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Network intrusion detection based on anomaly detection techniques has a significant role in

protecting networks and systems against harmful activities. Different metaheuristic techniques

have been used for anomaly detector generation. Yet, reported literature has not studied the use

of the multi-start metaheuristic method for detector generation. This paper proposes a hybrid

approach for anomaly detection in large scale datasets using detectors generated based on

multi-start metaheuristic method and genetic algorithms. The proposed approach has taken

some inspiration of negative selection-based detector generation. The evaluation of this

approach is performed using NSL-KDD dataset which is a modified version of the widely used

KDD CUP 99 dataset. The results show its effectiveness in generating a suitable number of

detectors with an accuracy of 96.1% compared to other competitors of machine learning

algorithms.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

Over the past decades, Internet and computer systems have
raised numerous security issues due to the explosive use of net-

works. Any malicious intrusion or attack on the network may
give rise to serious disasters. So, intrusion detection systems
(IDSs) are must to decrease the serious influence of these at-
tacks [1].

IDSs are classified as either signature-based or anomaly-
based. Signature-based (misuse-based) schemes search for de-
fined patterns, or signatures. So, its use is preferable in known

attacks but it is incapable of detecting new ones even if they are
built as minimum variants of already known attacks. On the
other hand, anomaly-based detectors try to learn system’s nor-
mal behavior and generate an alarm whenever a deviation

from it occurs using a predefined threshold. Anomaly detec-
tion can be represented as two-class classifier which classifies
each sample to normal or abnormal [2]. It is capable of detect-

ing previously unseen intrusion events but with higher false
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positive rates (FPR, events incorrectly classified as attacks)
compared to signature-based systems [3].

Metaheuristics are nature inspired algorithms based on

some principles from physics, biology or ethology. Metaheu-
ristics are categorized into two main categories, single-
solution-based and population-based metaheuristics [4].

Population-based metaheuristics are more appropriate in gen-
erating anomaly detectors than single-solution-based metaheu-
ristics because of the need to provide a set of solutions rather

than a single solution. Evolutionary Computation (EC) and
Swarm Intelligence (SI) are known groups of population-based
algorithms. EC algorithms are inspired by Darwin’s evolution-
ary theory, where a population of individuals is modified

through recombination and mutation operators. Genetic algo-
rithms, evolutionary programming, genetic programming,
scatter search and path relinking, coevolutionary algorithms

and multi-start framework [5] are examples of EC algorithms.
On the other hand, SI produces computational intelligence in-
spired from social interaction between swarm individuals

rather than purely individual abilities. Particle swarm Optimi-
zation and Artificial Immune Systems are known examples of
SI algorithms.

Genetic algorithms (GAs) are widely used as searching
algorithm to generate anomaly detectors. It is an artificial
intelligence technique that was inspired by the biological evo-
lution, natural selection, and genetic recombination for gener-

ating useful solutions for problem optimization [6]. GAs use
data as chromosomes that evolve through the followings: selec-
tion (usually random selection), cross-over (recombination to

produce new chromosomes), and mutation operators. Finally,
a fitness function is applied to select the best (highly-fitted)
individuals. The process is repeated for a number of genera-

tions until reaching the individual (or group of individuals)
that closely meet the desired condition. GAs are still being
used up untill the current time to generate anomaly detectors

using a fitness function which is based on the number of ele-
ments in the training set that is covered by the detector and
also the detector volume [7,8].

Negative selection algorithm (NSA) is one of the artificial

immune system (AIS) algorithms which inspired by T-cell
evolution and self-tolerance in human immune system [9].
The principle is achieved by building a model of non-normal

(non-self) data by generating patterns (non-self-detectors)
that do not match an existing normal (self) patterns, then
using this model to match non-normal patterns to detect

anomalies. Despite this, self-models (self-detectors) could
be built from self-data to detect the deviation from normal
behavior [10]. Different variations of NSA have been used
to for anomaly detection [11]. Although these newly devel-

oped NSA variants, the essential characteristics of the origi-
nal negative selection algorithm [9] still remain, including
negative representation of information, distributed genera-

tion of the detector set which is used by matching rules to
perform anomaly detection based on distance threshold or
similarity measure [12].

Generating anomaly detectors requires a high-level solution
methods (metaheuristic methods) that provide strategies to es-
cape from local optima and perform a robust search of a solu-

tion space. Multi-start procedures, as one of these methods,
were originally considered as a way to exploit a local or neigh-
borhood search procedure (local solver), by simply applying it
from multiple random initial solutions. Some type of diversifi-
cation is needed for searching methods which are based on lo-
cal optimization to explore all solution space, otherwise,
searching for global optima will be limited to a small area,

making it impossible to find a global optimum. Multi-start
methods are designed to include a powerful form of diversifica-
tion [13].

Different data representation forms and detector shapes are
used in anomaly detector generation. Input data are repre-
sented by either binary or real-valued [14]. Binary representa-

tion [15] is easy to use in finite problem space but it is hardly
applicable to problems of real valued space [11]. As an alterna-
tive, real-valued representation [16] provides more expressive-
ness and scalability [17]. NSA detectors are formed with

different geometric shapes such as hyper-rectangles, hyper-
spheres, hyper-ellipsoids or multiple hyper-shapes [14]. The
size and the shape of detectors are selected according to the

space to be covered.
In this paper, a hybrid approach for anomaly detection is

proposed. Anomaly detectors are generated using self- and

non-self-training data to obtain self-detectors. The main idea
is to enhance the detector generation process in an attempt
to get a suitable number of detectors with high anomaly detec-

tion accuracy for large scale datasets (e.g., intrusion detection
datasets). Clustering is used for effectively reducing large train-
ing datasets as well as a way for selecting good initial start
points for detector generation based on multi-start metaheuris-

tic methods and genetic algorithms. Finally, detector reduction
stage is invoked so as to minimize the number of generated
detectors.

The main contribution of this work is to prove the effec-
tiveness of using multi-start metaheuristics methods in
anomaly detector generation benefiting from its powerful

diversification. Also, addressing issues arises in the context
of detector generation for large scale datasets. These issues
are related to the size of the reduced training dataset, its

number of clusters, the number of initial start points and
the detector radius limit. Moreover, their effect on different
performance metrics is evaluated. Observations prove
that performance improvement occurs compared to other

machine learning algorithms.
The rest of this paper is organized as follows: Section 2 pre-

sents some literature review on anomaly detection using nega-

tive selection algorithm. Section 3 briefly describes the
principal theory of the used techniques. Section 4 discusses
the proposed approach. Experimental results along with a

comparison with six machine learning algorithms are pre-
sented in Section 5 followed by some conclusions in Section 6.
Related work

Anomaly detection approaches can be classified into several
categories. Statistics-based approaches are one of these catego-
ries that identify intrusions by means of predefined threshold,

mean and standard deviation, and probabilities [18,19]. Rule-
based approaches are another category which use If–Then or
If–Then–Else rules to construct the detection model of known

intrusions [20,21]. In addition to these categories, state-based
approaches exploit finite state machine derived from network
behaviors to identify attacks [22,23]. The last category is heu-

ristic-based approaches [24–26], which are inspired by biolog-
ical concepts as mentioned in the previous section [1].
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Statistical hybrid clustering approach was proposed for net-
work volume anomaly detection [27]. A combination between
K-Harmonic means (KHM) and Firefly Algorithm (FA) is

used to make clustering for data signatures collected by Digital
Signature of Network Segment (DSNS). This approach detects
anomalies with trade-off between 80% true positive rate and

20% false positive rate. Another statistical hybrid approach
was introduced by Assis et al. [19]. Anomaly detection is based
on modeling the normal behavior of the analyzed network seg-

ments using four flow attributes. These attributes are treated
by Shannon Entropy in order to generate four different Digital
Signatures for normal behavior using the Holt-Winters for
Digital Signature (HWDS) method.

Another work [22] introduces a finite state machine ap-
proach based on Hidden Markov Model (HMM). A frame-
work is built to detect attacks early by predicting the

attacker behavior. This is achieved by extracting the interac-
tions between attackers and networks using Hidden Markov
Model with the help of network alert correlation module.

As an example of rule-based approaches, a framework for
intrusion detection is presented [20]. This framework combines
anomaly and misuse detection in one module with the aim of

raising the detection accuracy. Different modules are designed
for different network devices according to their capabilities
and their probabilities of attacks they suffer from. Finally, a
decision-making module is used to integrate the detected re-

sults and report the types of attacks.
Negative selection algorithms (NSAs) are continuously

gaining the popularity and various variations are constantly

proposed. These new NSA variations are mostly concentrated
on developing new detector generation scheme to improve the
algorithm performance [12]. Most of the used algorithms in

negative selection based detector generation are evolutionary
computation and swarm intelligence algorithms, especially ge-
netic [24,28] and particle swarm algorithms [29,30].

Agenetic algorithmbasedonnegative selection algorithm for
detector generation was introduced [31]. They only focused on
optimizing the non-overlapping of hyper-sphere detectors to ob-
tain the maximal non-self-space coverage using fitness function

based on detector radius. Additional research [8] uses genetic
algorithm with deterministic crowding niching technique for
improving hyper-sphere detector generation. Deterministic

crowding niching is used with genetic as a way for improving
the diversification to generate more improved solutions. In
Ostaszewski et al. [32], hyper-rectangular detectors are tested

in anomaly detection. Detectors are created using a niching ge-
netic algorithm and enhanced by a coevolutionary algorithm.

Another work for detecting deceived anomalies hidden in
the self-regions using boundary detectors is introduced [28].

These detectors are generated with the help of evolutionary
search algorithm. Another research for intrusion data classifi-
cation is proposed [30]. This approach uses rough set for fea-

ture selection along with a modified version of standard
particle swarm intelligence called simplified swarm optimiza-
tion for intrusion data classification.

As an improvement to hyper-spheres detectors, hyper-ellip-
soid detectors are generated by evolutionary algorithm (EA)
[33]. These detectors are more flexible because they can be

stretched and reoriented the way that minimize the number
of the needed detectors that cover similar non-self-space.

As far as we know, multi-start metaheuristic methods have
gained no attention in negative selection based detector gener-
ation for anomaly detection. Its powerful diversification is
much suitable for large domain space which is a feature of
intrusion detection training datasets. Furthermore, most of

previous research pays a great attention to detection accuracy
and false positive rate, but no interest in studying the number
of generated detectors and its generation time with different

training dataset sizes. This paper introduces a new negative
selection based detector generation methodology based on
multi-start metaheuristic methods with the performance evalu-

ation of different parameter values. Moreover, different evalu-
ation metrics are measured to give a complete view of the
performance of the proposed methodology. Results prove that
the proposed scheme outperforms other competitors of ma-

chine learning algorithms.
Theoretic aspects of techniques

The basic concept of multi-start methods is simple: start opti-
mization from multiple well-selected initial starting points, in
hopes of locating local minima of better quality (which have

smaller objective function values by definition), and then re-
port back the local minimum that has the smallest objective
function value to be a global minimum. The main challenges

in multi-start optimization are selecting good starting points
for optimization and conducting the subsequent multiple opti-
mization processes efficiently.

In Ugray et al. [5], Multi-start framework is introduced
with two phases, global phase and local phase. In global phase,
scatter search [34] is used to intelligently perform a search on
solution space [35]. This search aims to select good initial start

points for being used in local phase. It operates on a set of
solutions called the reference set or population. Elements of
the population are maintained and updated from iteration to

iteration. In local phase, nonlinear programming local solver
is used with elements of the global phase reference set as a
starting point input. Local solvers use values and gradients

of the problem functions to generate a sequence of points that,
under fairly general smoothness and regularity conditions,
converge to a local optimum. The main widely used classes

of local solver algorithms are successive quadratic program-
ming (SQP) and generalized reduced gradient (GRG) [36].

Another work [37] introduces a multi-start approach that is
based on the concept of regions of attraction to local minima.

The region of attraction to a local minimum is a set of starting
points from which optimization converges to that specific local
minimum. A set of uniformly distributed points are selected as

initial start points then evaluated using the objective function
to construct regions of attraction. The goal is to start optimi-
zation exactly once from within the region of attraction of each

local minimum, thus ensuring that all local minima are identi-
fied and the global minimum is selected. Local solver is in-
voked with each selected start point and then the obtained
solution is used to update start points set. The process is re-

peated several times to obtain all local minima.
The proposed approach uses k-means clustering algorithm

to identify good starting points for the detector generation

based on a multi-start algorithm while maintaining their diver-
sity. These points are used as an input to local solvers in hope
to report back all local minima. K-means is one of the most

widely used algorithm for geometric clustering [38]. It is a local
search algorithm that partitions a set of observations (x1, x2,
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. . ., xn) into k clusters where each observation is a d-dimen-
sional real vector, k-means clustering aims to partition the n
observations into k sets (k 6 n), S = {S1, S2, . . ., Sk} so as to

minimize the within-cluster sum of squares as [39] follows:

min
S

Xk
i¼1

X
xj2si
jjxj � lijj

2

where li is the mean of points in cluster Si. This can be reached

by seeding with k initial cluster centers and assigning every
data point to its closest center, then recomputing the new cen-
ters as the means of their assigned points. This process of

assigning data points and readjusting centers is repeated until
it stabilizes. K-means is popular because of its simplicity and
observed speed [40].

Methodology

In this section, a new anomaly detector generation approach is

proposed based on negative selection algorithm concept. As
number of detectors is playing a vital role in the efficiency of
online network anomaly detection, the proposed approach
aims to generate a suitable number of detectors with high

detection accuracy. The main idea is based on using k-means
clustering algorithm to select a reduced training dataset in or-
der to decrease time and processing complexity. Also, k-means

is used to provide a way of diversification in selecting initial
start points used by multi-start methods. Moreover, the radius
of hyper-sphere detectors, generated using multi-start, is opti-

mized later by genetic algorithm. Finally, rule reduction is in-
voked to remove unnecessary redundant detectors. Detector
generation process is repeated to improve the quality of detec-

tion. The main stages are shown in Fig. 1 and a detailed
description of each stage is presented below.

Preprocessing

In this step, training data source (DS) is normalized to be
ready for processing by later steps as follows:
Training data source (DS) 

Preprocessing 

Clustering and training dataset selection (TR)

Detectors generation and optimization 

Rules reduction 

Evaluate on training and test dataset 

Stop? 

End 

No 

Yes 

Test data source 
(TS) 

Fig. 1 The proposed approach main stages.
DSnorm ¼
ðDS� ldsÞ=rds; rds–0

DS� lds; rds ¼ 0

�
ð1Þ

where

DS ¼ fxijji ¼ 1; 2; 3; . . . ;m and j ¼ 1; 2; 3; . . . ; ng;

lds ¼ fljj j ¼ 1; 2; 3; . . . ; ng;

rds ¼ frjj j ¼ 1; 2; 3; . . . ; ng:

DS is m samples with n column attributes, xij is the jth column
attribute in the ith sample, lds and rds are 1xnmatrix which are
the training data mean and standard deviation respectively for

each of the n attributes. Test dataset which is used to measure
detection accuracy is also normalized using the same lds and
rds as follows:

TSnorm ¼
ðTS� ldsÞ=rds; rds–0

TS� lds; rds ¼ 0

�
ð2Þ
Clustering and training dataset selection

In order to decrease time complexity and number of detectors

to be generated in later stages, small sample training dataset
(TR) should be selected with a good representation of the ori-
ginal training dataset. So, k-means clustering algorithm is used

to divide DS into k clusters. Then, TR samples are randomly
selected and distributed over the labeled DS sample classes
and clusters in each class to get a small number of TR samples

(sz). The selection process is as follows:

Step 1: Count the number of DS samples in each class clus-

ter (c). Let n is the number of available sample classes, k is
the number of k-means clusters, then Cij is the number of
samples at the jth cluster in the ith class.
Step 2: Calculate the number of samples to be selected from

each class cluster (CC).

CC=0,

Loop:

step ¼ ðsz�
Pn

i¼1
Pk

j¼1CijÞ=ðn � kÞ;
CCij ¼ CCij þ step; 8CCij < Cij

If CCij > Cij then CCijCij

If sz <
Pn

i¼1
Pn

j¼1Cij; stop:

end
� Step 3: Construct TR dataset from DS by randomly select a
number of CCij samples from the jth cluster in the ith class.
Detector generation using multi-start algorithm

Multi-start searching algorithm focuses on strategies to escape
from local optima and perform a robust search of a solution
space. So, it is suitable for generating detectors which is used

later to detect anomalies. Hyper-sphere detectors are used
and defined by its center and radius. The idea is to use mul-
ti-start for solution space searching to get the best available hy-
per-spheres that cover most of the normal solution space.

Multi-start parameters used in this work are chosen as follows:
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Initial start points: the choice of this multi-start parameter is
important in achieving diversification. So, an initial start num-
ber (isn) of points is selected randomly from normal TR sam-

ples and distributed over normal clusters.
Solution boundaries upper and lower bounds are important

to limit the solution space. Let xij is the value of the ith sample

at the jth column in the training data source DSnorm which is m
samples with n column attributes, and detector radius
r ¼ fr 2 Rj0 < r � rrlg where rrl is the hyper-sphere radius

upper bound. So,

uj ¼ maxðxijÞ where i ¼ 1; 2; 3; . . . ;m;

lj ¼ minðxijÞ where i ¼ 1; 2; 3; . . . ;m;

UB ¼ ðu1; u2; u3; . . . ; un; rrlÞ

LB ¼ ðl1; l2; l3; . . . ; ln; 0Þ;

where UB and LB are the upper and lower bounds for our
solution space. The gotten solutions (detectors) S= {s1, s2,

s3, . . ., sisn} are in the form of Si = (ui1, ui2, ui3, . . ., uin, ri)
where hyper-sphere center is at Scenter = (ui1, ui2, ui3, . . ., uin)
and hyper sphere radius is ri.

Objective function

Generating detectors is controlled by fitness function which is
defined as:

fðsiÞ ¼
NabnormalðsiÞ �NnormalðsiÞ; itr ¼ 1

NabnormalðsiÞ �NnormalðsiÞ þ old intersectðsiÞ; itr > 1

�

ð3Þ

where itr is the iteration number of repetitive invoking detec-
tors generation, Nabnormal(si) is the number of abnormal sam-

ples covered by detector si, Nnormal(si) is the number of
normal samples covered by detector si and old_intersect(si) is
the percent of Nnormal(si) samples that are detected by detectors

in previous iterations. The use of old_intersect(si) in next itera-
tions is important to generate new detectors which are far as
possible from the previously generated ones.

Anomaly detection is established by forming rules from the

generated detectors. Each rule has the form of

ifðdistðScenter; xÞ 6 rÞ then fnormalg else fabnormalg

where r is the detector hyper-sphere radius and dist(Scenter, x) is
the Euclidean distance between detector hyper sphere center

Scenter and test sample x.

Detector radius optimization using genetic algorithm

The previously generated detectors may cover normal samples
as well as abnormal sample. So, further optimization is needed
to adopt only detectors radius to cover the maximum possible

number of only normal samples. Multi-objective genetic algo-
rithm is used to make this adoption.

Initial population each detector radius is initialized to its va-
lue generated by multi-start algorithm.

Solution boundaries detector radius boundary is
r ¼ fr 2 Rj0 < r � rrlg, where rrl is the hyper-sphere upper
bound.

Objective function fitness function which optimizes detector
radius is defined as:
fðriÞ ¼ NabnormalðriÞ �NnormalðriÞ ð4Þ

where the number of abnormal samples covered by detector si
is Nabnormal(ri) and Nnormal(si) is the number of normal samples

covered by detector si using ri as its radius.

Detectors reduction

Reducing the number of detectors is a must to improve effec-
tiveness and speed of anomaly detection. Reduction is done
over S which is the combination between recently generated
detectors and previously generated detectors if exist and is

done as follows:

� Step 1: First level reduction is as follows:

ifNabnormalðsiÞ > thrmaxabnormal orNnormalðsiÞ < thrminnormal then

removedetector si; 8si;2 S;

where thrmaxabnormal is the maximum allowed number of abnor-

mal samples to be covered by detector si, thrmaxabnormal is set to
0. thrminnormal is the minimum allowed number of normal sam-
ples to be covered by detector si.

� Step 2: Another level of reduction intends to remove any
detector si, if its Nnormal is covered by one or more bigger
detectors with a percent equal or more than thrintersect.

The more Nnormal(si)), the bigger the detector is. thrintersect
is set to 100% so as to remove any detector that is totally
covered by one or more repeated or bigger detectors.

Repetitive evaluation and improvements

Anomaly detection performance is measured at each iteration
by applying the reduced detectors Sreduced from previous stage
on the original training dataset at the first iteration TRorg. If

improvement in accuracy is noticed, new training dataset TR
is created to work on it in later iterations. New TR is a combi-
nation between all normal samples not covered Nnormal_nc by
Sreduced plus all abnormal samples in the original training data-

set TRorg. If no improvement in accuracy, then use Sreduced and
new TR of previous iteration as if they are the current. Also,
new isn is computed as isnnew = Nnormal_nc * isp where

fisp 2 Rj0 < isp < 1g.
Steps 3–6 are repeated for a number of iterations. Different

conditions can be invoked to stop the repetitive improvement

process, i.e. a maximum number of iterations are reached,
maximum number of consecutive iterations without improve-
ment occurs or a minimum percent of training normal samples
coverage exists.

Results and discussion

Experimental setup

In this experiment, NSL-KDD dataset is used for evaluating

the proposed anomaly detection approach. This dataset is a
modified version of KDDCUP’99 which is the mostly widely
used standard dataset for the evaluation of intrusion detection



Table 1 Distribution of different classes in train (DS) and test

dataset (TS).

Class Train (DS) Test (TS)

Normal 812,814 47,911

Dos 247,267 23,568

Probe 13,860 2682

U2R 999 2913

R2l 52 215

Total size 1,074,992 77,289
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systems [41]. This dataset has a large number of network con-
nections with 41 features for each of them which means it is a

good example for large scale dataset to test on. Each connec-
tion sample belongs to one of five main labeled classes (Nor-
mal, DOS, Probe, R2L, and U2R). NSL-KDD dataset

includes training dataset DS with 23 attack types and test data-
set TS with additional 14 attack types. Distribution of connec-
tions over its labeled classes for training and test dataset is

tabulated in Table 1. Our experiments ran on a system with
3.0 GHz Intel� Core� i5 processor, 4 GB RAM andWindows
7 as an operating system.

Based on NSL-KDD training dataset, clustering is used to

select different sample training dataset (TR) sizes (sz) with dif-
ferent cluster numbers (k) for each of them. The distribution of
TR samples to its labeled classes in is stated in Table 2.

Results

In this section, performance study of our approach is held

using different parameters values. The results are obtained
using matlab 2012 as a tool to apply and carry out the pro-
posed approach. Multi-start searching method [5] and genetic
Table 2 Distribution of different classes in reduced sample train da

sz k Normal Dos

5000 100 2802 844

200 3150 789

300 3241 709

400 3365 688

10,000 100 5873 1750

200 6448 1629

300 6721 1472

400 6951 1402

20,000 100 12,085 3550

200 13,124 3313

300 13,691 2997

400 14,194 2879

40,000 100 25,361 7255

200 26,746 6813

300 27,974 6068

400 28,781 5789

60,000 100 39,207 11,165

200 41,002 10,342

300 42,757 9185

400 43,954 8866
algorithm parameters are as default except the mentioned
parameters in Table 3. Also, four parameters are selected to
study its effect on performance which are stated in this table.

The different values given to these parameters are dependent
on the selected NSL-KDD dataset and need further study in
future work to be chosen automatically. Performance results

are averaged over five different copies of each sample training
dataset TR along with the different values given to the studied
parameters. Performance evaluation is measured based on

number of generated detectors (rules), time to generate them,
test accuracy and false positive rate during each repetitive
improvement iteration using NSL-KDD test dataset. Classifi-
cation accuracy and false positive rate (FBR) are calculated

as follows:

Classificationaccuracy ¼ TPþ TN

TPþ FPþ FNþ TN
ð5Þ

Falsepositive rate ¼ FP

TNþ FP
ð6Þ

where true positive (TP) is normal samples correctly classified
as normal, false positive (FP) is normal samples incorrectly
classified as abnormal, true negative (TN) is abnormal samples
correctly classified as abnormal and false negative (FN) is

abnormal samples incorrectly classified as normal.
To study the effect of each one of the selected four param-

eter, a certain level of abstraction should be done by averaging

the results over other parameters next to the studied parameter
in (sz,isn,rrl,k). Fig. 2 shows the overall performance results of
the proposed approach averaged over (isn,rrl,k) using training

dataset sizes (sz= 5000,10,000,20,000,40,000,60,000) at differ-
ent iterations (itr = 1,2,3,4,5). It is noted that, performance
measures are gradually increased as increasing the number of
iterations and become consistent at itr > 1. The reason behind

this is that the generated detectors at early iterations try to
cover most of the volumes occupied by normal samples inside
taset (TR).

Probe U2R R2l True size

1061 999 52 5758

932 999 52 5922

822 999 52 5823

756 999 52 5860

2011 999 52 10,685

1683 999 52 10,811

1546 999 52 10,790

1439 999 52 10,843

3680 999 52 20,366

3186 999 52 20,674

2872 999 52 20,611

2645 999 52 20,769

6391 999 52 40,058

5824 999 52 40,434

5394 999 52 40,487

4818 999 52 40,439

8581 999 52 60,004

7847 999 52 60,242

7252 999 52 60,245

6463 999 52 60,334



Table 3 The settings of parameters used for my approach.

Parameter Value

Multi-start searching method

Minimum distance between two separate

objective function values

10

Minimum distance between two separate

points

0.001

isp 0.1

Genetic searching algorithm

Population size 20

Number of generations 20

Detectors reduction

thrminnormal 10

thrmiaxabormal 0

thrintersect 100%

Parameters under study

Number of TR samples (sz) 5000, 10,000, 20,000,

40,000, 60,000

Multi-start initial start points (isn) 100, 200, 300

Detector radius upper bound (rrl) 2, 4, 6

Number of clusters (k) 100, 200, 300, 400
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the training dataset and leave the remaining small volumes
coverage to the later iterations. Therefore, much more increas-

ing is observed in test accuracy at itr = 1, 2 compared to slow
increasing at itr > 2. At the same time, an increasing in num-
ber of detectors (rules) and generation time is noted due to the

need for more iterations to generate more detectors to cover
the remaining normal samples in training dataset. False posi-
tive rate (FPR) follows the same increasing behavior because

of the generation of some detectors to cover the boundaries be-
tween normal and abnormal training samples. So, a chance to
misclassify abnormal samples to normal at testing dataset in-
creases as more iteration number is invoked. As a trade of be-

tween these different performance measures, results should be
chosen at itr = 2 as stability of these measures begins.
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Fig. 2 Overall performance results for different tra
Furthermore, the bigger the size of the training dataset, the
bigger the number of rules and generation time values. This is
reasonable because more detectors are needed to achieve more

coverage of normal training samples, which requires more pro-
cessing time. On the other hand, increasing training dataset
size has a smaller bad effect on test FPR and test accuracy

especially at itr > 2. As an explanation, detectors generated
at later iterations are pushed by the proposed approach to
be as far as possible from the older ones. This means it tends

to cover boundaries between normal and abnormal samples
in training dataset which may have bad effect when testing
them on unseen test dataset. So, as a tradeoff between different
performance metrics, small training dataset (TR) sizes are

preferable.
Performance evaluation at itr = 2 of different numbers of

initial start points (isn= 100, 200, 300) averaged over (rrl,k)

is shown in Fig. 3. At each training dataset size, increasing
the number of initial start points gives multi-start method
the opportunity to give best solutions with more coverage to

normal samples at early iterations even though applying rule
reduction at later stages. As a result, performance measures in-
crease in general as increasing the number of initial start points

(isn) with a small effect on FBR with lower number of rule and
processing time. As increasing sz values, more detectors are
needed to cover normal samples and hence, more processing
time. Also, more boundaries between normal and abnormal

samples exist which rise the false positive rate (FBR) and stop
the growing of test accuracy at bigger training dataset sizes.
Therefore, higher number of initial start points (isn = 300) is

preferable.
Fig. 4 shows the performance of different detector radius

upper limits (rrl= 2,4,6) at itr = 2, isn= 300 and averaged

over (k). At each training dataset size, it is obvious that small
values will generated more detectors to cover all normal sam-
ples while increasing the accuracy as a result of more detectors

will fit into small volumes to achieve the best coverage. Lower
values of (rrl= 2) along with small TR sizes could be a good
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choice to have higher accuracy and lower FBR with small ex-
tra number of detectors and processing time.

According to results shown in Fig. 5, with higher number of

clusters (k), there is a tendency to generate more detectors with
higher FBR and slight variance in accuracy and. This is be-
cause of the distributed selection of training dataset (TR) sam-
ples over more clusters which gives more opportunity to

represent smaller related samples found in training data source
(DSnorm), hence, more rules are needed to cover these volumes.
This distribution of samples increases the interference between

normal and abnormal samples inside TR as increasing clusters
number which badly affect FBR value, We can notice that
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medium value of (k = 200) is an acceptable tradeoff between
different performance metrics.

As shown in Table 4 there are a tradeoff between getting

low number of rules with small generation time and having
high accuracy with low false positive rate. This table states a
sample performance comparison between the results of best se-
lected parameters values chosen earlier (at table rows 5–8) and

other parameters values (at table rows 1–4, 9–12). At the first
four rows, high accuracy with low false positive rate is ob-
tained at itr >1, but with higher number of rules and genera-

tion time compared to the results stated at rows 5–8. On the
other hand, rows 9–12 have lower rules number and less gen-
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eration time at itr >1, but with lower accuracy and higher

FPR compared to the selected parameters values at rows 5–
8. So, from these results, we can distinguish that results shown
in bold at (isn = 300, rrl = 2, k = 200, itr = 2) are an accept-

able trade of between different performance metrics as men-
tioned in the earlier discussion. With regard to other
machine learning algorithms used for intrusion detection prob-

lems, Performance comparison between the proposed ap-
proach with best selected parameters values and six of these
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Network (FBNN), Radial Basis Function Network (RBFN),
and Decision Trees (J48) is shown in Fig. 6. Weka 3.6 is used

as a tool to get performance results of these machine learning
algorithms. These machine learning classifiers are trained by
using our generated TR datasets. Results show that the pro-

posed approach outperforms other techniques with higher
accuracy, lower FBR and acceptable time.
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Conclusions

This paper presents a hybrid approach to anomaly detection
using a real-valued negative selection based detector genera-

tion. The solution specifically addresses issues that arise in
the context of large scale datasets. It uses k-means clustering
to reduce the size of the training dataset while maintaining

its diversity and to identify good starting points for the detec-
tor generation based on a multi-start metaheuristic method
and a genetic algorithm. It employs a reduction step to remove
redundant detectors to minimize the number of generated

detectors and thus to reduce the time needed later for online
anomaly detection.

A study of the effect of training dataset size (sz), number of

initial start pointers for multi-start (isn), detector radius upper
limit (rrl) and clustering number (k) is stated. As a balance be-
tween different performance metrics used here, choosing re-

sults at early iterations (itr = 2) using small training dataset
size (sz = 10,000), higher number of initial start points
(isn = 300), lower detector radius (rrl = 2) and medium num-

ber of clusters (k= 200) are preferable.
A comparison between the proposed approach and six dif-

ferent machine learning algorithms is performed. The results
show that our approach outperforms other techniques by

96.1% test accuracy with time of 152 s and low test false posi-
tive rate of 0.033. Although, the existence of offline processing
time overhead for the proposed approach which will be consid-

ered in future work, online processing time is expected to be
minimized. The reason behind this is that a suitable number
of detectors will be generated with high detection accuracy

and low false positive rate. As a result, a positive effect on on-
line processing time is expected.

In future, the proposed approach will be evaluated on other

standard training datasets to ensure its high performance.
Moreover, its studied parameter value should be chosen auto-
matically according to the used training dataset to increase its
adaptability and flexibility. In addition, detector generation

time should be decreased by enhancing the clustering and
detector radius optimization processes which will have a posi-
tive impact on the overall processing time as we expected. Fi-

nally, the whole proposed approach should be adapted to learn
from normal training data only in order to be used in domains
where labeling abnormal training data is difficult.
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