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Abstract

Background: Vision and haptics are the key modalities by which humans perceive objects and interact with their
environment in a target-oriented manner. Both modalities share higher-order neural resources and the mechanisms
required for object exploration. Compared to vision, the understanding of haptic information processing is still rudimentary.
Although it is known that haptic performance, similar to many other skills, decreases in old age, the underlying mechanisms
are not clear. It is yet to be determined to what extent this decrease is related to the age-related loss of tactile acuity or
cognitive capacity.

Methodology/Principal Findings: We investigated the haptic performance of 81 older adults by means of a cross-modal
object recognition test. Additionally, we assessed the subjects’ tactile acuity with an apparatus-based two-point
discrimination paradigm, and their cognitive performance by means of the non-verbal Raven-Standard-Progressive matrices
test. As expected, there was a significant age-related decline in performance on all 3 tests. With the exception of tactile
acuity, this decline was found to be more distinct in female subjects. Correlation analyses revealed a strong relationship
between haptic and cognitive performance for all subjects. Tactile performance, on the contrary, was only significantly
correlated with male subjects’ haptic performance.

Conclusions: Haptic object recognition is a demanding task in old age, especially when it comes to the exploration of
complex, unfamiliar objects. Our data support a disproportionately higher impact of cognition on haptic performance as
compared to the impact of tactile acuity. Our findings are in agreement with studies reporting an increase in co-variation
between individual sensory performance and general cognitive functioning in old age.
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Introduction

Haptic perception
Haptic object recognition is perfectly performed, countless

times every day, as healthy adults can identify common and

usual objects within 2–3 seconds with almost 100% accuracy [1].

Haptic perception is a process mediated by cutaneous and

kinesthetic afferent subsystems [2]. A large number of mecha-

noreceptors and thermoreceptors embedded in the skin as well as

mechanoreceptors in muscles, tendons, and articulated joints

provide the information necessary for the active exploration of

objects and surface properties [3]. This manual exploration

process is based on a number of so-called exploratory

procedures, i.e., highly stereotypical hand-movements, which

are associated with certain object properties [4,1]. Subjects who

must recognize an object first employ a fast general exploratory

procedure that provides an overview of multiple dimensions of

the object. This overview is then used to decide which more

specific exploratory procedures should be applied next in order

to identify the object. The succession of selection and application

of exploratory procedures will be repeated until the object is

recognized [5].

Although vision is the primary sensory modality used by

humans to explore and identify objects in their environment,

haptic perception often provides the same information about

certain characteristics of an object [6], as both modalities are

based on the extraction of basic features such as the spatial

arrangement of contours [7]. Macro geometric features such as

object orientation, shape, and size, are predominantly processed

by the visual system, even during haptic object exploration [8].

Visual and haptic object exploration are similarly impaired by

changes in object characteristics such as orientation [9], size

[10,11], and surface properties [12]. There is much converging

evidence showing broad similarities between visual object

recognition and haptic object recognition, which are a conse-

quence of substantial overlaps in the higher-order neural resources
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required for both types of perception [7,13–15]. As there is only a

relatively small body of literature investigating age-related changes

in haptics [16,17], we aimed to investigate the influence of reduced

tactile acuity and cognitive capacity on the haptic performance of

older adults.

Age-related factors contributing to the loss of tactile
acuity and cognition

Physiological brain aging is characterized by a number of

alterations that provoke age-dependent decline of sensory

processing, motor performance, and cognitive function [18–20].

Age-related changes develop at all stages of the somatosensory

processing pathway. Skin conformance is altered [21,22] and the

density of Meissner’s and Pacinian corpuscles decreases in old age

[23–25], while Merkel-neurite complexes might possibly be less

affected [23,25]. Additionally, nerve conduction velocity and

sensory nerve action potentials slow down [26–28]. These changes

are thought to be due to an age-related reduction in the number

and density of myelinated peripheral nerve fibers, as well as a

decrease in thickness of the myelin in the remaining fibers [29,30].

Furthermore, there is evidence of substantial decline in gray

matter density of the aged human brain [31,32]. Along with

neuronal apoptosis and the loss of synaptic contacts described in

some regions of the brain [33–35], as the brain ages, the

concentrations of acetylcholine, noradrenaline, dopamine, and

GABA and NMDA receptors [36] decrease. These changes, along

with altered functional activation patterns [37], dramatically affect

somatosensory information processing as has been repeatedly

demonstrated for tactile discrimination performance [37–45].

Experiments in adults revealed that adding constraints to the

manual exploration process, i.e. reducing cutaneous information

(spatial, temporal and thermal) or kinesthetic information (spatial

and temporal) significantly impairs haptic perception [46]. These

experiments resemble to some extent conditions arising during the

human aging process thereby highlighting the dramatic impact of

age on haptic performance.

Cognitive aging manifests as a mild age-related decline in

cognitive functions with highly individual changes in general

cognitive capacity, as well as domain-specific declines in fluid

reasoning, mental processing speed, episodic memory, and spatial

ability [47–49]. The mechanisms that are thought to underlie

these decreases fall into 2 general categories [19]. On the one

hand, one global undifferentiated mechanism, such as cognitive

processing-speed, could account for the loss of performance [50].

On the other hand, the age-related decline might be caused by

specific cognitive mechanisms, such as executive functioning,

which is used in service of many cognitive tasks, occurring in

everyday life or work related tasks [51].

Interdependence between sensorimotor functioning and
cognition in later life

The majority of investigations into age-related decline of

sensory, sensorimotor, and cognitive functions have looked at

the components individually, but it is generally accepted that the

loss of functional integrity between the domains is functionally

coupled [52,53]. In recent years, a number of studies have

reported an increase in co-variation or interdependence between

sensory and cognitive functions in old age [54,55,52,56,57]. Data

from large-scale cross-sectional and longitudinal studies such as the

Berlin aging study (BASE, [58]) showed strong relationships

between intellectual and sensory functioning in old age [56].

Experimental studies investigating the relationship between

sensory functions and cognition used either a simulated loss of

sensation to explore the effects on cognitive function [59–61], or

cognitive load manipulations on sensorimotor performance

[62,63]. In general, both interventions affected older adults’

performance more than that of younger adults. Some authors

hypothesized that sensory and sensorimotor declines may precede

and predict cognitive decline [64,65], whereas others refrained

from assigning priority to any of the 3 domains, but favored either

a common cause affecting all functions [52], an increase in cross-

domain resource competition, or a combination of both [66].

Particularly in old age, sensory, sensorimotor, and cognitive

performance determines the extent to which a mobile and

independent life is possible [53]. For this reason, the investigation

of the development of these processes into late adulthood is not

only of general interest, but offers a direct link to gerontological

practice [18,19]. In the present study, we investigated the extent to

which the age-related decline in haptic performance is related to

the individual loss of tactile acuity and cognitive capacity.

Results

Haptic performance
The haptic performance of all subjects declined with increasing

age (Pearson correlation, N = 78, r = 0.479, p#0.001), with the

decline being stronger in female subjects (Pearson correlation,

N = 47, r = 0.585, p#0.001) as compared to male subjects

(Pearson correlation, N = 31, r = 0.417, p = 0.010) (fig. 1A). We

found a significant interaction of the subjects’ age and gender with

their haptic performance (AGE*GENDER: F(1,31) = 17.535;

p#0.001) indicating a stronger age-related increase of the number

of errors in the cross-modal haptic task for female subjects

(fig. 1B).

Tactile performance
Tactile performance, as assessed by the two-point discrimina-

tion test, declined with increasing age (Pearson correlation, N = 79,

r = 0.430, p#0.001) in both male (Pearson correlation, N = 31,

r = 0.469, p = 0.004) and female subjects (Pearson correlation,

N = 48, r = 0.408, p = 0.002) (fig. 2A). For tactile performance, we

found no interaction of the subjects’ age and gender (AGE*GEN-

DER: F(1,32) = 2.942; p = 0.096) indicating almost the same degree

of age-related decline in tactile performance for both male and

female subjects (fig. 2B).

Cognitive performance
The subjects’ cognitive performance was rated based on the

results of the Raven Standard Progressive Matrices (RSPM) test.

The percentage of correct answers declined with increasing age

(Pearson correlation, N = 81, r = 20.550, p#0.001) for both male

(Pearson correlation, N = 32, r = 20.580, p#0.001) and female

subjects (Pearson correlation, N = 49, r = 20.582, p#0.001)

(fig. 3A). The investigation of the subjects’ performance revealed

a significant interaction for age and gender (AGE*GENDER:

F(1,33) = 22.307; p#0.001) indicating a stronger age-related decline

of cognitive performance in female subjects (fig. 3B)

Correlation of haptic, tactile, and cognitive performance
Second order partial correlations controlling for the age of

subjects were used to investigate the relationships between tactile,

haptic, and cognitive performance. Regarding all subjects’ tactile

and haptic performance we found no significant correlation

(partial correlation corrected for AGE, N = 74, r = 0.133,

p = 0.126). In contrast, this correlation was found to be significant

in the male subpopulation (partial correlation corrected for AGE,

N = 28, r = 0.342, p = 0.032) but not of female subjects (partial

Haptic Performance in Later Life

PLoS ONE | www.plosone.org 2 January 2012 | Volume 7 | Issue 1 | e30420



correlation corrected for AGE, N = 43, r = 0.063, p = 0.341)

(fig. 4A). Investigation of the subjects’ cognitive and haptic

performance revealed a significant correlation between these 2

variables (partial correlation corrected for AGE, N = 74,

r = 20.348, p = 0.001). This correlation was also found to be

significant in subset of male subjects (partial correlation corrected

for AGE, N = 28, r = 20.335, p = 0.036), but not among the

female subjects (partial correlation corrected for AGE, N = 43,

r = 20.210, p = 0.083) (fig. 4B). Finally, we found a significant

correlation between the subjects’ cognitive performance and tactile

acuity as assessed by the two-point discrimination test (partial

correlation corrected for AGE, N = 76, r = 20.198, p = 0.041),

which was not found in the subset of either the male subpopulation

(partial correlation for AGE, N = 28, r = 20.302, p = 0.052) or the

female subpopulation (partial correlation for AGE, N = 45,

r = 20.153, p = 0.153) (fig. 4C).

Comparing the correlation coefficients of haptic and tactile data

(N = 74, r = 0.133; fig. 4A) with haptic and cognitive data (N = 74,

r = 20.348, Fig. 4B) we found a significant difference (Fisher-Z-

transformation, p = 0.003) indicating a stronger relationship

between haptic performance and cognition as compared to haptic

performance and tactile acuity. The comparison of the correlation

coefficients of haptic and cognitive data (N = 74, r = 20.348,

fig. 4B) with tactile and cognitive data (N = 76, r = 20.198,

fig. 4C) revealed no significant differences (Fisher-Z-transforma-

tion, p = 0.330).

Figure 1. Development of haptic performance in later life. A. Individual haptic performance (i.e., number of errors) is depicted for male (blue
squares, N = 31) and female (red squares, N = 47) subjects. Trend lines are inserted for male (solid blue), female (solid red), and all subjects (dashed
black). Haptic performance declined with increasing age (Pearson correlation, N = 78, r = 0.479, p#0.001). B. Group data for haptic performance (i.e.,
number of errors) for younger adults (left squares; females: N = 29, 60.2467.07 years; males: N = 15, 58.5367.62 years) and older adults (right squares;
females: N = 20, 76.9565.94 years; males: N = 17, 75.7666.71 years). There was a significant interaction of the subjects’ age and gender with their
haptic performance (AGE*GENDER: F(1,31) = 17.535; p#0.001). Black bars indicate SEM.
doi:10.1371/journal.pone.0030420.g001
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Discussion

It has been known for some time that human haptic performance

decreases as a function of age [16], but less is known about the

neural mechanisms underlying these changes. In a study about

haptic performance of adults under conditions were finger

movements were restricted, or subjects had to wear gloves, the

speed of object identification was more affected than accuracy of

identification [46]. In contrast, we have shown recently that the

aging process affects both, the speed and the accuracy of haptic

identification of unfamiliar objects [44,43] (cf. fig 4a in [44]). In the

present study, we investigated age-related changes in haptic

performance by combining a haptic task with tests of tactile acuity

and of cognitive performance, as the latter abilities are crucial

prerequisites for haptic object exploration. Confirming previous

findings [45,44,43], we found a significant age-related decline in

both tactile and haptic performance. Furthermore, the RSPM test

confirmed common knowledge of an age-related decline in

cognitive abilities in old age [18,19]. Correlational analyses revealed

a strong relationship between individual cognitive and haptic

performance, but only relatively minor relationships between

individual tactile and haptic performance, as in the present study

only data from male subjects reached significance criteria. In female

subjects, who generally showed a stronger decline in haptic and

cognitive performance, no relationship between tactile acuity and

haptic performance was found. Our results indicate that the well-

documented loss of tactile acuity in old age [45,67,68,43,

44,37,69,38–41] might not be the primary cause of the age-related

Figure 2. Development of tactile performance in later life. A. Individual two-point discrimination thresholds (i.e., inverse tactile acuity) are
depicted for male (blue squares, N = 31) and female (red squares, N = 48) subjects. Trend lines are inserted for male (solid blue), female (solid red), and
all subjects (dashed black). Tactile acuity declined with increasing age (Pearson correlation, N = 79, r = 0.430, p#0.001). B. Group data for tactile
performance (i.e., two-point discrimination threshold) for younger adults (left squares; females: N = 29, 60.2467.07 years; males: N = 15, 58.5367.62
years) and older adults (right squares; females: N = 20, 76.9565.94 years; males: N = 17, 75.7666.71 years). There was no significant interaction of the
subjects’ age and gender with their tactile acuity (AGE*GENDER: F(1,31) = 17.535; p#0.001). Black bars indicate SEM.
doi:10.1371/journal.pone.0030420.g002
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decline in haptic performance in later life. Instead, intellectual

functioning seems to be more predictive than the sensory measure.

This finding has strong implications for the view that aging is

associated with greater correlations between intellectual status and

sensorimotor performance [54,55]. Generally, the influences of

healthy aging on haptic performance are hard to reveal as they may

vary depending on the experimental set-up that is used (pure haptic

or cross-modal testing), the objects used (common or unfamiliar,

cubic or natural shape), and other boundary conditions (same/

different or matching task; time constraints).

Tactile acuity as a prerequisite for haptics
From previous work in older adults, we know that human

tactile, haptic, and fine-motor performance decreases as a function

of age, but can be restored to some extent by physical intervention

programs [70,71], or by focused peripheral stimulation paradigms

[44,43,45,72]. Under such conditions, the stimulation-based

improvement of tactile acuity was shown to support exploratory

procedures in haptic object exploration and object manipulation

in fine-motor tests [43,44]. From experiments in healthy adults

[73] older adults [38] and patients suffering from impaired tactile

perception following central [74] or peripheral neurological

disorders [75], it is known that tactile acuity is indispensable for

object manipulation, as well as for object recognition. Dellon and

Kallman [75] investigated functional sensation in the hands of

patients with functional limitations of the median nerve, and found

that the moving two-point discrimination test best correlated with

the patients’ ability to identify objects using their fingertips.

Figure 3. Development of cognitive performance in later life. A. Individual cognitive performance scores assessed with the RSPM test (i.e.,
percent correct answers) are depicted for male (blue squares, N = 32) and female (red squares, N = 49) subjects. Trend lines are shown for male (solid blue),
female (solid red), and all subjects (dashed black). Cognitive performance declined with increasing age (Pearson correlation, N = 81, r = 20.550, p#0.001).
B. Group data for cognitive performance (RSPM score, percentage correct) for younger adults (left squares; female: N = 29, 60.2467.07 years; male: N = 15,
58.5367.62 years) and older adults (right squares; female: N = 20, 76.9565.94 years; male: N = 17, 75.7666.71 years). There was no significant interaction of
the subjects’ age and gender with their cognitive performance (AGE*GENDER: F(1,31) = 17.535; p#0.001). Black bars indicate SEM.
doi:10.1371/journal.pone.0030420.g003
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Furthermore, the time required for object recognition correlated

best with the static two-point discrimination test [75]. From our

own experiments, we know that the two-point discrimination

paradigm provides very accurate and reliable data for perfor-

mance on stimuli discrimination tasks [45,67,76–78,44,37,43]. In

a recent study, Legge and coworkers investigated tactile acuity

over the entire human lifespan in sighted and blind individuals by

means of newly designed tactile-acuity charts that require active

exploration [79]. The authors demonstrated good quantitative

agreement between their data acquired in sighted subjects and the

data of other studies, thereby providing a degree of validity for

their measurement technique. Further experiments are required to

investigate the relationship between data acquired by common

measures of tactile acuity (i.e., the grating orientation test or the

two-point discrimination test), haptic object exploration perfor-

mance and the abovementioned new tactile acuity charts.

Gender-specific differences in haptic performance
While our results revealed a poor haptic performance of female

subjects as compared to male subjects, other studies reported that

woman at all age consistently outperformed men in fine dexterity

tasks [80,81]. Kleinman and colleagues, who performed an early

investigation into haptic exploration performance in young,

middle-aged, and elderly adults, reasoned that the documented

loss of performance in old age is due to less logical, systematic, and

detailed exploratory procedures that were applied by elderly

subjects [16]. As such, older subjects, when asked to identify

geometric objects in a purely haptic experiment, seemed to use

inappropriate exploratory procedures, which harmed their object

recognition. This finding was supported by self-reports from a

number of female subjects in the present study, who indicated that

they were hardly able to match the haptic impression with the

respective visual perception, because they did not know which

exploratory procedure to apply. Although all subjects were

informed about object-related structural cues (e.g., nubby upper

side and plain lower side) and the constructional properties of the

used objects (that were additionally highlighted in terms of color),

female subjects often failed to identify the explored objects. Male

subjects, even those who showed relatively poor haptic perfor-

mance, did not indicate any problems with handling of the objects.

Our findings are in line with neuropsychological research on

visuospatial tasks, particularly those that require mental rotation of

objects, as extremely consistent gender differences have been

found in these studies [82,83]. Mental rotation involves the active

manipulation of objects in the mind, a process that is based on

visuo-spatial memory functions [84], i.e., shape perception, spatial

reasoning, and problem solving [85]. Several studies have found

males to perform better than females in mental rotation tasks

[86,87] although it remains unclear which specific biological or

environmental factors cause women’s poorer performance on such

tasks [83]. The demonstrated significant correlation between

haptic performance and general intelligence, as assessed by the

RSPM test, is also supported by a positive correlation between

visuospatial and mathematical abilities with respect to gender

differences [88,89]. Besides evolutionary and hormonal mecha-

nisms contributing to the reported robust gender-specific differ-

ences, one has also to consider the effects of gender role

socialization on spatial ability [90].

From our experiment, we conclude that comprehension of the

geometric structure of an object is the first requirement for haptic

exploration. This process seems to be a demanding intellectual

task in old age, with subjects with high RSPM-scores faring the

best. Specifically, it is necessary to comprehend the global

geometric structure of the visually presented sample objects, as

well as the structure of the haptically explored object. Mental

rotation skills are required throughout the process, as the subjects

have to align the explored object in their hand relative to the

visually presented objects. Once the alignment is completed, the

tactile acuity of the fingertips, as assessed by the two-point

discrimination test, seems to be the secondary requirement for

successful execution of the task. The subjects have to check for

characteristic details of the explored object in their hand and

assign it to one of the presented objects. This assumption is

supported by data from the correlation analyses, where only the

data from male subjects, who performed better on average,

showed a significant relationship between tactile acuity and haptic

performance. In female subjects, who seemed to have more

problems with the comprehension of global object structure and

the alignment of object orientation, tactile acuity seems to play a

subordinate role. It is an interesting remaining question in how far

the observed gender differences in haptic identification of

unfamiliar objects might to some extend be caused by the fact

that we used arbitrary instead of familiar objects. It is conceivable

that male subjects, who are typically more frequently exposed to

manual tasks associated with manipulating tools or office objects

either during work or free time, which might have translated into

an advantage performing the haptic task. In fact, it was shown

recently that object familiarity modulates the relationship between

visual object imagery and haptic shape perception [91]. Accord-

ingly, further studies are needed using familiar objects, although

this poses problems because most familiar objects are heavily

overlearned.

Our findings are partially in line with the findings of Norman

and colleagues, who compared pure haptic, pure visual and cross-

modal object recognition in younger and older adults [17]. In a

same/different shape discrimination task, they found a strong age-

effect for the cross-modal haptic performance, which was

independent of the subjects’ individual tactile acuity, again

assessed with a two-point discrimination test [17]. These

observations were reproduced in a more recent work of the

authors investigating age-related changes in the haptic perception

of three-dimensional surface shape [69]. The absence of

correlation between tactile acuity and haptic performance in these

studies might be attributable in part to the objects used, that were

larger than the objects used in our current experiment.

Furthermore, it is possible that proprioceptive functions contribute

to the haptic exploration of larger objects (e.g. bell peppers [17]) or

single object features (e.g. surface shape [69]). Using a proprio-

ceptive hand function test recently developed by our group (to be

published), we found that proprioceptive functions of the human

hand are subject to only minimal age-related changes as compared

to the dramatic changes in tactile acuity [45,67,68,43,44,37–41].

The unfamiliar, cubic objects used in our study require tactile

acuity to perceive the different surface textures of the upper and

lower sides (see methods section), and to align the object in the

hand accordingly for exploration. Furthermore, some construc-

Figure 4. Correlation of haptic, tactile, and cognitive performance. Second order partial correlations controlling for the age of all subjects
were calculated. There was no significant correlation between tactile and haptic performance of the subjects (A; N = 74, r = 0.133, p = 0.126), but there
was a correlation between haptic and cognitive performance (B; N = 74, r = 20.348, p = 0.001) and between tactile acuity and cognitive performance
(C; N = 76, r = 20.198, p = 0.041).
doi:10.1371/journal.pone.0030420.g004
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tional differences between the 5 classes of objects used are based

on tiny details in the lower centimeter-range, which require at least

basic tactile acuity.

Sensory-cognitive link in later life
The results reported herein support recent findings of a sensory-

cognitive link found in the auditory, visual, and tactile domains in

healthy aging adults [66,92,53]. Furthermore, our findings are in

line with studies that investigated task complexity and the sensory-

cognitive link in old age, as it is commonly found that more

cognitively demanding tasks correlate more highly with measures

of intelligence (‘‘g’’), than do tasks measuring simple sensory

detection thresholds [93–95]. In the above-mentioned domains,

basic measures of absolute sensory thresholds, such as pressure

threshold sensitivity, hardly rely on cognitive resources. However,

more cognitively demanding processes, such as the current haptic

task, which involves processes of comparison, judgment, and

mental rotation, show higher correlations with intelligence (‘‘g’’)

[92].

Conclusion
We have demonstrated that the age-related decline of cross-

modal haptic performance, which occurs in late adulthood, is

primarily related to cognitive functioning, rather than to tactile

acuity. The results presented here support the view that the haptic

object exploration process is structured in 2 phases: a first phase

where a global understanding of the explored object is built up

(‘‘general exploratory procedure,’’ [5]) and a second phase where

specific object details are explored (‘‘specific exploratory proce-

dure,’’ [5]). Tactile acuity seems to be a predictor of haptic

performance, but only if the cognitively demanding first phase is

completed successfully.

Materials and Methods

Subjects
We tested 81 right handed volunteers aged 45 to 94 years (32

males, mean age 67.69611.22 years; 49 females, mean age

67.06610.58 years; t-test: p = 0.800). In all subjects, the

educational level (number of school years and training) was

balanced (males 12.0862.12 years; females 11.2062.52; t-test:

p = 0.109). All subjects were neurologically healthy, as assessed by

a neurologist. Individuals with polyneuropathy, peripheral nerve

lesions, carpal tunnel syndrome, or other neurological disorders

were excluded from the study. Eligibility criteria were lucidity,

independence in activities of daily living, absence of motor

handicaps such as functional impairments due to arthritis, or other

causes of joint immobility. Furthermore, medication with central

nervous effects in subjects’ present or recent reported history (past

5 years) was a criterion for exclusion. Tactile sensitivity of the

subjects’ hands was checked prior to the experiments as a check for

peripheral neuropathies [44]. Additionally, basic cognitive abilities

were assessed using the ‘‘Mini Mental State Examination’’ [96].

Subjects with a score lower than 28 points were excluded. This

study was approved by the Ethics Committee of the Ruhr-

University of Bochum, and all subjects provided written informed

consent before participating.

Cross-modal haptic object recognition test
The custom-made test consisted of 5 different sets of unfamiliar

objects made from LEGOTM bricks [44,43]. The use of

unfamiliar, instead of common objects, prevents the influence of

prior knowledge of structural information, and creates a

comparable initial test-situation for all subjects. Each object was

constructed as a cuboid (1.5*2.7*4.7 cm) with an individual

number and position of rectangular structures on the sides. These

constructional differences were highlighted in terms of color. All

objects had a smooth surface structure on the sides, a plain bottom

side, and a nubby upper side that could be used as tactile cue for

orientation during haptic exploration (fig. 5). To prevent the

objects from falling apart, all components were glued together.

One sample of each set was placed on a desk in front of the

subject. The viewing conditions were full-cue, and the objects were

binocularly viewed by observers under ample lighting [17]. In a

familiarization phase, individual haptic and visual exploration of

the objects was allowed. Afterwards, a total of 17 objects, hidden in

a small fabric sac (20 * 30 cm), were explored by haptic perception

only. For this aim, participants were asked to hold the sac with

their left hand underneath the desk, while explorative movements

were exclusively performed with the right hand. Each object had

to be allocated to one of the visible samples on the desk, by

removing it from the sac and placing it in a container behind the

specific sample. No visual verification was permitted. The subject

was instructed to perform as quickly and as accurately as possible

(time limit of 4 minutes per session; remaining objects were

considered to be errors). After a familiarization training (3

consecutive sessions), all subjects indicated good comprehension

of the test. The estimation of individual performance was done by

counting the number of errors occurring in the fourth test session.

Two-point discrimination test
Spatial two-point discrimination thresholds were assessed on the

tips of all fingers of the right hand using the method of constant

stimuli as described previously [44,45,97,77,76,78]. We tested 7

Figure 5. Objects used for the haptic object recognition test.
Five groups of unfamiliar objects made from LEGOTM bricks were used
for the haptic object recognition test (upper row of photo: view from
the backside; lower row of photo: view from the front). In each group,
the objects consisted of a cuboid (1.5 * 2.7 * 4.7 cm) with a specific
number and position of rectangular structures (each 1.6 * 0.8 * 1 cm (4
in group a; 3 in group b and c, 2 in group d and e)) on the sides (marked
in red, c.f. schematic drawing). A total of 17 objects (3 * a, 5 * b, 4 * c, 3 *
d, 2 * e) were used for the test.
doi:10.1371/journal.pone.0030420.g005
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pairs of brass needles; in addition, zero distance was tested with a

single needle. To overcome problems in the use of two-point

measurements associated with hand-held probes, we used a

specifically designed apparatus that secures a standardized form of

testing (see figures in [45,67]). The apparatus allowed rapid

switching between pairs of needles featuring different separations

or 1 single needle (control condition). All tactile stimuli were applied

to a fixed position on the skin of the fingertips for approximately 1 s.

To account for the age-related decline in tactile acuity

[41,38,44,45,67], we used different settings of the two-point

discrimination set-up for subjects below 60 years of age (1.0, 1.4,

1.8, 2.2, 2.6, 3.2, and 4.0) and subjects aged 60 years and older (1.5,

2.3, 3.1, 3.9, 4.7, 5.6, and 7.0 mm). The diameter of the needles was

0.7 mm, and the diameter of the blunt endings was 200 mm.

Application force was approximately 150 to 200 mN. Fixation of

the tested fingers prevented explorative finger movements. All 8 test

conditions were presented 8 times in a randomized order, resulting

in a total of 64 tests per session. The subjects, who were not

informed of the ratio of needle-pairs to single needles (i.e., 7:1), had

to decide immediately whether they had the sensation of 1 or 2

needles. They were instructed to classify the percept of a single

needle or doubtful stimuli as ‘‘1’’ but the distinct percept of 2 stimuli

as ‘‘2.’’ The summed responses were plotted against the needle-

distances, resulting in a psychometric function, which was fitted with

a binary logistic regression (SPSS; SPSS Inc., USA). Threshold was

taken from the fit where 50% correct responses were reached (fig. 6).

All subjects had to attend 2 training sessions to get used to the testing

procedure before the assessment was started in the third session. All

subjects who participated in the present study knew the two-point

discrimination test from previous studies.

Raven Standard Progressive Matrices test
The Raven Standard Progressive Matrices (RSPM) test is

among the most widely used and researched non-verbal tests of

intelligence [98]. Compared to other tests, RSPM scores are

recognized as reliable estimates of general intelligence (Spearman’s

g factor) [99]. We applied the paper-and-pencil version of the

RSPM to the subjects. The 5 sets (A, B, C, D, and E) of tasks are

arranged according to the principles of increasing complexity

[100]. In each task, a specific pattern or a number of geometrical

structures are presented, with 1 part of the pattern or 1 component

of the structures missing. On the basis of 6–8 presented solutions

the subject has to decide which one is appropriate to complete the

given pattern or set of structures. The RSPM was applied in a

‘‘speed-version,’’ which measures performance within a time limit

of 30 minutes (remaining items were considered to be errors).

Statistical analyses
We investigated age-related changes in haptic, tactile, and

cognitive performance using correlational analyses (one-tailed

Pearson correlations and second order partial correlations,

controlling for factor AGE) and repeated measures ANOVA for

factors AGE and GENDER (2 by 2 factorial design). ANOVAs

were calculated based on subsamples of the population. We

allocated subjects aged 45 to 59 years to the group of ‘‘younger

adults’’ (younger female adults ‘‘yf’’: N = 29, 60.2467.07 years;

older female adults ‘‘of’’: N = 20, 76.9565.94 years) and subjects

aged 60 to 94 years to the group of ‘‘older adults’’ (younger male

adults ‘‘ym’’: N = 15, 58.53 years; older male ‘‘om’’: N = 17,

75.7666.71 years).
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