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INTRODUCTION

Time-to-event analysis refers to the analysis of the 
length of time until the occurrence of the event of interest. 
Time-to-event analysis is often colloquially referred to as 
survival analysis, although survival analysis in a narrow 
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sense specifically deals with survival versus death. Survival 
prediction (or, more accurately, time-to-event prediction) 
involves predicting the occurrence of events of interest 
that develop as time elapses. Various modeling methods 
are available for the prediction, ranging from conventional 
statistical approaches to deep learning [1]. Survival 
prediction is different from the diagnosis/prediction of 
static binary outcomes, such as the diagnosis of cancerous 
and benign lung nodules on chest radiographs [2]. For 
survival prediction, the follow-up length is considered. The 
same patient can be in a state of no events or have already 
had an event depending on the time of analysis, and the 
patients can be censored (explained later). Therefore, 
statistical methods to evaluate the performance of survival 
prediction models are different from those used for 
evaluating the performance of models for static diagnosis/
prediction. 

Korean J Radiol 2021;22(10):1697-1707

eISSN 2005-8330
https://doi.org/10.3348/kjr.2021.0223

Review Article | Technology, Experiment, and Physics

http://crossmark.crossref.org/dialog/?doi=10.3348/kjr.2021.0223&domain=pdf&date_stamp=2021-09-14


1698

Park et al.

https://doi.org/10.3348/kjr.2021.0223 kjronline.org

The recent introduction of various high-dimensional 
modeling approaches, such as radiomics and deep learning 
[3-7], in medical research has resulted in greater diversity 
in recent studies on survival prediction modeling compared 
with previous studies. The novelty of the modeling 
approaches and the unfamiliarity of researchers and 
practitioners with the model outputs may cause some 
confusion related to the evaluation of the performance 
of such models. This article intends to provide intuitive, 
conceptual, and practical explanations of the statistical 
methods for evaluating the performance of survival 
prediction models, with minimal usage of mathematical 
descriptions. It covers from conventional to deep learning 
methods, with a greater emphasis on recent modeling 
approaches. In line with this, this article addresses methods 
frequently appearing in medical research papers instead of 
reviewing an extensive list of related methods. To effectively 
explain the fundamental methodological concepts, we use 

a simplified division of survival (no events) and death 
(event), and we intentionally do not consider the detailed 
definitions of the events related to various oncologic 
survival endpoints [8]. The methodological concepts 
explained in this article generally apply to other time-to-
event predictions.

Basics of Survival Data and Survival Curve

Readers who are familiar with the concepts of censoring, 
survival probability, and the Kaplan-Meier curve may skip 
this section without loss of continuity. Table 1 shows the 
imaginary survival data obtained from 20 patients with 
malignancy, and Figure 1 shows the corresponding Kaplan-
Meier curve. The follow-up time was calculated from time 
zero, which is not a specified calendar date, but the time 
when each patient was admitted for observations after a 
certain diagnosis or treatment required for the study. In the 

Table 1. Imaginary Survival Data in 20 Patients with a Malignancy

Patient 
ID

Follow-Up 
Time (Day)

Outcome 
(1 = Death; 0 = Censored)

Survival Probability 
by the Kaplan-Meier Method

Cumulative Incidence of Death 
(1 - Survival Probability)

1   22 1
(20 - 1 death)_____________

20
 = 0.950 0.050

2   40 0 0.950 0.050

3   63 1 0.950 x 
(19 - 1 death - 1 censored)_________________________

(19 - 1 censored)
 = 0.897 0.103

4   75 1 0.897 x 
(17 - 1 death)______________

17
 = 0.844 0.156

5   82 0 0.844 0.156
6 105 0 0.844 0.156
7 125 0 0.844 0.156
8 132 0 0.844 0.156
9 140 0 0.844 0.156
10 148 0 0.844 0.156

11, 12 150 1 0.844 x 
(16 - 2 deaths - 6 censored )_________________________

(16 - 6 censored)
 = 0.676 0.324

13 157 0 0.676 0.324
14 162 0 0.676 0.324
15 165 0 0.676 0.324
16 170 0 0.676 0.324

17 175 1 0.676 x 
(8 - 1 death – 4 censored )_________________________

(8 - 4 censored)
 = 0.507 0.493

18 190 0 0.507 0.493
19 200 0 0.507 0.493
20 200 0 0.507 0.493
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hypothetical data, patient follow-ups were conducted for 
up to 200 days. Six patients died, and the time of death is 
known. The 14 patients who did not die were either those 
who were alive at the end of the study or those who were 
lost to follow-up at some time points. In either case, these 
14 patients are called censored subjects. Censoring poses a 
difficulty that is unique to survival analysis because exact 
survival times are unknown in censored patients, unlike 
in patients who have died [9]. Although we do not know 
what happened to the censored patients after the censored 
time, we know that the patients were alive at the time of 
censoring. Therefore, they still contribute useful information 
that should be included when analyzing survival. Ignoring 
the censored subjects would result in a loss of information 
when estimating the survival statistics.

A survival curve plots survival probability on the y-axis, 
also referred to as cumulative survival, which is the 
probability that a patient survives until a particular time 
as a function of follow-up time on the x-axis. Among the 
different methods, the Kaplan-Meier method is the most 
widely used in the medical field. The Kaplan-Meier method 
recalculates the survival probability every time a patient 
dies, which decreases as shown by a downward step in the 
curve (Fig. 1A). To calculate the survival probability on a 
particular day t, denoted as S(t), the fraction of patients 
alive at the end of the day out of the patients who were 
alive past the immediately previous time (t-1) for survival 
probability calculation is first obtained. This calculation 
excludes patients who were censored in between from both 
the numerator and denominator. For example, on day 63 
according to Table 1, 17 patients (‘19 patients who were 

alive past day 22’ - ‘1 patient who died on day 63’ - ‘1 
patient censored on day 40’) divided by 18 patients (‘19 
patients who were alive past day 22’ - ‘1 patient censored 
on day 40’) gives the fraction. Subsequently, the survival 
probability at the immediately previous time (t-1) is 
multiplied by the fraction to calculate S(t). For example, 
for day 63 in Table 1, 0.950 x (19 - 1 death - 1 censored)/
(19 - 1 censored) = 0.897. In other words, to calculate the 
survival probability at time t, the fractions calculated at 
each time point until time t are successively multiplied.

S(t) = S(t-1) x 

 # alive until (t-1) - # died between (t-1) and t - # censored between (t-1) and t____________________________________________________________________
                     # alive until (t-1) - # censored between (t-1) and t

This method is called the product-limit method. The 
censored subjects are included for the calculations before 
their censored time; thus, they contribute to the calculation 
of survival probability, although they are excluded after 
their censored time. A modified plot, using ‘1 - survival 
probability’ = cumulative incidence of death, can also be 
generated (Fig. 1B). 

Time-Independent and Time-Dependent 
Outputs from Survival Prediction Models

The outputs of survival prediction models vary because 
the modeling methods are diverse [1]. However, the outputs 
can be categorized into two large types: time-independent 
and time-dependent. Table 2 shows some typical model 
outputs and corresponding exemplary modeling methods. 

Fig. 1. Kaplan-Meier plots from the data in Table 1.
A. Kaplan-Meier curve showing survival probability, which is the probability that a patient survives until a particular time plotted on the y-axis 
as a function of the follow-up time on the x-axis. The censored patient is denoted by a downward blip. At the time a patient is censored, the 
survival curve does not dip down as no one has died. B. Kaplan-Meier curve showing the cumulative incidence of death, which is ‘1 - survival 
probability,’ on the y-axis as a function of follow-up time on the x-axis. The censored patient is denoted by an upward blip.
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The statistical methods used to evaluate the performance 
of the prediction models are different for the two model 
output types.

Time-Independent Model Output
The prediction model generates a single value as the 

output for each patient, regardless of the follow-up time. 
These outputs are scores that show the overall risk of death 
in a patient. Typically, patients assigned with greater values 
(or, conversely, smaller values depending on the specific 
final form the values are presented) are more likely to die 
early. Some examples are prediction models that use the 
log-risk score estimated by the Cox proportional hazards 
model (which is equivalent to the decision function in 
machine learning), such as DeepSurv and Lasso-Cox, and 
risk scores created using the rounded integer values of the 
regression coefficients (β) divided by the reference value 
(generally, the smallest β in the regression model) [10-
14]. DeepSurv is a deep learning model that uses the log-
risk function of the Cox proportional hazards model as the 
final output function [10]. Lasso-Cox is an L1-penalized 
estimation for a Cox model using the least absolute 
shrinkage and selection operator method and is frequently 
used for radiomic analysis [11,12].

Time-Dependent Model Output
The prediction model calculates the output value 

separately for each follow-up time for each patient. 
Therefore, one patient had multiple model output values, 
one for each follow-up time. A typical time-dependent 
output is the survival probability at time t, as explained 
earlier, denoted as S(t, X), where X = (X1, X2, …, Xp) 
indicates the patient characteristics that are input to the 
model. For example, Nnet-survival provides the predicted 
S(t, X) at multiple specified time points as the model 
output (Table 2) [15]. Another example is the random 
survival forest, which estimates the cumulative hazard 

function at time t, denoted as Λ(t, X) (Table 2) [16].

Conversion between the Two Types of Model Outputs
One type of model output can be converted to another 

under certain circumstances. The time-independent model 
outputs can be converted into time-dependent results. For 
example, the survival probability at time t, S(t, X), can be 
calculated from the log-risk scores if the baseline survival 
probability at time t is available (Table 2). It should be 
noted that estimating the baseline survival probability is 
a separate procedure from the one that obtains the time-
independent model outputs. Therefore, the methods of 
estimating the baseline survival probability (or baseline 
hazard) need to be explicitly specified when converting 
time-independent model outputs into time-dependent 
values for subsequent analyses, such as the conversion of 
time-independent outputs into survival probability and 
subsequent evaluation of calibration performance (which 
will be explained later).

Conversely, multiple time-dependent model outputs per 
patient may be reduced to a single time-independent value 
for analytical purposes. For example, the developers of the 
random survival forest suggested a mathematical method 
to combine its time-dependent multiple model output 
values (cumulative hazard) from multiple time points to 
create a time-independent result [16]. They then evaluated 
the model performance using Harrell’s C index, which is 
explained later in this article. Kim et al. [17] evaluated 
the performance of a deep learning model based on Nnet-
survival in predicting disease-free survival in patients 
with lung adenocarcinoma. Nnet-survival predicts survival 
probability (or, conversely, the cumulative incidence of 
events as ‘1 - survival probability’) at multiple time points 
[15]. Among the multiple sets of model output values, 
the investigators chose the cumulative incidence of the 
events at day 900 as the value that represented a patient 
as a whole for the prediction task and assessed the model 

Table 2. Common Outputs from Survival Prediction Models and Examples of Modeling Methods
Model Output Time Dependency Mathematical Notation Example Modeling Method

Log-risk score Time-independent

Table 2. Common Output from Survival Prediction Models and Examples of Modeling Methods 

Model Output Time Dependency Mathematical Notation* Example Modeling Method 

Log-risk score Time-independent ∑ 𝑖𝑖𝑋𝑋𝑖𝑖

p

𝑖𝑖=1
 DeepSurv, Lasso-Cox 

Survival probability Time-dependent 𝑆𝑆(𝑡𝑡, 𝑋𝑋) Nnet-survival 

Cumulative hazard Time-dependent Λ(𝑡𝑡, 𝑋𝑋) Random survival forest 

 is a regression coefficient in the Cox proportional hazard regression. Both Lasso-Cox and DeepSurv use Cox proportional hazard model for 

regression analysis. 𝑆𝑆(𝑡𝑡, 𝑋𝑋) = 𝑒𝑒−Λ(𝑡𝑡,𝑋𝑋). In the proportional hazard model, 𝑆𝑆(𝑡𝑡, 𝑋𝑋) = 𝑆𝑆0(𝑡𝑡)exp (∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖)p
𝑖𝑖=1 , where 𝑆𝑆0(𝑡𝑡) is baseline survival 

function that does not depend on patient characteristics 𝑋𝑋. *These are for a patient who has characteristics X = (X1, X2, …, Xp) at time t.  

  

  

DeepSurv, Lasso-Cox

Survival probability Time-dependent S(t, X) Nnet-survival
Cumulative hazard Time-dependent Λ(t, X) Random survival forest

The mathematical notations are for a patient who has characteristics X = (X1, X2, …, Xp) at time t. Both DeepSurv and Lasso-Cox 
use Cox proportional hazards model. βs are estimated coefficients in the Cox proportional hazards model. S(t, X) = e-Λ(t, X) in general. 
In proportional hazards model,  S(t, X) = S0(t)

Table 2. Common Output from Survival Prediction Models and Examples of Modeling Methods 

Model Output Time Dependency Mathematical Notation* Example Modeling Method 

Log-risk score Time-independent ∑ 𝑖𝑖𝑋𝑋𝑖𝑖

p

𝑖𝑖=1
 DeepSurv, Lasso-Cox 

Survival probability Time-dependent 𝑆𝑆(𝑡𝑡, 𝑋𝑋) Nnet-survival 

Cumulative hazard Time-dependent Λ(𝑡𝑡, 𝑋𝑋) Random survival forest 

 is a regression coefficient in the Cox proportional hazard regression. Both Lasso-Cox and DeepSurv use Cox proportional hazard model for 

regression analysis. 𝑆𝑆(𝑡𝑡, 𝑋𝑋) = 𝑒𝑒−Λ(𝑡𝑡,𝑋𝑋). In the proportional hazard model, 𝑆𝑆(𝑡𝑡, 𝑋𝑋) = 𝑆𝑆0(𝑡𝑡)exp (∑ 𝛽𝛽𝑖𝑖𝑋𝑋𝑖𝑖)p
𝑖𝑖=1 , where 𝑆𝑆0(𝑡𝑡) is baseline survival 

function that does not depend on patient characteristics 𝑋𝑋. *These are for a patient who has characteristics X = (X1, X2, …, Xp) at time t.  

  

  

, where S0(t) is baseline survival function that does not depend on patient 
characteristics X. 
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performance by analyzing it using Harrell’s C index. When 
reducing multiple time-dependent model output values to 
a single time-independent value, it is important to explain 
why such a reduction is reasonable mathematically and 
medically; thus, after the reduction, the reduced value is 
representative of the prediction task.

Statistical Methods for Evaluating 
Discrimination Performance of Survival 
Prediction Models

Discrimination performance refers to the ability of a 
model to predict patients who will die earlier (or develop 
an event earlier, more generally) and those who would die 
later. This is distinguished from the calibration performance 
(explained later). 

Method for Time-Independent Model Outputs: C Index
The C index (or statistic) is the most commonly used 

method. If a prediction model that assigns each patient 
a numerical value indicating the risk of death as a single 
model output is any good, the patient with the higher 
value should have a shorter time-to-death. The C index is 
a measure that shows how good a model is in this regard. 
Suppose that one selects two patients from the study 
sample and compares their model output values and the 
time-to-death. If a patient with a higher value has a shorter 
time-to-death than the other patient, the two patients are 
called a concordant pair. If a patient with a higher value 
has a longer time-to-death than the other patient, it creates 
a discordant pair. If this comparison is performed for all 
available patient pairs in the study sample, the proportion 
of concordant pairs out of all possible patient pairs can be 
obtained. A higher proportion of concordant pairs indicates 
better model performance. This is the fundamental concept 
of the C-index. 

There are a few different forms of C indices depending 
on how censored patients (i.e., those who have not died 
or were lost to follow-up) are considered and the exact 
definitions of concordant and discordant pairs [18]. Among 
these, Harrell’s C index seems to be the most commonly 
used in the medical literature (Fig. 2) [19]. Harrell’s C 
index discards the pairs that are incomparable because of 
censoring when computing the index value [1]. Because 
censored patients are largely discarded, Harrell’s C index is 
dependent on the study-specific censoring distribution. In 
comparison, censoring-independent methods such as Uno’s 

C and Efron’s C indices have also been proposed [18,20].
As the C index is a proportion, it can assume any value 

from 0 to 1. Values near 1 indicate high performance, 
and a value of 0.5 indicates that the discrimination 
performance of the model is the same as a coin flip (random 
concordance) in predicting which patient will live longer 
[21]. Values below 0.5 indicate that the model output is 
worse than a coin flip; therefore, concluding the opposite 
of what the model output indicates would be better for a 
more accurate prediction.

Method for Time-Dependent Model Outputs: 
Time-Dependent Receiver Operating Characteristic 
Analysis

Time-dependent receiver operating characteristic (ROC) 
analysis refers to an ROC analysis for any follow-up time 
point in the time-to-event data. The analysis generates 
an ROC curve and the area under the curve (AUC), also 
abbreviated as AUROC, separately for the specific time 
point(s). Therefore, the ROC curves and their AUC values 
are provided as a function of time, and hence the analysis 
is time-dependent. It typically consists of multiple ROC 
analyses, one performed for one of the various individual 
time points during the follow-up period (Fig. 3). However, 
time-dependent analysis can be performed for one particular 
time point during the follow-up if only that particular time 

Earlier

Follow-up time

a

2
3

4
6

b c d e

Later

Fig. 2. Depiction of Harrell’s C-index. 
Black and white circles, labeled as a through e, represent death (event) 
and censored patients at different follow-up times, respectively. In the 
example of five patients, 10 patient pairs exist. Among these, only six 
pairs, labeled 1 through 6, are comparable. When the score indicating 
the risk of death calculated by a prediction model for patient i is RDi:
• For pairs 2, 4, and 6, RDa > RDc, RDa > RDe, and RDc > RDe make 
concordant pairs, and RDa < RDc, RDa < RDe, and RDc < RDe are 
discordant pairs.
• For pairs 1, 3, and 5, RDa > RDb, RDa > RDd, and RDc > RDd make 
concordant pairs, and RDa < RDb, RDa < RDd, and RDc < RDd are 
discordant pairs.
• Pairs between b and c or e and between d and e (not marked in the 
figure) are not considered for computing Harrell’s C index, as we do 
not know for sure whose time-to-death is shorter.
• The pair between b and d (not marked in the figure) is also not 
considered for computing Harrell’s C index, as we do not know whose 
time-to-death is shorter.

5
1
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is of interest for research. Time-dependent ROC analysis has 
two notable differences from the conventional ROC analysis 
used for the discrimination of static binary outcomes 
[2,22,23]. First, the outcome state of a patient (i.e., 
event vs. no event) is not fixed and can change over time. 
Second, the data include censored subjects for whom the 
outcome state is unknown. There are multiple approaches 
to addressing these two issues. Thus, according to a 
systematic review, there are at least 18 different variations 
in estimating time-dependent ROC curves [24]. 

For the definition of event (case) and no events (control) 
at a particular follow-up time, Heagerty and Zheng [25] 
proposed three different approaches: 1) cumulative/dynamic 
(C/D), 2) incident/dynamic (I/D), and 3) incident/static (I/
S) definitions. Figure 4 illustrates the differences between 
the three approaches. C/D defines patients who died (i.e., 
having the event) between time zero and time t as cases 
and those who survived (i.e., event-free) at time t as 
controls for the ROC analysis at time t. I/D defines patients 
who died at the time of t as cases and those who survived 
at time t as controls. I/S defines patients who died at the 
time of t as cases and those who survived at time t and 
survived further until a pre-specified fixed time (denoted as 
t* in Fig. 4) as controls. According to a systematic review 
[24], the C/D definition was the dominant definition used 

in the published literature (adopted in 63% of the relevant 
methodology papers and 83% of the clinical research 
papers that applied the methodology). The I/S definition 
is used when a researcher attempts to distinguish between 
individuals who have an event at time t and those who are 
event-free after a sufficiently long follow-up time (t*), who 
are long-term survivors [24]. 

Censored subjects create another complexity for time-
dependent ROC analysis. If censored individuals are ignored, 
the estimation of sensitivity and specificity may be biased 
because the information from the individuals before 
censoring may contribute to the estimation [24]. Multiple 
methods to deal with censoring have been suggested, of 
which the details are beyond the scope of this article but 
can be found elsewhere [24].

As long as the above issues are addressed, the ROC 
analysis for any follow-up time is similar to the usual ROC 
analysis for static binary outcomes. An ROC curve can be 
generated by plotting the sensitivity on the y-axis and 
the false-positive rate (1 - specificity) on the x-axis while 
varying the threshold value for the model output for the 
time point, and its AUC can then be obtained (Fig. 3). The 
AUC indicates the model’s performance for discriminating 
the binary outcomes, which are death and survival (or event 
vs. no events, more generally) at a time point, with a value 
closer to 1 indicating better performance. 

The AUC for classifying static binary outcomes (i.e., 
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Fig. 3. An example of a set of time-dependent ROC curves. 
Time-dependent ROC curves for 3-year, 5-year, and 10-year follow-
up times are shown. Modified from Park et al. Korean J Radiol 
2021;22:213-224 [47]. AUC = area under the curve, ROC = receiver 
operating characteristic

Patient

0                                         t                  t*

Time

a

b

c

d

Event

Fig. 4. C/D, I/D, and I/S definitions. For a time-dependent ROC 
analysis at time t, C/D defines patients a and b, who encountered the 
event between time zero and time t as cases, and patients c and d, 
who were event-free at time t as controls. I/D defines patient b, who 
had the event at time t, as a case, and patients c and d, who were 
event-free at time t, as controls. I/S defines patient b, who had the 
event at time t as a case, and patient d, who was event-free at time 
t and until a pre-specified fixed time (denoted as t*), as controls. 
C/D = cumulative/dynamic, I/D = incident/dynamic, I/S = incident/
static, ROC = receiver operating characteristic
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the conventional ROC analysis) is sometimes referred to 
as the ‘C index’ in the literature [2,21,26]. It should be 
noted that the C index in this context does not refer to 
Harrell’s C or other related C indices explained earlier. It 
refers to static binary discrimination instead of survival 
prediction. The concept of the C index can be applied to 
both binary discriminations that involve follow-up time 
and static binary discrimination. When applied to static 
binary discrimination, the C index reduces to the proportion 
of patient pairs in which the case has a higher predicted 
model output value compared to the control out of all 
available patient pairs in the study sample. The C index 
value then becomes identical to the Wilcoxon-Mann-Whitney 
statistic, an empirical estimator of AUC for the ROC analysis 
[26]. Therefore, the AUC is referred to as the C index in the 
context of static binary discrimination, which should not be 
confused with the C index for evaluating the discrimination 
performance of survival prediction.

An integrated AUC (iAUC) is a mathematical integration 
of multiple time-dependent AUC values across the follow-
up period, and it can be expressed as follows: iAUC= 
∫AUC(t)·w(t)dt, where t = time and w = weight. Heagerty 
and Zheng [25] suggested that w(t) should be proportional 
to the marginal density of survival time multiplied by the 
survival function, which makes the iAUC equivalent to 
‘concordance,’ which is the probability that the order of 
deaths in randomly chosen two patients agrees with the 
order predicted by the model. In other words, iAUC is a 

weighted sum or a global average of time-dependent AUC 
values from time-dependent ROC analyses across the follow-
up duration. Slightly different methods of computing iAUC 
exist, and R packages, such as ‘survAUC’ and ‘risksetROC,’ are 
available to carry out this analysis [27,28]. ‘survAUC’ uses C/
D and I/D definitions, and ‘risksetROC’ uses I/D definition.

Statistical Methods for Evaluating Calibration 
Performance of Survival Prediction Models

The calibration performance describes the similarity 
of the probability values predicted by a model and the 
observed probabilities. Therefore, it applies to a model 
that specifically presents survival probability. As explained 
earlier (see the section entitled conversion between the 
two types of model outputs), not all survival prediction 
models directly estimate survival probability. Given that 
the probabilities are calculated separately for individual 
time points, the calibration performance is time-dependent. 
Similar to the time-dependent ROC analysis, the calibration 
performance is evaluated separately for each follow-up time. 
A good discrimination performance does not always ensure 
good calibration performance and vice versa.

 
Calibration Plot

A calibration plot is the primary graphical method for 
evaluating calibration performance (Fig. 5). In this plot, 
the x-axis is the probability predicted by the model, and 

Fig. 5. Examples of calibration plots. 
A. A schematic example of the calibration plot. Error bars represent 95% confidence intervals of the mean predicted probabilities. Reprinted from 
Park and Han. Radiology 2018;286:800-809 [2]. B. Calibration plots in a research study. Modified from Park et al. Korean J Radiol 2021;22:213-
224 [47]. Calibration plots for 3-year, 5-year, and 10-year follow-up times are shown. KM = Kaplan-Meier
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the y-axis is the observed real probability. Because real 
probability cannot be observed in a single subject (i.e., 
each subject can only have either the event or no event 
state), unlike the predicted probability that is assigned to 
each subject by a model, the subjects are first divided into 
subgroups by similar predicted probabilities, typically by 
deciles of the predicted probabilities (i.e., 10 subgroups) 
[2]. Then, a plot is drawn using the mean predicted 
probability in each decile as the x-coordinate and the real 
probability observed in the same decile as the corresponding 
y-coordinate. A perfect calibration should lie on the 45° 
line of the plot. The calibration slope and intercept can be 
obtained [14,29-31]. A slope close to 1 and an intercept 
close to 0 (i.e., the 45° line of the plot) indicates good 
calibration. If the sample size is small, splitting the 
subjects into many subgroups becomes difficult because 
some subgroups may contain only a few subjects. Thus, 
calibration analysis may not be robust. Therefore, using a 
large study sample and a sufficient number of subgroups 
is important for an adequate evaluation of the calibration 
performance. R packages are available for analysis, such as 
‘caret’ and ‘rms’ [32,33].

 
Statistical Tests and Measures

Various statistical measures and tests can also be used 
to describe the degree of calibration, in addition to the 
graphical method. Details on the specific statistical tests 
and measures are beyond the scope of this article but can 
be found elsewhere [29]. Statistical testing for calibration, 
such as the Hosmer-Lemeshow test, has pitfalls. Although 
an insignificant result of the test (i.e., with a p value ≥ 0.05, if 
0.05, is chosen as the criterion for statistical significance) 
is meant to indicate good calibration because the null 
hypothesis (H0) is good calibration, the p value can be ≥ 

0.05 merely due to low statistical power caused by a small 
sample [2,29]. These statistical tests and measures should 
be accompanied by a calibration plot instead of being 
presented alone.

Statistical Methods for Evaluating the Overall 
Performance of Survival Prediction Models

Brier Score
The Brier score is not a measure of either discrimination 

performance or calibration performance alone, but a 
measure of overall performance, which incorporates both 
the discrimination and calibration aspects of a model 
that predicts binary outcomes [29]. Therefore, it would be 
more appropriate to present both the Brier score and the 
calibration plot instead of presenting the Brier score as a 
substitute for the calibration plot. 

The Brier score is calculated as follows:

Brier score = 

6. Statistical Methods for Evaluating the Overall Performance of Survival 

Prediction Models 

6.1. Brier Score 

The Brier score is not a measure of either discrimination performance or calibration 

performance alone, but a measure of overall performance, which incorporates both the 

discrimination and calibration aspects of a model that predicts binary outcomes [29]. 

Therefore, it would be more appropriate to present both the Brier score and the calibration 

plot instead of presenting the Brier score as a substitute for the calibration plot.  

The Brier score is calculated as follows: 

Brier score = 1
𝑛𝑛 ∑ (𝑝𝑝𝑖𝑖 − 𝑜𝑜𝑖𝑖)2 𝑛𝑛

𝑖𝑖=1 , 

where n is the number of subjects, pi is the probability of event predicted by the model for the 

ith subject, and oi is the observed outcome in the ith subject (i.e., 1 for event or 0 for non-

event) [34]. Therefore, a score closer to 0 indicates a better predictive performance. The Brier 

score is calculated separately for the individual follow-up time points. The mathematical 

integration of multiple Brier score values obtained at all follow-up times, called the integrated 

Brier score, can then be calculated as an overall average performance measure for the 

prediction model for all times, similar to integrating time-dependent AUC values to generate 

an iAUC [35,36]. The integrated Brier score for a time interval is the average of the score 

values for the interval, which is the area under a curve that plots the score against the follow-

up time divided by the length of the time interval. The R package ‘pec’ is available for 

analysis [37]. 

 

6.2. Other Measures 

Several other measures exist for assessing the overall performance, such as Royston’s 

where n is the number of subjects, pi is the probability of 
event predicted by the model for the ith subject, and oi is 
the observed outcome in the ith subject (i.e., 1 for event 
or 0 for non-event) [34]. Therefore, a score closer to 0 
indicates a better predictive performance. The Brier score 
is calculated separately for each follow-up time point. The 
mathematical integration of multiple Brier score values 
obtained at all follow-up times, called the integrated 
Brier score, can then be calculated as an overall average 
performance measure for the prediction model for all 
times, similar to integrating time-dependent AUC values 
to generate an iAUC [35,36]. The integrated Brier score 

Table 3. Typical Statistical Measures and Methods for Evaluating the Performance of Survival Prediction Models

Aspect of 
Performance

Statistical Measure 
or Method

Nature of 
Model Output

Meaning

Discrimination

C index Time-independent Agreement between the predicted vs. the observed order 
  of the events

Time-dependent ROC AUC Time-dependent Probability that the model predicts a randomly chosen patient 
  who encountered the event before the specific time point 
  as having higher risk than a randomly chosen patient who did 
  not encounter the event by then

Calibration
Calibration plot 
  (with slope and intercept)

Event probability 
  (time-dependent)

Plot of the event probability values predicted by a model against 
  the observed event probabilities

Overall Brier score Time-dependent Mean squared error of the predicted risks

AUC = area under the curve, ROC = receiver operating characteristic
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for a time interval is the average of the score values for 
the interval, which is the area under a curve that plots 
the score against the follow-up time divided by the length 
of the time interval. The R package ‘pec’ is available for 
analysis [37].

Other Measures
Several other measures exist for assessing the overall 

performance, such as Royston’s D index, the modification 
of Nagelkerke’s R2 index by O’Quigley et al., and Kent and 
O’Quigley measure of dependence [38-42]. These methods 
also show robustness to censored data. Further details 
are beyond the scope of this article, and we recommend 
referring to the more specific literature for more information 
[38-42].

Statistical Methods for Comparing the 
Performance of Models

The difference between survival prediction models in the 
statistical measures discussed above can be tested using 
the 95% confidence interval (CI) of the difference obtained 
from the bootstrap samples in most cases [43-45]. If the 
95% CI of the difference does not include zero, it indicates 
that the p value is less than 0.05, and the difference is 
statistically significant. For the C index, a non-parametric 
method to compare two survival prediction models without 
having to use bootstrap samples has been developed and 
implemented in the R package called ‘compareC’ [46]. 

SUMMARY

In summary, survival prediction (or, more generally, 
time-to-event prediction) involves the prediction of the 
development of events of interest over time. The outputs 
of survival prediction models vary because the modeling 
methods are diverse, ranging from conventional statistical 
approaches to deep learning. However, the outputs can 
be categorized into two types: time-independent and 
time-dependent. The statistical methods used to evaluate 
the performance of the prediction models are different 
for the two model output types. To adequately evaluate 
the performance of a survival prediction model, both 
discrimination and calibration performance should be 
analyzed appropriately if applicable. The typical statistical 
measures and methods used are summarized in Table 3. For 
evaluating the discrimination performance, the C index or 

time-dependent ROC curve can be calculated depending 
on the time dependency of the model outputs. There are 
several variations in the C index and multiple methods of 
time-dependent ROC analysis. The calibration performance 
of a survival prediction model is visually assessed with 
a calibration plot and is further described using the 
calibration slope and intercept. Statistical testing for good 
calibration is commonly performed to obtain p values, but 
care should be taken due to its pitfalls. The Brier score is a 
measure of the overall performance that incorporates both 
discrimination and calibration. The number of publications 
on survival prediction models is increasing, and there is an 
increased interest in the methodology among readers. We 
believe this review article summarizes the basic statistical 
concepts for the evaluation of survival prediction models for 
those who want to develop or critically appraise them.
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