the same flawed sets of performance metrics that
the field at large must work to improve.Without a clearer understanding of
the downstream impact, ethical discussions at the time of development are
blind to essential information underpinning them. Regardless of the stance
one takes in the debate between selective and equitable deployment,
improvements in evaluation practices are essential to ensuring that the
debate is well-informed and connected to actual impact.
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Box 1 | Strategies for achievingmore than in silico accuracy

– Access to high-resolution real-world data: Provide developers with
diverse, comprehensive clinical datasets to train models on actual
patient populations and scenarios.

– Systematic evaluation pipelines: Implement robust data pipelines to
continuously assess model performance and patient outcomes
across various demographic and clinical subgroups.

– Data shift monitoring: Develop dashboards to track changes in data
distributions over time, alerting to potential model drift and ensuring
ongoing relevance.

– Accountability frameworks: Establish clear responsibilities and
oversight mechanisms for all stakeholders involved in the AI model
lifecycle, from development to deployment.

– Mandatory silent evaluation periods: Require a phase of background

performance assessment in real clinical settings before active
deployment, focusing on safety, efficacy, and equity.

– Multidisciplinary collaboration: Engage healthcare professionals,
patients, and social scientists to define legitimate subgroup differ-
ences and ensure culturally competent AI systems.

– Iterative refinement process: Implement a feedback loop for con-
tinuous model improvement based on real-world performance data
and stakeholder input.

– Transparency in reporting: Mandate clear documentation of model
limitations, potential biases, and performance variations across dif-
ferent populations.
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