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Abstract

Diffusion-weighted magnetic resonance imaging is a non-invasive imaging method that has

been increasingly used in neuroscience imaging over the last decade. Partial volume effects

(PVEs) exist in sampling signal for many physical and actual reasons, which lead to inaccu-

rate fiber imaging. We overcome the influence of PVEs by separating isotropic signal from

diffusion-weighted signal, which can provide more accurate estimation of fiber orientations.

In this work, we use a novel response function (RF) and the correspondent fiber orientation

distribution function (fODF) to construct different signal models, in which case the fODF is

represented using dictionary basis function. We then put forward a new index Piso, which is

a part of fODF to quantify white and gray matter. The classic Richardson-Lucy (RL) model is

usually used in the field of digital image processing to solve the problem of spherical decon-

volution caused by highly ill-posed least-squares algorithm. In this case, we propose an

innovative model integrating RL model with spatial regularization to settle the suggested

double-models, which improve noise resistance and accuracy of imaging. Experimental

results of simulated and real data show that the proposal method, which we call iRL, can

robustly reconstruct a more accurate fODF and the quantitative index Piso performs better

than fractional anisotropy and general fractional anisotropy.

Introduction

Magnetic resonance imaging (MRI) can offer important insights into brain disease [1]. Only

diffusion-weighted MRI (DW-MRI) can provide a unique, non-invasive technique to study

the microscopic structure of brain white matter (WM) in vivo [2–4]. DW-MRI provides valu-

able information about the fiber architecture of tissue by measuring the diffusion of water in

three-dimensional space [5, 6]. An early form of this technique, i.e., diffusion tensor imaging

(DTI) [7], is widely used in clinics and provides fiber orientations of WM based on principal

eigenvector of that tensor [8] and many useful quantitative indexes, including mean diffusivity

(MD), fractional anisotropy (FA) [9, 10], and so on. The major shortcoming of the

PLOS ONE | DOI:10.1371/journal.pone.0168864 January 12, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Xu T, Feng Y, Wu Y, Zeng Q, Zhang J, He

J, et al. (2017) A Novel Richardson-Lucy Model

with Dictionary Basis and Spatial Regularization for

Isolating Isotropic Signals. PLoS ONE 12(1):

e0168864. doi:10.1371/journal.pone.0168864

Editor: Pew-Thian Yap, University of North Carolina

at Chapel Hill, UNITED STATES

Received: June 17, 2016

Accepted: December 7, 2016

Published: January 12, 2017

Copyright: © 2017 Xu et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: data is available in

the Harvard Dataverse with the DOI 10.7910/DVN/

3P1STN.

Funding: This work was supported in part by the

National Natural Science Foundation of China

(Grant No. 61379020) and by the open foundation

of Wenzhou Medical University (Grant No.

LKFJ014). The first funders is the corresponding

author, which has a important role in study design,

data collection and analysis. The second funder

provide the idea and analysis the data.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168864&domain=pdf&date_stamp=2017-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168864&domain=pdf&date_stamp=2017-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168864&domain=pdf&date_stamp=2017-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168864&domain=pdf&date_stamp=2017-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168864&domain=pdf&date_stamp=2017-01-12
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168864&domain=pdf&date_stamp=2017-01-12
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7910/DVN/3P1STN
http://dx.doi.org/10.7910/DVN/3P1STN


representative DTI is its inability to characterize the orientations of crossing and branching

neural tracts in brain, especially fiber tracts with intersected diffusion orientations or partial

volume averaged within a voxel [11–13]. Many recent high angular resolution diffusion imag-

ing (HARDI) techniques have been proposed to recover the complex WM geometry [14].

Most of these methods consider water-molecule diffusion as a function of direction, such as

Q-ball imaging (QBI) [15], diffusion spectrum imaging (DSI) [16] and spherical deconvolu-

tion (SD) [17], which have all conquered the limitations of DTI. However, the data acquisition

times for QBI and DSI are exorbitant [18] because of the high sampling numbers required to

construct the full diffusion propagator. Given the linearity and sensitivity to multi-model dif-

fusion [11], considerable interests have been generated with the model-free SD, which is based

on convolution between fiber response function (RF) and fiber orientation distribution func-

tion (fODF). Although the SD shows both good angular resolution and short computational

time, the defects emerge when facing PVEs and the imaging quality is degraded by spurious

directions and negative orientations caused by the truncation of high-order harmonics and ill-

posed solution, even in noise-free data [19].

Partial volume effects (PVEs) were put forward by Timo Roine et al. firstly [20]. It usually

appears on the border of different tissues. The brain contains complex WM and non-WM tis-

sues, such as gray matter (GM) and cerebrospinal fluid (CSF), which have different diffusion

properties. Thus, the PVEs phenomenon is particularly obvious in human brain [12, 21, 22].

For PVEs, the SD method induces some changes on RF, but this does not solve the PVEs in

essence. An informed constrained spherical deconvolution (iCSD) has been proposed to

improve the estimation of fODF under non-WM PVEs by modifying RF to account for non-

WM PVEs locally [23]. However, the iCSD method can’t correctly resolve fiber crossing angles

of less than 60˚ under significant non-WM PVEs. Some authors have included an isotropic

compartment in their signal models but these methods both require multiple b-value acquisi-

tions and distinguish the signal of different tissues [24]. In other methods based on spherical

deconvolution, the isotropic signal is dampened by using an iterative RL deconvolution algo-

rithm [25]. Falvio et al. [19] infer that fODF can be represented by several discrete Dirac delta

functions on unit sphere and propose a new spherical model based deconvolution approach to

solve fiber crossing. They consider isotropic diffusion and anisotropic diffusion signal and

combine both of two components. Dell’Acqua et al. suggest a new term, fiber orientation func-

tion (FOF) to represent the weights of anisotropic and isotropic diffusion [26]. However, the

FOF, as a combination of anisotropic and isotropic diffusions, can’t really take them apart.

Consequently, The use of FOF is difficult. Isotropic signal existing in GM or CSF misleads the

algorithms to produce spurious peaks in FOF. In this framework, Dell’Acqua et al. further

combine RL spherical deconvolution algorithm with an adaptive regularization technique to

yield damped Richardson-Lucy (dRL) algorithm in spherical deconvolution, aiming to attenu-

ate isotropic signal while reducing spurious and non-physical fiber orientations in regions

affected by PVEs [27]. dRL has its limitations. Given the different degrees of attenuation in

each voxel, small FOF portions are more likely to be preserved in a low isotropic volume frac-

tion, which leads to spurious fiber orientations [26]. Notably, the method based on RL has set-

tled the highly ill-conditioned problem of least squares algorithm. However, in the absence of

constrains of solution, even small changes in the acquired signal (e.g., MR noise) can lead to

nonphysical results [17, 28]. A number of regularization algorithms have thus been developed.

Yap et al. [29] develop a spatially non-negative sparse representation framework and then

present an algorithm for solving l0 sparse group representation problem and apply it to tissue

signal separation problem [30]. While the computational cost and intractable computation

will arise when the models are more sophisticated. To make full use of spatially constraints of

brain fibers, many global tractography methods considered PVEs [4, 31]have been proposed

iRL
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in the last two years. But there are always many disadvantages, including computing space

occupied, convergence property, sub-optimal solution and so on. There is a long way to realize

global tractography perfectly.

In this study, we consider a new spherical deconvolution model (hereafter denoted as iRL),

which can effectively isolate isotropic signal from each DW signal. A new quantitative index is

put forward to distinguish WM and non-WM of human brain, and the quantitative results of

that index are better than those FA and GFA. We also propose a novel method, based on RL to

efficiently reconstruct the above fiber architecture and yield high-quality fODF results. The

true fODFs are gathers of delta function pointing along fiber orientations, and zero in all other

orientations [32]. Thus, a dictionary basis is introduced to represent the fODF, which effec-

tively helps to separate isotropic signal and renders the coefficients of fODF sparse. Finally, we

integrate total variation regularization and ℓ1 norm regularization on the above framework to

smooth noise and suppress spurious fiber orientations at the same time. To compare the per-

formances with existing methods, the experiments are conducted on simulated and real data

using the proposed method in compared with several kinds of methods, which are introduced

in detail in the following sections.

Materials and Methods

Spherical deconvolution

Spherical deconvolution based on a relatively simple model of signal generation has been

recently developed to overcome the limitations of diffusion tensor model in resolving multiple

fiber orientations and to improve tractography reconstruction. The motivation of this pro-

posed method is to recover fODF directly from DW signal without prior assumption or esti-

mation about the number of fibers representing the information about diffusion [31]. The DW

signal S can be assumed as a superposition of anisotropic and isotropic signal, which can be

regard as two different diffusion models for three reasons. Firstly, the sampling voxels have a

relatively large volume. On the border of WM and non-WM, the signal of each WM is affected

by isotropic signal from non-WM, such as GM and CSF, which is known as PVEs phenome-

non. The second is that isotropic diffusion exists in WM. Given that isotropic diffusion is

weaker than anisotropic diffusion in WM, the diffusion in WM is always considered as anisot-

ropy. The third one is that the complex structures of fibers such as orthogonal fibers lead to

increased isotropy. Generally, the signal contributed by isotropic tissue is usually not included

in spherical deconvolution models [21]. However, to facilitate calculation, researchers often

try not to differentiate between the two parts and instead only make some changes in RF. The

best solution is to put the two parts of DW signal segregated. In this work, we try to separate

the two different parts of DW signal which would produce better imaging results especially in

the DW signal existed PVEs.

Let S2
be unit sphere domain and SO(3) be rotation group in R3. The anisotropic diffusion

signal is modeled by convolution between a kernel R 2 L2(SO(3)) and a function f 2 L2ðS2
Þ,

which respectively represent the signal response function (RF) and fODF ideally composed of

N Dirac delta functions for n bundles of fibers [33]. We assume that the isotropic signal in

each voxel is the same, thus the spherical deconvolution operator can be expressed as:

SðgÞ � Ŝ ¼
Z

S2

Rðg � vÞf ðvÞdv ð1Þ

where g are diffusion gradient orientations containing I directions and fgig
I
i¼1

, S(g) are diffu-

sion attenuation signal along g, Ŝ are isotropic signal, which are equal along each gradient

iRL
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orientation and overlooked in most medical imaging cases, the dot stands for standard

(Euclidean) dot product in R3, v is unit sphere (v also represent the discretized directions of

unit sphere in the following parts), R(g � v) is the RF describing DW signal intensity and f(v)dv
is probability measure used to model fODF over S2

[31]. The fODF contains all desired aniso-

tropic information regarding both orientations of various fiber populations that may be pre-

sented and their respective volume fractions [34]. A common case is that we have N fibers in

one voxel, where N is a limited natural number, and the corresponding fODF is the sum of N
Dirac delta functions on sphere weighted by corresponding volume fractions. The form of

fODF enables the separation of two diffusion models. Regarding the anisotropic signal, RF and

fODF are defined as usual.

The novel fODF estimation with double models

Basser et al. [7] indicate that the signal in a pulsed gradient spin echo depends on diffusion

sensitive coefficient b and diffusion tensor D, the relation is:

SðgiÞ ¼ e� trðbgTi DgiÞ ð2Þ

This relation relies on assumptions that the compartments have equal relaxation rates and

water density, and the exchange between volumes can be neglected on the time scale of mea-

surement [35]. Where S(gi) denotes the diffusion attenuation signal along i-th diffusion gradi-

ent orientation gi. D is diffusion tensor, which describes the simplest model of diffusion in

axon fiber bundles. The value of D is the extremum direction of diffusion, which can decide

the degree of water diffusion. The RF [36–38] derived from the above signal relation has a cer-

tain inaccuracy. Improving the precision of RF is of great advantage in the subsequent RL iter-

ative model. Thus, we use the original Eq (2) as our RF.

Our final goal is to construct the fODF which characterizes the relative likelihood of water

diffusion along a given direction. Most of HARDI methods do not account for PVEs caused by

non-WM tissues and orthogonal fibers. Signals contributed by GM or CSF both are actually

isotropic compartments and are included in the existing model of spherical deconvolution. To

accurately reconstruct brain connections from DW signal, we should properly model the dif-

ferent types of water diffusion signal [39]. In order to make calculate easy, we discretize the

process of spherical deconvolution (the discretized directions are still expressed as v). The

reconstruction of SD method is computed as linear combination of the diffusion measure-

ments [11]. The fODF can be reasonably considered as two main terms, viz. anisotropic and

isotropic parts. Thus, incorporating these contributions by using double models is possible.

Based on algebraic theory, we can combine the parts of anisotropy and isotropy. Thus at each

voxel, the special deconvolution can be expressed as:

SðgÞ ¼ R̂ðg � vÞf ðvÞ ð3Þ

where v are unit direction vectors which are acquired by averaging discretization of unit

spherical surface along J directions and fvjg
J
j¼1

, R̂ðg � vÞ ¼ ½Raniðg � vÞ Riso� and

Raniðg � vÞ
ðijÞ
¼ S0e� trðbgTi D1giÞ, D1 is diffusion tensor of fibers (FA = 1, MD = 0.0007mm2/s),

whose value is to ensure the maximum anisotropy, Rani(g � v)(j) is the RF along j-th sample

direction vj, which is a disc-shaped RF generated by the model presented in Eq (2) for a sin-

gle fiber. There are J RFs oriented along each sampling direction. Thus, Rani(g � v) is an I × J
matrix, Riso = S0 e−tr(bgT D2 g) is a column vector of length I containing the signal of isotropic

compartment. D2 is isotropic tensor of DW signal (FA = 0, MD = 0.0007mm2/s). Thus, the

final RF R̂ is an I × (J + 1) matrix. Naturally, fODF can be expressed as f(v) = [fani fiso], and it

iRL
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consists of two parts, the first J rows fani stand for the anisotropy. The last row fiso provides

information related to isotropy. The fODF can be expressed more clearly as f = f(v) =

[fani(v1), fani(v2),. . .fani(vJ), fiso].

To simplify the numerical solution, the fODF constructed by SD is originally formulated

using spherical harmonics basis. Actually, the proposed method can be implemented using a

number of well-characterized dictionary basis sets, which are flexible unimodal basis func-

tions. This relationship can be expressed as:

f ðvÞ ¼ Fðv; uÞcðvÞ ð4Þ

where u are unit direction vectors along L (with L� J) directions and fulg
L
l¼1

, which are used

to increase the accuracy of fiber directions, F(v, u) is a (J + 1) × (L + 1) matrix which will be

illustrated in the next step. f(v) and c = c(v) denote (J + 1) × 1 and (L + 1) × 1 column vectors

composed of estimated values of fODF and the coefficient of fODF, respectively. Notably that

the diffusion measurements c also consist of two parts, the first L rows cani show the informa-

tion about anisotropy; the last raw ciso represents the information related to isotropy. We can

use this variable denoted as Piso to quantify the intensity of isotropy of each voxel. Piso can take

place of the value of FA and GFA as well as conveys the message even better than them to

some extent. Removing the isotropic part of each voxel inevitably increases the accuracy of

fiber imaging. Once we have acquired the diffusion signal S(g) and R̂ðg � vÞ, the unknown part

fODF f can be computed using the iRL model.

Dictionary basis representation

SD has been proven to produce a good imaging result. [17] proposed to express SD directly in

spherical harmonics (SH) domain, so the operation can be reduced to a simple set of matrix

multiplications. Simultaneously, the presence of SH basis in the process of SD has been proven

to be of great importance. From a signal processing perspective, high-order SH basis is needed

if we want to represent or reconstruct crossing fibers accurately with really small separated

angles. However, the higher harmonic components are more sensitive to noise. Considering

numerical difficulties, typically spherical harmonic up to the order of eight is used, which lim-

its their capability in reliably resolving fiber crossing of small angles [40]. An inverse relation-

ship exists between high frequency term and angular resolution. Thus, we cannot obtain the

highest resolution and the best resistance to noise simultaneously.

On account of the above defects of SH basis, we use a new double-lobe basis function to

build an over-completed dictionary basis. In this work, a set of over-completed orientation dis-

tribution basis {d(v, ul)|l = 1,. . .L} with discrete direction sets v 2 RJ and positional direction

sets u 2 RL are introduced to represent fiber architecture in a voxel. The basis functions are

uniformly distributed in unit sphere, thereby creating a predefined fODF field. A linear

weighted combination of basis can be represented as ϕ = [d(v, u1),. . ., d(v, uL)]. By introducing

an over-completed dictionary with cardinality L which is larger than unit sampling direction

vectors J, we can construct a wide-ranged basis to map the fODF. Generally, fODF can be

sparsely represented by the dictionary. Hence, most of the coefficients c are zero. The novel

basis function quoted by [41] is proposed to establish the over-completed dictionary:

dðv; ulÞ ¼ k1

sin Wv;ul

1 � k2 cos 22Wv;ul

 !t

ð5Þ

where ϑv, ul
represent intersected angles between v and ul, and the other parameters, κ1, κ2 and

τ are used to normalize the novel basis function. Detailed interpretation and specific

iRL
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parameters setting are described in [41]. Thus, we can obtain a novel dictionary basis which

avoids high order’s truncation of SH function and guarantees the sparsity of coefficient at a

certain extent(Fig 1). To make dictionary basis be applicable to above isotropic model, we have

to make some deformations on the dictionary. The final dictionary basis can be represented as

F ¼
� 1

1T 1

" #

, where 1 represent J × 1 column vectors composed of 1.

A new Richardson-Lucy model

RL model is usually used in the field of astronomical imaging. This method has two advan-

tages: the one is that it avoids the appearance of negative values in solutions because it satisfies

non-negativity constraint of solution inherently; the other is that it well controls the instabili-

ties in the process of solving and reduces the presence of noise artifacts in the solution for its

robustness to noise [19]. Thus, the RL model has already been prevalent to settle the problem

of fiber imaging in neurosciences field, as originally proposed by Daube-Whitherspoon and

Muehllehner in [42].

Richardson-Lucy model with dictionary basis. The RL model, also known as expectation

maximization (EM) algorithm, follows a statistical Bayesian approach to deconvolution prob-

lem and implements an iterative estimation scheme for approximating the solutions of a maxi-

mum-likelihood problem in the case of different noises [19]. Therein, to establish a necessary

foundation for the presentation and development of the proposed method, a brief overview of

RL model is provided firstly. Like common approach of image restoration uses a probabilistic

framework: given a sampling degraded image S, we can obtain the best image �S (actually is the

fODF) when maximizing the probability of sampling image S. The probability Pð�SjSÞ obeys

Bayes’ rule: Pð�SjSÞ ¼ PðSj�SÞPð�SÞ=PðSÞ. The magnitude signal of MR data is considered as

Rician distribution [43], the likelihood is then:

PðSj�SÞ ¼
S
s2

expf�
1

2s2
ðS2 þ �S2ÞgI0

S�S
s2

� �

ð6Þ

where I0 is the modified Bessel functions of the first kind of zero order, �S denotes the true

Fig 1. Weighting distributions. Distributions of weighting estimated by solving the Least Norm method with Spherical

harmonics (SH) and Dictionary basis (DB).

doi:10.1371/journal.pone.0168864.g001
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magnitude signal intensity in the absence of noise, S is measured value of each voxel with

noise, and σ2 is the variance of noise. When the Rician distribution is acquired with large SNR

(i.e.,�S=s � 3), the process is better known as Gaussian approximation [19, 44, 45].

PðSj�SÞ �
1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p e� ðS� �SÞ2=2s2

ð7Þ

Considering the premise of hypothesis that the sampling signal submitted to spherical

deconvolution, we optimize the Eq (7). The RL model finds f from the observation S, knowing

response function R̂ by maximizing the likelihood distribution. The result can be derived by

minimizing the function � log PðSj�SÞ. We suppose that noise is independent from one voxel to

another. When consider the whole brain region, the log-likelihood becomes a summation of

the likelihood of all voxels. The multiplicative-type algorithm is equivalent to minimize J1(f)
given by

J1ðf Þ ¼
X

x

1

2s2
ðSðxÞ � R̂f ðxÞÞ2 � log

1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p

� �

ð8Þ

where x is the voxel index. Given that the function J1(f) is convex in f, looking for a minimum

is equal to searching for a zero value of gradient of J1(f). We set the derivative of J1(f) with

respect to f to be zero and get
X

x

ðSðxÞ � R̂f ðxÞÞ
s2

R̂T ¼ 0. There are some mathematical oper-

ations which can be founded in [46]. Using the dictionary basis F to represent the fiber orien-

tation f = Fc, we get:

R̂TS
R̂TR̂ðFcÞ

¼ 1 ð9Þ

Richardson and Lucy suggested a multiplicative iterative method to solve Eq (9)

ckþ1 ¼ ck
R̂TS

R̂TR̂ðFckÞ
ð10Þ

Regularization with coefficient of fiber orientation. For obvious reasons, the operation

of spherical deconvolution is a NP-hard problem. To render the reconstruction perfectly and

stably, we use regularization on the coefficient of fiber orientation, such as, total variation

(TV) and sparse regularization. Putting a priori information on the coefficient of fiber orienta-

tion seems reasonable.

One of such information is spatial consistency. Despite many advantages of RL model, the

fiber detail and noise interference are contradictory during the RL iteration process. This

problem is generic for all maximum likelihood techniques because we usually want to attempt

to fit the data as closely as possible. Thus, a trade-off exists between quality of image and the

degree of noise interference when using RL method. In the intravoxel fODF field, voxels

within a small neighbourhood usually consist of similar signals. Thus, the fODF derived from

voxels ought to have a correlation in spatial structure. The advantages of using TV regulariza-

tion are that it reserves the similarity of coefficient and avoids noise amplification by smooth-

ing to certain extent. Here, we introduce TV constraint on the coefficient of fODF of the entire

brain image to solve the above problem by adding energy function J1
reg , defined as:

J1
reg ¼ lTV

X

x

rcij j ð11Þ

iRL
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where λTV is the TV regularization parameter. Regularization is conducted in the entire field

along each special gradient direction, which can be seen as I + 1 brain images. Although the

images fcig
I
i¼1

and cI+1 have different statistical properties, regularization processing in the

neighbouring voxel is not prevented. The spatial dependence introduced by TV function pro-

motes smooth solutions in homogeneous regions and prevents the solution from having oscil-

lations. However the process of regulation will allow the solution to have sharp discontinuities

[47, 48], we need to increase another constraints.

Sparse reconstruction method is broadly applied in the field of digital image processing.

The sparsity constraint of the coefficient of fODF and the sparse recovery process lead us to

estimate a sharp fODF from limited acquisitions. Notably, fiber orientation representation in

the proposed basis is indeed sparse. The true distribution of fiber orientation can be consid-

ered sparse with the assumption that only a small number of elements of fODF are non-zero

physically [49]. However, the introduction of TV regularization induces excessive smoothness

between neighbouring voxels. To ensure each fiber sparse, the sparsity constraint is often

added to fODF in spherical deconvolution problem. We make full use of ℓ1 norm to ensure the

sparsity of coefficient in neighboring voxels. Here, we introduce the energy function of sparsity

term J2
reg , defined as

J2
reg ¼ l‘1

X

x

cij j ð12Þ

where λℓ1
is the sparse regularization parameter. The two regularization terms based on maxi-

mum likelihood estimation can get the derivatives of Jreg with respect to c, which can be

expressed as @

@c
J1
reg ¼ � lTVdiv rc

jrcj

� �

jX
and @

@c
J2
reg ¼ � l‘1

rc
jrcj

� �

jx
, respectively, where div andr

stand for divergence and differentiation, and x is voxel index indicating that regularization is

conducted between voxels. The term |rc| is replaced by its approximate value

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jrcj2 þ ε
q

,

where ε is a small positive constant [47]. The total energy function is known as

J1 þ J1
reg þ J2

reg ¼
X

x

1

2s2
Sþ R̂Fc2 � log

1
ffiffiffiffiffiffiffiffiffiffi
2ps2
p

� �

þ

�

lTV

X

x

rcij j þ l‘1

X

x

cij j
ð13Þ

We minimize Eq (13) using multiplicative gradient-based algorithm (or equivalently using

EM algorithm for penalized criterion of Eq (13) and obtain the final result defined as

cðkþ1Þ ¼ cðkÞ
R̂TS

R̂TR̂ðFcðkÞÞ
� LðkÞ1 � TVðkÞ ð14Þ

where c(k) is the estimated coefficient of fiber orientation, which is a ((L+1) × 1) dimension col-

umn vector at iteration k at voxel x, and LðkÞ1 and TV(k) are the ℓ1 and TV regularization vector

at iteration k. The element at different gradient positions i of ℓ1 regularized vector is computed

as:

L1ð Þ
ðkÞ
i ¼

1

1 � l‘1 �
rcðkÞi

rc
ðkÞ
i

�
�

�
�

� �

xj

ð15Þ
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The element at different gradient position i of TV regularized vector is computed as:

TVðkÞi ¼
1

1 � lTVdiv
rcðkÞi

rc
ðkÞ
i

�
�

�
�

� �

xj

ð16Þ

Numerically, we notice that the regularization parameter should be neither too small nor

too large. In the simulated experiments, we will discuss the selection of regularization

parameters.

Experiments and Results

Experimental data

Simulated data. Datastes are generated assuming axially symmetric diffusion tensor pro-

files for each fiber population (MD = 0.7 × 10−3mm2/s) using a typical 81 directions sampling

scheme [50]. To study the effect of each parameter separately in simulations, only one parame-

ter at a time is varied. Details of these simulated datasets are provided in the following

sections.

• Simulated data1: To guarantee the impartiality of comparative methods, We build the fol-

lowing simulated dataset which is the same with the data in [23], so that we can contrast

iCSD method directly. Two crossing fibers are constructed, assuming the angle of crossing

fiber is 70˚, with varying PVEs values ranging from 0.1 to 1 (with a step of 0.1) and with dif-

ferent b-values of 1000 and 3000. The other dataset also reconstructs two crossing fibers,

with varying crossing angles of fiber ranging from 40˚ to 90˚ (with a step of 10˚) and with

50% isotropic signal. Complex Gaussian noise is added to obtain noisy signals with

SNR = 20.

• Simulated data2: We create the synthetic data with two crossing fibers and different param-

eters which determine the imaging quality. Each simulated dataset is composed by 11 times

11 voxels whose fraction of isotropy is varied from 0.1 to 1 with intervals of 0.1 along x-axis,

and SNR is changed from 10 to 30 with intervals of 2 along y-axis. The dataset is used to

prove the validity of iRL to solve the PVEs under the condition of PVEs and noise changed.

The representative angles are 40˚ and 90˚ between fiber populations in configurations, and

the diffusion weighting b = 3000s/mm2.

IEEE international Symposium on Biomedical Imaging (ISBI) challenge phantom

data. The second simulated dataset coming from the ISBI 2013 Reconstruction Challenge is

acquired from an open-source software library (http://hardi.ep.ch/static/events/2013-ISBI/),

which creates realistic phantoms in structural and diffusion MRI. The synthetic datasets con-

sist of 27 simulated ground truths, including branching, kissing, and crossing structures with

angles between 30˚ and 90˚. The dataset contains 64 gradient directions with b = 3000s/mm2 at

SNR = 10, SNR = 20 and SNR = 30. The fODF mapping is color-coded by the standard DTI col-

our scheme (red: left-right; green: front-back; and blue: up-down).

In vivo human brain data. Evaluation is performed using real human data which is pub-

lished on Dipy (http://nipy.org/dipy/). The whole brain is covered with contiguous 2mm slices

with an in-plane resolution of 2 × 2mm2. For preprocessing of diffusion data, we use MRIcron

and SPM8 toolbox. First, the DICOM images sets (.dcm) are split into NIfTI (.nii), gradient

sequence (.bvecs), and sensitive coefficient (.bvals) datasets using MRIcron software, where

the NIfTI dataset contains scanned sequence corresponding to the gradient sequence. DW

iRL
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images are acquired along 150 uniformly distributed directions using b = 2000s/mm2 and a

single b = 0s/mm2 (the size of the whole brain is 81 × 106 × 76).

Comparison metrics for phantom data

The performances of algorithms are quantified by comparing the obtained reconstructions with

ground-truth. We adopt some of evaluation metrics widely used in the literatures [51–53].

• Average angular error (AAE): We compute the deviation between estimated fiber orienta-

tion and ground truth [54]:

AAE ¼
1

Oj j

X

x2O

Xnp

h¼1

arccos εx � ~εxð Þj j ð17Þ

where εx is the “ground truth” and ~εx is estimated fiber orientation, O is the local region

used to compute angular error. we obtain one or more significant peaks of fODF (the num-

ber of peaks defined as nP) in each voxel x 2 O, sum angular error of all peaks and finally get

the average angular error. These operations are repeated about 100 times.

• Average probability of false direction (APFD): APFD is used to evaluate the probability of

false directions compared with real fiber number ~M x inside a voxel x. The ratio of false posi-

tive (r+) and ratio of false negative (r−) are defined as

rþ ¼
1

Oj j

X

x2O

Mþ

x �
~M x

�
�

�
� � 100%; r� ¼

1

Oj j

X

x2O

~M x � Mþ

x

�
�

�
� � 100%; ð18Þ

In a region O, Mþx and M�x denote the over-estimated and under-estimated number of

fibers inside a voxel compared to ground truth.

• Fractional anisotropy (FA): The FA characterizes the degree of “out-of-roundness” of diffu-

sion ellipsoid. It measures the fraction of total magnitude of diffusion tensor that is aniso-

tropic

FA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 �

�l
� �2

þ l2 �
�l

� �2
þ l3 �

�l
� �2

2 l
2

1
þ l

2

2
þ l

2

3

� �

s

ð19Þ

where λ1, λ2, λ3 are the eigenvalues provided by diffusion tensor, which is one of the most

important rotationally invariant quantitative scalar parameters. �l is the arithmetic mean of

the three eigenvalues.

• Generalized fractional anisotropy (GFA): Scalar measures on the fODF are useful in defin-

ing tissue contrast, performing statistical analyses, or summarizing the geometric properties

of fODF. We define the scalar measures GFA as

GFA ¼
std fð Þ
rms fð Þ

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

j¼1
ðf ðvjÞ � fh iÞ2

ðn � 1Þ
Pn

j¼1
f ðvjÞ

2

v
u
u
t ð20Þ

where n is the number of fODF, std is the standard deviation, rms is the root-mean-square,

and hf i ¼ 1
n
Pn

j¼1
f ðvjÞ is the mean of the ODF. The GFA metric is automatically normal-

ized to [0, 1].
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• Generalized relative anisotropy (GRA): The GRA scalar represents a measurement of devi-

ation from the isotropic state of the fODF of each voxel:

GRA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1
ðf ðvjÞ � fh iÞ2

n fh i

s

ð21Þ

It’s worth noting that peaks in clusters that are less than half of the crossing angle (with an

upper limit of 35 degrees) from the true orientations are considered correct peaks.

Implementation details

All experiments of the proposed method are conducted on Inter(R)@2.4 GHz (48 G RAM, 64

bit). For measured signal, the obtained mask image is down-sampled to the dimensions of

dMRI. Mask analysis is conducted on DSI Studio 1 (http://www.dsi-studio.labsolver.org). For

the dictionary basis, the dimension of coefficients and the basis vectors are the same, represent-

ing the related percentage of each dictionary basis. For the positional direction sets u of dictio-

nary basis, a tessellation scheme is distributed evenly on 321 points on a hemisphere and is

generated by the subdivision of the face of an icosahedron. By avoiding repeated sampling, the

discrete direction sets v are made to be identical with u. To perfectly reconstruct the fODF, the

reconstructed dictionary basis is designed using a symmetric sphere with 10 242 vertices from

Dipy (http://dipy.org/), which is an array of 10 242 fODF values corresponding to the vertices

of sphere. To ensure the applicability of in vivo data, the two RFs in vivo data are acquired

according to typical value of diffusion tensor signals in the corpus callosum and cortex respec-

tively [17, 23]. We choose 50 voxels with the highest FA and use the average of signals whose

principal eigenvectors are aligned along z-axis to acquire the anisotropic RF. Identically, we

choose 50 voxels with the lowest FA and use the average of signals to acquire the isotropic RF.

We compare the proposed method iRL with the other state-of-the-art methods on simu-

lated phantom and real data. The alternative approaches include Recursive calibration con-

strained spherical deconvolution (RC-CSD) [55], Sparse Fascicle Model (SFM) [56], damped

Richardson Lucy (dRL) [26], information constrained spherical deconvolution (iCSD) [23]

and Multi-shell multi-tissue constrained spherical deconvolution(MSMT-CSD) [24]. RC-CSD

is an improvement of SD, which provides an accurately calibrated RF. SFM treats each MRI

voxel as two types of compartments, non-oriented tissues and oriented fascicles considering

the PVEs, which is implemented using Dipy (http://nipy.org/dipy/index.html) publish library

[57]. The dRL is aiming at reducing isotropic background effects in spherical deconvolution,

which is implemented using a software package provided in (http://neuroimagen.es/webs/

hardi-tools/). The iCSD improves the estimation of fODF by modifying the RF to account for

non-WM PVEs locally. MSMT-CSD uses CSD approach to estimate a multi-tissue ODF and

implements in MRtrix (http://www.mrtrix.org/) [58]. It’s worth mentioning that MSMT-CSD

can reconstruct brain fibers using single shell data, but the function of separating different tis-

sues can not work well. The number of iterations of each method is set to 200 times. The

related parameters used in compared methods are set to their optimal values according to the

reference documents. For dRL algorithm, η acts as a threshold parameter and controls the

damped amplitude of FOF, which is set to η = 0.08.

Results

Optimal regularization parameter. The new deconvolution algorithm with TV and ℓ1

regularization has shown good imaging result with the elaborately chosen regularization

iRL
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parameters. The choice of good parameters value plays a crucial role in imaging results when

using iRL. Thus, the first step of our experiment is to study if and how c estimation is influ-

enced by setting different regularization parameters and by choosing different numbers of

algorithm iterations during the process of our algorithm. To obtain the best regularization

parameters and the number of iterations, we use different parameters to image the ISBI data

with SNRs of 10, 20 and 30, and identify the quantitative index to evaluate image quality. To

select regularization parameters, we use the AAE to be the quantitative index (Fig 2).

We performe 100 repetitions with simulated data. We find that the ℓ1 regularization param-

eter affects the angular resolution of imaging fiber and the TV regularization plays a vital role

in resisting noise. We need only to increase the value of the TV or ℓ1 regularization parameters

to improve the quality of imaging when the signals have low SNR or small angle, respectively.

From Fig 2, the best regularization parameters can be set to λℓ1
= 0.01 and λTV = 0.5. The RL

algorithm has certain superiority in resisting noise, but when the SNR is low, as shown in Fig

2, the imaging results are unsatisfactory and have a relatively large angular error.

The RL algorithm is known to have the property of ‘semi-convergence’ [59], i.e., the solu-

tion initially converges to the true value and then diverges as iterations proceed [19]. We

choose 200 as the maximum iteration numbers to prevent noise amplification and generation

of artifacts.

Simulated data in the presence of isotropic diffusion. We use different simulated data-

sets to verify the effectiveness of iRL. Comparative tests are conducted by four kinds of meth-

ods. This experiment is used to verify the ability of imaging the signal with different volume

fractions of isotropic signal (Fig 3). The other simulated datasets are generated in the same

way, excepting that the diffusion weighting b is changed (Fig 4). We perform 100 repetitions

with the simulated datasets that are generated randomly.

Fig 2. Simulated results of parameter selection. Average angular error using different regularization parameters in ISBI data with

different SNRs.

doi:10.1371/journal.pone.0168864.g002

Fig 3. Comparison of simulated results. AAE, False peaks and Correct peaks for different proportions of anisotropic signal (diffusion

weighting 3000s/mm2, angle 70˚, and SNR 20).

doi:10.1371/journal.pone.0168864.g003
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Compared with the low b value dataset, the high b value dataset shows fODF with a partial

increase in angular resolution. However, no change exists in angular resolution for the signal

with low proportion of anisotropy. Figs 3 and 4 show that when the signal has high proportion

of anisotropy, the imagings of five kinds of methods are all accurate. The iCSD and iRL have a

relative better angular resolution and less numbers of false peaks. When high isotropy exists in

the simulated signal, iRL is advantageous over the other four kinds of methods in the aspect of

angular resolution. Regardless of signal composition, iRL has the best and smallest angular

resolution.

We perform simulated experiments to investigate the simulated datasets with different fiber

crossing angles. We utilize five methods to image the above simulated signals respectively.

This experiment is used to verify the ability of imaging the signal with different crossing angles

(the results are shown in Fig 5). We also perform 100 repetitions with the simulated datasets

which are generated randomly.

The five methods are all becoming more effective as the crossing angles increasing. In our

method, the quantitative indexes of AAE and false peaks is lower for all angles and the preci-

sion is improved remarkably for angles larger than 50˚ (Fig 5). It’s worth mentioning that the

40˚ crossing angle could be identified with 50% PVEs using iRL.

We also perform simulated experiments to investigate simulated datasets with different

PVEs and SNRs and utilize five methods to image the above simulated signals respectively (the

results are shown in Fig 6). To verify the effectiveness of our method in aspect of the new iso-

tropic quantitative index, we conduct the signal of simulated data2 and the imaging result is

mapped to quantitative indexes, FA and GFA included.

In the case of anisotropy and SNR increased, the upper-left corner of each figure has the

poorest simulated signal, and the lower-right corner of each figure has the best simulated sig-

nal. In Fig 6, we compare FA, GFA, and our new quantitative index Piso (because the quantifi-

cation of Piso is the extent of isotropy, which is contrary to FA and GFA. For comparison, we

Fig 4. Comparison of simulated results. AAE, False peaks and Correct peaks for different proportions of anisotropic signal (diffusion

weighting 1000s/mm2, angle 70˚, and SNR 20).

doi:10.1371/journal.pone.0168864.g004

Fig 5. Comparison of simulated results. AAE, false peaks and correct peaks for different crossing angles(with 50% isotropic signal,

diffusion weighting 3000s/mm2, and SNR 20).

doi:10.1371/journal.pone.0168864.g005
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make Piso a reverse imaging) using different methods (Figures a1-e1) and different crossing

angles (Figures a1-a2). For 40˚ cross fibers, no significant difference is observed. For 90˚ cross

fibers, the quantitative index FA has an obvious deficiency in which the degree of anisotropy is

lower than the normal levels. However, the quantitative indexes GFA and Piso have a correct

indication. Considering both experiments, Piso has better implementation in low anisotropy.

fODF estimation for ISBI data. We compare several different methods using the authori-

tative ISBI simulated experiment data. Fig 7 compares the reconstructed fODF. We observe

that the fODF estimations of each voxel are relatively independent and prone to noise. The

fiber orientations reconstructed by standard RC-CSD, SFM, dRL, and MSMT-CSD methods

always lack important information on fiber crossing.

Fig 6. Comparison of the simulated results. FA and GFA with RC-CSD(a), SFM (b), dRL (c), iCSD (d) and iRL (e).

Figures a1-f1 are the imagings for 40˚ cross-angle. Figures a2-f2 are the imagings for 90˚ cross-angle. Figures f1-f2 are the

new index Piso.

doi:10.1371/journal.pone.0168864.g006

Fig 7. Visualization of the fODF reconstructed from ISBI dataset with HARDI data. Depicted fODF profiles

correspond to estimations from the RC-CSD (a), SFM (b), dRL (c), MSMT-CSD (d) and our method iRL (e).

doi:10.1371/journal.pone.0168864.g007
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In the marked regions in Fig 7, the crossing angles are very small. The iRL can separate this

part of crossing, but the results are imperfect. In the crossing fiber case, performances are

assessed according to two criteria: (1) the effect of miscalibration on angular resolution, and

(2) the over-estimated and under-estimated number of fibers. Fig 8 shows that iRL produces

fewer angular errors. About the overestimation of false peaks, iRL has a better result when

compared with RC-CSD and SFM. There is a better result about underestimation of false

peaks when compared with dRL and MSMT-CSD. It’s mentioning that the iRL has fewer total

numbers of false peaks than the other five methods, regardless of SNR.

fODF estimation for human data. Evaluation is performed using real human data

acquired on public datasets (http://nipy.org/dipy/). We select two representative areas, one of

the areas contains multiple functional areas of the brain, such as the cortex and CSF (i.e, con-

taining possible isotropic compartment).

Fig 9 compares the intravoxel fiber architecture estimated by five different methods on the

human datasets. In the posterior thalamic radiation (refer to Human Brain in ICBM-152

Space) region (marked with a yellow box in Fig 9), the situation of fiber crossing is complex,

containing single fiber and multiple fiber crossings. The iRL has a good imaging of multiple

fiber crossing trends. The other methods always lack of some fiber directions. The same results

can be seen in Fig 10. In addition, in the posterior thalamic radiation region, the isotropic sig-

nal is stronger, and the compared results are more obvious. In particular, the fibers (red ellip-

ses) in the superior temporal gyrus WM (STG-WM) and the middle temporal gyrus WM

(MTG-WM) regions are well represented by iRL.

Fig 8. Quantification of the reconstruction accuracy. The results of RC-CSD, SFM, dRL, MSMT-CSD, and iRL in terms of AAE, n+,

and n− using ISBI data.

doi:10.1371/journal.pone.0168864.g008

Fig 9. Visualization of fODFs reconstructed from real data. Depicted fODF profiles correspond to the

estimations from RC-CSD (a), SFM (b), dRL (c), MSMT-CSD (d) and iRL (e). The background images are

fractional anisotropy images computed from each reconstruction.

doi:10.1371/journal.pone.0168864.g009
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The quantitative indexes of GM and WM are carried out in above areas. We use Piso to

quantify the difference between WM and GM in brain regions by using different indexes,

including FA, GFA, and GRA. The three indexes are well-known and used in various occa-

sions to describe the strength of anisotropic diffusion.

The degree of diffusion anisotropy is severely underestimated using the indexes calculated

by diffusion coefficients acquired in fiber orientations. Some researchers present that water

diffusivity in the directions parallel to the fiber is almost 10 times higher than the average diffu-

sivity in directions perpendicular to them [9]. The marked area where the fibers have vertical

distribution. The anisotropy is actually very strong, whereas the figure of FA (Fig 11b1) shows

a strong isotropy. The figures of Piso (Fig 11a), GFA (Fig 11b2), and GRA (Fig 11b3) show simi-

lar results on anisotropy.

Conclusions and Discussion

We focus on PVEs in the reconstruction of fiber configuration, which rarely elicit interest of

researchers. PVEs are some of the greatest obstacles in improving the accuracy of fiber imag-

ing. We usually utilize the anisotropic signal to reconstruct fiber orientation, which is affected

by the isotropic signal. Only by removing the isotropic signal from DW signal, can we obtain

the best imaging results, as we have done in this paper. The contribution of our approach is

that we initially propose a method based on the local maximum likelihood estimation to isolate

the isotropic from DW signal in entire regions included in both non-WM and WM by rebuild-

ing RF and fODF used to estimate the coefficients of fODF to account for tissues composition.

At the same time, the separated parts can be used to quantify the degree of isotropic signal in

each individual voxel. Secondly, the application of dictionary basis and RL model successfully

solves the ill-posed problem and ringing effect. Finally, the spatial regularization of FOD is

approximated by combining TV and ℓ1 norms that stabilize the deconvolution problem and

promote sparsity in the solution. We also compare the performances of proposed method with

several state-of-the-art algorithms on synthetic data and human brain datasets. Results show

significant improvement over contrastive methods in its ability to reduce false positive fiber

orientations and preserve angular resolution on both simulated and in vivo datasets.

Fig 10. Visualization of fODFs reconstructed from real data. Depicted fODF profiles correspond to the estimations

from RC-CSD (a), SFM (b), dRL (c), MSMT-CSD (d) and iRL (e). The background images are the fractional anisotropy

images computed from each reconstruction.

doi:10.1371/journal.pone.0168864.g010
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Some of non-WM PVEs are due to the reduced SNR of WM compartment, which cannot

be recovered, and the rest of effects are due to mostly isotropic diffusion from non-WM tissue

[23]. In this paper, we extend PVEs’ influence, including the isotropic diffusion in WM and

the increase in isotropy caused by complex fiber directions. By isolating the isotropic signal,

the imaging results significantly improve, especially on the AAE, throughout the whole brain.

From the Fig 8, we control the AAE within 8˚ using open ISBI data.

Simulated results show that with the reduction of isotropic signal, the AAE significantly

increases. As regard 50˚ of crossing fiber, although the proportion of isotropic signal is as low

as 0.1, the AAE remains within 30˚. This is a complicated process because the imaging result is

affected by many parameters, such as b value, regularization parameters, iterations, and so on.

For different datasets, we should adjust the corresponding parameters to obtain the best imag-

ing results. Notably, a lower b value leads to poorer imaging. We can find another defect, i.e.,

the decrease in fiber quantity is more outstanding than the overestimation of fiber in the simu-

lated data. This problem is inherent in the method related to RL, which will be our concern in

a future study.

Real experimental results indicate that iRL efficiently improves the ability of resolving

crossing fibers in regions with high PVEs, whereas in high anisotropy regions, iRL and others

Fig 11. Display of diffusion degree using four methods. (a): Piso quantifies the intensity of isotropic signal, and (b1-b3)

quantify the intensity of anisotropic signal.

doi:10.1371/journal.pone.0168864.g011
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produce roughly identical results. In the region of the internal capsule and the corpus callo-

sum, the tracts have relatively larger amplitude, which is particularly useful in connectomics.

Given the abandonment of least squares and spherical harmonic function, the spurious fODF

peaks (consistent with well-known ringing artefacts) have a prominent reduction on Figs 9

and 10. The comparisons of the tract density image between iRL and others show increased

tract density in the main WM tracts and decreased tract density in non-WM region, which are

useful for fiber tracking.

Some open areas of researches exist in iRL. Firstly, for the two different diffusion models,

different choices exist for regularization parameters. Considering the different diffusion

regions, the strength of regularization should be discrepant. Secondly, a calibrated RF must be

used to further reduce spurious peaks. Fortunately, the methods based on RL have a low over-

all sensitivity to miscalibration. Thirdly, this method has potential to considerably reduce gra-

dient directions, indicating a clinically feasible acquisition time. Thus, the application of this

method is significant in clinical studies in the future. Finally, the assumed unimodal Gaussian

diffusion model does not apply to MRI measurements, which are completely proven to be

Rician distribution model [60]. These existing problems will be studied in our future work.
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