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Introduction

Highly mutable, infinitely malleable, and all-powerful: this is often the underlying assumption

for how spontaneous mutations fuel RNA virus adaptation. Though essential for adaptation,

mutations within RNA virus genomes can exact significant fitness costs. Without the capacity

to detect and repair mismatched or damaged nucleotides, viral RNA genomes are prone to

mutations introduced by mechanisms intrinsic and extrinsic to viral replication. However,

large population size, complementation, cellular chaperones, and recombination can buffer

viral populations against deleterious and lethal mutations. As such, viral replication is a rapid,

tenuous dance between the generation of sufficient genetic diversity on which natural selection

can act and the production of less-fit variants. The purpose of this article is not to describe

how RNA viruses evolve. Rather, it aims to provide an introduction to some of the mecha-

nisms by which mutations arise during RNA virus replication, as viral mutation rates are the

ultimate source of genetic diversity.

What is a mutation rate?

Storage and transmission of genetic information depends upon the correct formation of

hydrogen bonds between nucleobases. Mutations arise when mismatches are introduced dur-

ing RNA virus replication or as a result of postreplicative base modification. Host RNA-modi-

fying enzymes and nitration or oxidation of nucleobases can alter hydrogen bonding and

increase the probability of point mutations during subsequent rounds of replication. A muta-

tion rate describes the rate (not frequency) at which spontaneous mutations arise during a sin-

gle infection and reflects both cell- and virus-dependent mechanisms. Because most mutations

are likely lethal or deleterious [1,2], natural selection and genetic drift significantly impact the

observed frequency of mutations within a population (Fig 1). Excluding viroids, RNA viruses

replicate with the highest known mutation rates, which are estimated to range between 10−6

and 10−4 substitutions per nucleotide per cell infection [3]. Such high mutation rates enable

viral populations to rapidly generate genetic diversity and thus a multitude of phenotypes on

which adaptation by natural selection can occur. However, high mutation rates alone are not

sufficient to drive viral adaptation. As mentioned above, many mutations are deleterious and

decrease viral fitness [1,2]. How a given mutation affects viral fitness is also dependent upon

other characteristics of RNA virus populations, such as population size, genome size, and

genome complexity.
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Why is RNA virus replication more error-prone?

One of the main contributors to viral mutation rates is the intrinsic fidelity of the viral RNA-

dependent RNA polymerase (RdRp) or retroviral reverse transcriptase (RT). Replication fidel-

ity specifically describes how accurately an RNA or DNA genome is copied relative to the tem-

plate strand. Cellular DNA replication fidelity can be simplified to three major conceptual

steps: (i) nucleotide selection and extension by the polymerase; (ii) removal of mismatched

nucleotides by polymerase-associated 3´-to-5´ exonuclease (proofreading) activity; and (iii)

postreplicative repair of mismatched or damaged nucleotides. RNA viruses lack postreplicative

repair, and the key difference between the intrinsic fidelity of the viral RdRp or RT and most

replicative cellular DNA polymerases is the lack of associated proofreading activity [4]. Error-

prone DNA polymerases do exist, such as Y-family DNA polymerases, but these are mainly

involved in translesion synthesis [5]. Kinetic studies of the poliovirus RdRp (3Dpol) demon-

strate that RdRp replication fidelity is similar to DNA polymerases lacking exoribonuclease

(ExoN) activity [6]. Hence, RNA virus replication is error prone due to the lack of proofread-

ing activity, not because of an intrinsically lower fidelity polymerase. The one exception to this

rule are nidoviruses within the families Coronaviridae, Roniviridae, and Mesoniviridae, which

encode proofreading 3’-to-5’ exoribonuclease activity within a protein distinct from the viral

Fig 1. Large viral population sizes buffer against deleterious and lethal mutations. Mutations generated via virus- and cell-dependent

mechanisms can differentially impact viral fitness. Viruses are depicted as colored spheres corresponding to the presence of beneficial, neutral,

deleterious, or lethal mutations. Population size is depicted by the diagonal arrow and increasing square size. High mutation rates result in a

phenotypically diverse viral population (“mutation rate” panel), but the frequency at which these variants appear in a population (“mutation

frequency” panel) depends upon genetic drift and natural selection. As such, large population sizes are critical for buffering the viral population

against the effects of deleterious and lethal mutations. The ratios of beneficial, neutral, deleterious, and lethal mutations are based on data from

vesicular stomatitis virus (VSV) [1].

https://doi.org/10.1371/journal.ppat.1006254.g001

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1006254 April 27, 2017 2 / 6

https://doi.org/10.1371/journal.ppat.1006254.g001
https://doi.org/10.1371/journal.ppat.1006254


RdRp. Despite the lack of bona fide proofreading activity, removal of nucleotides from a

nascent RNA strand during viral replication is not unprecedented. Nucleoside analogs are a

class of antiviral compounds that mimic endogenous nucleotides upon phosphorylation and

can be removed by the RdRp via pyrophosphate- or nucleotide-dependent pyrophosphorolysis

[7]. Whether and to what extent the kinetic battle between pyrophosphorolysis and polymeri-

zation of endogenous cellular nucleotides impacts viral mutation rates is unknown.

How can replication fidelity be altered?

The intrinsic fidelity of viral RdRps is governed by multiple biochemical and biophysical

checkpoints, such as conformational changes, mediated by amino acids proximal to and distal

from the RdRp active site (reviewed in [8]). Studies with poliovirus 3Dpol provided the first

descriptions of high- and low-fidelity RdRp variants [9,10]. The high fidelity G64S 3Dpol vari-

ant was isolated following passage in the presence of the antiviral nucleoside analog ribavirin,

and resulted in a 3-fold increase in fidelity [9]. Though nonrecoverable as a recombinant virus,

a N297E substitution within 3Dpol decreased fidelity by 14-fold and provided early evidence

for the existence of a lower limit for replication fidelity [10]. Subsequent adaptive passage

experiments and structure-guided mutagenesis have identified numerous high- and low-fidel-

ity RdRps across multiple virus families (see [11] for a review). These RdRp variants most com-

monly have a 2-to-5-fold increase or decrease in replication fidelity and often are attenuated—

to varying degrees—in animal models of disease [11]. RdRps with a greater-than 3-fold reduc-

tion in fidelity are typically nonrecoverable, suggesting a lower limit for changes in replication

fidelity. No upperlimit for replication fidelity has been reported, but even a 3-fold increase in

poliovirus replication fidelity is attenuating due to restricted population diversity [12]. Though

the vast majority of altered-fidelity variants are RdRp mutants, other viral proteins are impli-

cated in replication fidelity. Inactivation of coronavirus ExoN activity results in a mutator phe-

notype [13], and mutations within coronavirus nonstructural protein 10 increase coronavirus

sensitivity to base and nucleoside analogs, suggestive of low fidelity [14]. Additional examples

such as the T248I mutation within the West Nile virus methyltransferase and the G641D

mutation within chikungunya virus nonstructural protein 2 (nsP2) can decrease and increase

fidelity, respectively [15,16]. Because viral RNA replication ultimately requires protein com-

plexes, mutational disruption of viral protein–protein interactions or alterations in replicase

protein stoichiometry could all presumably alter fidelity.

Which cellular factors contribute to viral mutation rates?

Because viruses are dependent upon the host cell, replication is inexorably linked to the cellular

microenvironment. As such, viral mutation rates reflect multiple events intrinsic and extrinsic

to viral replication. Vesicular stomatitis virus (VSV) replicates with a similar mutation rate

across multiple mammalian cell lines but has a lower mutation rate during replication in insect

cells [17]. Cucumber mosaic virus exhibits different mutational spectra following inoculation

of different plant hosts, suggesting that disparate intracellular conditions can modulate repli-

case fidelity and, presumably, the mutation rate [18]. A recent study with poliovirus indicates

that the RdRp is not the exclusive source of genetic variation within an RNA virus population

[19]; however, the exact mechanisms underlying these variations are unknown. Intracellular

nucleotide concentration, oxidation or nitration of nucleobases, and the presence of host

RNA-modifying enzymes are all potential mechanisms by which mutations could be intro-

duced (see [20] for an extensive review).

Altered concentrations of host ribonucleotide triphosphate (rNTP) pools could influence

viral mutation rates, as viruses exclusively use host nucleotides. Inhibitors of enzymes critical
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for de novo purine and pyrimidine biosynthesis, such as mycophenolic acid and brequinar,

can exert a potent antiviral effect during RNA virus replication [15,21]. Low-fidelity RNA

viruses are more sensitive to such inhibitors [22], whereas high fidelity RNA viruses are more

resistant [15]. Intracellular rNTP levels were not examined in either case. These compounds

have pleiotropic effects on both viral and cellular enzymes, making it difficult to identify the

precise mechanism(s) through which antiviral activity is exerted.

Both reactive oxygen and nitrogen species (ROS and RNS, respectively) can be generated

during viral infection and damage all classes of biomolecules, including nucleobases. Watson-

Crick base pairing is predicated on hydrogen bonding, and the oxidation or nitration of cellu-

lar nucleobases effectively modulates hydrogen bonding capacity. The resulting nucleobases,

such as 8-oxoguanine or 8-nitroguanine, can be mutagenic. Nitric oxide (NO), a physiologi-

cally relevant RNS produced during viral infection, is mutagenic during Sendai virus replica-

tion but is not antiviral [23]. Similar to RNS-induced mutagenesis, virus- and ethanol-induced

ROS increase viral mutations during hepatitis C replication [24]. Oxidation or nitration of

rNTP pools could impact viral mutation rates across multiple families of RNA viruses.

Whether this promotes viral adaptation and pathogenesis or is exclusively antiviral remains

unclear.

Host-encoded protein families such as apolipoprotein B mRNA-editing enzyme, catalytic

polypeptide-like (APOBEC) and adenosine deaminase acting on RNA (ADAR) can modify

viral nucleic acid. APOBEC3G is packaged into HIV-1 virions and deaminates cytosine bases

to uracil within viral complementary DNA (cDNA) [25]. This results in G-to-A base substitu-

tions and generates 98% of mutations within HIV-1 in vivo [26]. Though predominantly anti-

viral, APOBEC-mediated editing could also contribute to pathogenesis in situations in which

edited viruses are viable. Whereas APOBEC proteins modify DNA, ADAR proteins modify

genomic RNA or viral transcripts containing double-stranded RNA (dsRNA) structures.

ADAR deaminates adenine bases to inosine, resulting in A-to-G base substitutions, and occurs

across RNA virus families resulting in either pro- or antiviral effects [27]. In summary, multi-

ple mechanisms can impact viral mutation rates and whether and to what extent each is pro-

or antiviral is an important focus of future research.

Why is understanding viral mutation rates important?

Constant adaptive evolution is essential for RNA viruses to overcome intrinsic, innate, and

adaptive host immunity, antiviral therapeutics, and for intra- and inter-host transmission. As

the ultimate source of all genetic variation, mutations are key to this adaptive process. Without

this phenotypic diversity, adaptation via natural selection cannot occur. Elucidating how spon-

taneous mutations are generated during viral replication is critical for understanding virus

evolution. The capacity to generate RNA viruses with altered fidelity could yield new para-

digms for antiviral treatment and live-attenuated vaccine development, assuming sufficient

levels of attenuation can be achieved. Most of these studies are based on mutation frequency

assays, highlighting the need to determine mutation rates across virus families. Beyond these

human health applications, RNA viruses are highly tractable systems that could be used to

answer fundamental questions about evolutionary processes in cellular organisms.
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