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Abstract

Background: BC RNAs and the fragile X mental retardation protein (FMRP) are translational repressors that have been
implicated in the control of local protein synthesis at the synapse. Work with BC1 and Fmr1 animal models has revealed that
phenotypical consequences resulting from the absence of either BC1 RNA or FMRP are remarkably similar. To establish
functional interactions between BC1 RNA and FMRP is important for our understanding of how local protein synthesis
regulates neuronal excitability.

Methodology/Principal Findings: We generated BC12/2 Fmr12/2 double knockout (dKO) mice. We examined such
animals, lacking both BC1 RNA and FMRP, in comparison with single knockout (sKO) animals lacking either one repressor.
Analysis of neural phenotypical output revealed that at least three attributes of brain functionality are subject to control by
both BC1 RNA and FMRP: neuronal network excitability, epileptogenesis, and place learning. The severity of CA3 pyramidal
cell hyperexcitability was significantly higher in BC12/2 Fmr12/2 dKO preparations than in the respective sKO
preparations, as was seizure susceptibility of BC12/2 Fmr12/2 dKO animals in response to auditory stimulation. In place
learning, BC12/2 Fmr12/2 dKO animals were severely impaired, in contrast to BC12/2 or Fmr12/2 sKO animals which
exhibited only mild deficits.

Conclusions/Significance: Our data indicate that BC1 RNA and FMRP operate in sequential-independent fashion. They
suggest that the molecular interplay between two translational repressors directly impacts brain functionality.
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Introduction

A key determinant in the experience-dependent interpretation

of genetic information is provided by local translational control of

gene expression at neuronal synapses. The regulated translation of

select mRNAs at synaptic sites is now recognized as a core

mechanism in the long-term modulation of neuronal interactions

[1–4]. Several types of translational regulators have been identified

in neurons, including the fragile X mental retardation protein

(FMRP) [5–7] and regulatory BC RNAs [8,9].

Functional absence of FMRP gives rise to the fragile X

syndrome (FXS) [10], a common inherited form of mental

retardation that is characterized by cognitive impairments,

behavioral abnormalities and, in subpopulations of FXS patients,

by epileptic and/or autistic phenotypes [11]. FMRP is an RNA-

binding protein that interacts with a subset of neuronal RNAs

[12–17]. The protein operates as a translational repressor [17–19],

most likely via association with neuronal polyribosomes [20–23]

[but see 19,24].

Regulatory BC RNAs repress translation at the initiation level

[25–28]. Absence of dendritic BC1 RNA results in neuronal

hyperexcitability and epileptogenesis [29]. The apparent pheno-

typical commonalities between impaired BC1 RNA and FMRP

translational control [see 29,30,31] prompt the question whether

the two systems are functionally intersecting. Is the overlapping

phenotypical output the result of pathway modulations that are

implemented sequentially (and thus likely in independent fashion)

or concomitantly (and thus possibly in mutually interdependent

fashion)? Answers to these questions will be directly relevant to our

understanding of the molecular basis of FXS and associated

disorders. Therefore, in the present work, we undertook a

functional dissection of FMRP and BC1 RNA translational

PLoS ONE | www.plosone.org 1 November 2010 | Volume 5 | Issue 11 | e15509



Figure 1. Concurrent absence of BC1 RNA and FMRP gives rise to exacerbated synaptic hyperexcitability of CA3 pyramidal cells.
(A) Prolonged epileptiform discharges induced by bicuculline (Bic) in hippocampal slices occurred earlier (20 min) in BC12/2 Fmr12/2 slice
preparations (right column) than in BC12/2 (left column) or Fmr12/2 (middle column) preparations. (B) Summary frequency histograms from each

BC1 RNA and FMRP

PLoS ONE | www.plosone.org 2 November 2010 | Volume 5 | Issue 11 | e15509



repression pathway interactions using Fmr12/2, BC12/2, and

BC12/2 Fmr12/2 animal model systems.

Results

Exacerbated Hyperexcitability of the CA3 Neuronal
Network

We examined synaptic excitability and epileptogenic suscepti-

bility using electrophysiological approaches. Intracellular record-

ings were performed in CA3 glutamatergic principal neurons of

hippocampal slice preparations from BC12/2, Fmr12/2,

BC12/2 Fmr12/2, and WT animals. Epileptiform discharges

were elicited by application of bicuculline, a GABAA receptor

antagonist [31]. This disinhibition causes short (,1.5 s) synchro-

nized discharges that are stable over the recording period in WT

animals; they result in elevated synaptic release of glutamate from

principal neurons [31].

In all three mutant preparations, but not in WT preparations,

such short discharges over time transformed into recurrent

prolonged synchronized discharges (duration.1.5 s) that are

similar to ictal events in epilepsy [Fig. 1; see also 29,31]. This

transition of discharge duration from a unimodal phase (short

bursts only) to a bimodal phase (long bursts in addition to short

bursts) was significantly accelerated in hippocampal slices

prepared from BC12/2 Fmr12/2 dKO animals. Prolonged

discharges appeared after only 20 min in dKO preparations

(Fig. 1A and 1B, right columns), whereas they did not begin to

occur until after 30–40 min in sKO preparations (Fig. 1, left and

center columns). In addition, at time points 20 min or more after

bicuculline application, epileptiform discharges in BC12/2

Fmr12/2 dKO slices were significantly longer (Fig. 1B, 20 and

40 min) and occurred more frequently (Fig. 1B, right column) than

in either type of sKO slices. Thus, prolonged discharges (i)

appeared earlier, (ii) were of longer average duration, and (iii)

occurred at a higher relative frequency in BC12/2 Fmr12/2

dKO preparations than in either BC12/2 or Fmr12/2 sKO

preparations. The data indicate that the concurrent absence of

BC1 RNA and FMRP precipitates a significantly higher level of

neuronal hyperexcitability than the absence of one repressor

alone.

Heightened Epileptogenic Susceptibility
To investigate epileptogenic vulnerability in vivo, WT animals

and BC12/2, Fmr12/2, and BC12/2 Fmr12/2 mutant

animals were subjected to auditory stimulation. When exposed to

a 120 dB sound, animals of the three mutant mouse strains, but

not WT animals, typically initiated excessive motor activity in the

form of wild, uncontrolled running and jumping, as has previously

been described for BC12/2 and Fmr12/2 sKO animals

[29,32,33]. Such wild running was followed, within less than 2

minutes, by generalized tonic-clonic seizures (Fig. 2; Movie S1).

The percentage of animals undergoing convulsive seizures was

high for all three mutant strains (.75%; Fig. 2A). However, while

most sKO animals recovered from such seizures within less than 2

minutes, a remarkably high percentage of BC12/2 Fmr12/2

dKO animals died while undergoing seizures (.86% lethality

within ,90 s after onset of alarm) (Fig. 2B). Thus, BC1-/2

Fmr12/2 dKO animals are acutely susceptible to audiogenic

epileptogenesis, and epileptic lethality is significantly increased in

comparison to BC12/2 or Fmr12/2 sKO animals (Fig. 2).

These results are corroborated by data indicating that initial

epileptogenic responses (uncontrolled running) were triggered faster

in BC12/2 Fmr12/2 dKO animals than in either BC12/2

animals or Fmr12/2 animals. The percentages of animals in

uncontrolled running at 10 s, 15 s, and 20 s after start of the alarm

were significantly higher in the BC12/2 Fmr12/2 group than in

either the BC12/2 or the Fmr12/2 group (Fig. S1).

The combined results indicate that concomitant absence of BC1

RNA and FMRP results in severely heightened susceptibility to

hyperexcitability and epileptogenesis, in comparison with animal

models that lack only one type of translational repressor.

Impaired Place Learning
We used an active place avoidance paradigm [34] to assess

place learning in sKO and dKO animals. As shown in Fig. 3A,

WT animals quickly learned to avoid entering a rotating shock

zone, reaching their performance asymptote by the third trial on

the first day of training. Learning in BC12/2 and Fmr12/2

sKO animals was also robust but retarded in comparison to the

WT animals. However, in clear contrast to learning in sKO

animals, active place avoidance in dKO animals did not improve

at all, even over 3 days of training (Fig. 3).

Thus, while place learning was preserved although retarded in

both groups of sKO animals, a severe learning deficit was

apparent in dKO animals.

Discussion

We used three phenotypical readouts -— neuronal network

excitability, epileptogenesis, and place learning -— to evaluate the

relative contributions of two translational repressors, BC1 RNA

and FMRP, to brain function. We report that in all three cases,

phenotypical deficiencies were significantly exacerbated in

BC12/2 Fmr12/2 dKO animals, relative to BC12/2 or

Fmr12/2 sKO animals. As will be discussed in the following,

these results have critical implications concerning the mode of

functional interactions between the two repressors, BC1 RNA and

FMRP.

Neuronal excitability was examined in hippocampal CA3

pyramidal cells. Previous work has shown that in BC12/2 and

Fmr12/2 preparations, synaptic glutamate release elicits ictal-

like prolonged epileptiform discharges [29,31]. We now observe

that the severity of such hyperexcitability is significantly height-

ened in BC12/2 Fmr12/2 dKO preparations. This phenotyp-

of the three groups of preparations (n, number of slices; one slice per animal) with second-order Gaussian function fits. The appearance of a second
distinct peak of burst duration distribution indicates burst prolongation. Bicuculline-elicited burst prolongation occurred in all the three groups but
was most prominent in BC12/2 Fmr12/2 preparations, evidenced as follows. (i) Between 10 and 20 min of bicuculline, burst durations significantly
increased in the BC12/2 Fmr12/2 group (10 min: 0.21360.008 s; n = 22; 20 min: 1.31660.228 s; n = 29; two-way ANOVA followed by Newman-
Keuls post-hoc test: P,0.01), whereas burst durations did not change in the BC12/2 (10 min: 0.21660.005 s; n = 24; 20 min: 0.28760.016 s; n = 30)
or Fmr12/2 (10 min: 0.23060.013 s; n = 13; 20 min: 0.61660.026 s; n = 35) groups. (ii) Beginning at 20 min of bicuculline, burst durations were
significantly longer in BC12/2 Fmr12/2 slices than in BC12/2 or in Fmr12/2 slices (P,0.01 in all cases). At 40 min bicuculline, the mean duration
of long bursts was greater in BC12/2 Fmr12/2 (4.41360.279 s; n = 13) than in BC12/2 (2.99260.164 s; n = 11; P,0.001) or in Fmr12/2 slices
(2.70560.264 s; n = 9; P,0.001). (iii) The relative frequency of long bursts (as percentage of total number of bursts) was significantly higher in
BC12/2 Fmr12/2 (Bic 30 min: 67.9%; Bic 40 min: 68.4%) than in BC12/2 (Bic 30 min: 21.9%; x2 test, P,0.001; Bic 40 min: 29.7%; P,0.01) or in
Fmr12/2 preparations (Bic 30 min: 15.1%; P,0.001; Bic 40 min: 29.0%; P,0.01).
doi:10.1371/journal.pone.0015509.g001

BC1 RNA and FMRP
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ical exacerbation in the absence of two translational repressors was

mirrored in aggravated epileptogenesis in vivo. Sensitivity to

audiogenic seizures, as previously described for BC12/2 and

Fmr12/2 animals [29,32,33] was also observed in BC12/2

Fmr12/2 dKO animals. However, in contrast to sKO animals in

which lethality from audiogenic seizures is in the range of 20–30%,

Figure 2. Severe epileptogenic susceptibility of BC12/2 Fmr12/2 dKO animals results in high lethality. (A) Lack of BC1 RNA, FMRP, or
both, significantly increased propensity for audiogenic seizures (Generalized Linear Model, followed by post-hoc tests of pairs of groups using exact
logistic regression stratified by litter; P,0.0001 for each group when compared to WT). (B) Rate of lethality resulting from audiogenic seizures was
significantly higher in BC12/2 Fmr12/2 animals than in BC12/2 animals (P,0.0001) or in Fmr12/2 animals (P = 0.0007). All mutant animals had a
significantly higher audiogenic lethality rate compared with WT (BC12/2 Fmr12/2, P,0.0001; BC12/2, P = 0.008; Fmr12/2, P,0.0001). BC12/2
animals did not significantly differ from Fmr12/2 animals in audiogenic lethality (P = 0.0719). Error bars represent 95% confidence intervals. WT,
n = 30; BC12/2, n = 31; BC12/2 Fmr12/2, n = 37; Fmr12/2, n = 29.
doi:10.1371/journal.pone.0015509.g002

Figure 3. Place learning is mildly impaired in BC12/2 and Fmr12/2 sKO mice but severely impaired in BC12/2 Fmr12/2 dKO
mice. (A) Exploration, measured as the number of entrances into a 60u zone (gray sector on the circle in the schematic), did not differ amongst the
groups on the pre-training trial when the shock was off (F3,26 = 0.38; P = 0.8). When the shock was turned on (red sector), all groups except the dKO
learned to avoid the shock zone. The effects of genotype and trial across place training were significant (genotype: F3,234 = 141.81; P = 10252;
F8,234 = 4.96; P = 1025) and the interaction was not (F24,234 = 0.70; P = 0.85). Newman-Keuls post-hoc tests confirmed that the overall number of
entrances significantly differed between all groups (WT,Fmr12/2,BC12/2,dKO). The failure of the dKO to learn persisted across 3 days of
training (3 trials/day) and this was confirmed by 1-way ANOVA on the factor trial (F8,45 = 1.02; P = 0.43). (B) Summary of behavior on the pre-training
and active avoidance trials illustrates the significant group differences during place learning. Error bars indicate S.E.M., *P,0.05, ***P,0.001. BC12/2,
n = 6; Fmr12/2, n = 6; dKO, n = 6; WT, n = 12.
doi:10.1371/journal.pone.0015509.g003

BC1 RNA and FMRP
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audiogenic lethality in BC12/2 Fmr12/2 dKO animals was

found approaching 90%. It appears that absence of the

translational repressors BC1 RNA and FMRP contribute in

modular fashion to phenotypical impairments.

In the active place avoidance paradigm, BC12/2 and

Fmr12/2 sKO animals exhibited only mild place learning

deficits, results that are in agreement with previous observations

that such animals showed no or only mild learning impairments in

the Morris water maze and other maze tasks [35–37]. In contrast,

BC12/2 Fmr12/2 dKO animals were severely impaired in

their place learning ability. We note that the active place

avoidance task goes beyond testing spatial and navigation ability

[38] because optimal performance requires the mouse to segregate

the useful spatial information from the stationary spatial frame

from the irrelevant spatial information from the rotating spatial

frame. Indeed, the ability to segregate spatial information has been

dissociated from the ability to form spatial associations [39]. These

properties may make the active place avoidance task exquisitely

sensitive to even mild hippocampal dysfunction [40,41], certainly

more than the water maze [39,42], and possibly more than other

place learning tasks. In summary, data obtained in three readouts

of brain function indicate that concurrent lack of both BC1 RNA

and FMRP significantly compounds the phenotypical consequenc-

es that are observed in the absence of only one repressor.

The results presented here indicate that the repressors BC1

RNA and FMRP operate sequentially in the translation pathway

(Fig. 4). In this scenario, the repressors act in series and

independently of each other. Therefore, lack of one repressor will

leave the respective other repressor unaffected and functional, and

phenotypical output will be less severely impacted than in the case

of concurrent absence of both repressors. This model is also

compatible with recent results showing that defects of striatal

mGluR5-endocannabinoid signaling were significantly exacerbat-

ed in BC12/2 Fmr12/2 dKO preparations [43] [but see 44].

Conversely, our results are not compatible with a model in which

BC1 RNA and FMRP operate in interdependent fashion [24] as

in this case, lack of both repressors should precipitate the same

phenotypical consequences as lack of either one repressor. We

conclude that the mode of action of BC1 RNA and FMRP is

sequential-independent.

Figure 4. BC1 RNA and FMRP act as repressors on activity-stimulated translation. In this model, a balance of power is maintained in the
postsynaptic translation pathway by the functional interplay between two opposing forces: (i) the stimulatory consequences of receptor activation,
and (ii) translational repression by BC1 RNA and FMRP. It is suggested that BC1 RNA and FMRP, operating in series in the same translational pathway,
target overlapping but non-identical sets of mRNAs. We posit that multiple repressors are needed at the synapse to ensure adequate stimulation-
repression homeostasis and to allow for differential derepression options.
doi:10.1371/journal.pone.0015509.g004

BC1 RNA and FMRP
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Protein-synthetic capacity in synapto-dendritic domains allows a

neuron to respond to external stimuli in an input-specific,

experience-dependent manner [2,45]. However, such gains in

neuronal plastic responsiveness come at a price: a protein synthetic

machinery that, unless properly controlled, may engage in

premature or inappropriate translation of locally available

mRNAs, resulting in neuronal hyperexcitability. We suggest that

effective local translational repression is vital for a neuron to

ensure that proteins are only synthesized when and where needed.

BC RNAs and FMRP represent two types of neuronal

translational repressors. Previous work has established a balance

of power between receptor activation on one hand and

translational repression by BC1 RNA and FMRP on the other

[7,29,46]. Translational repressors thus operate as ‘‘brakes’’ that

counteract receptor-mediated translational stimulation (Fig. 4),

establishing a stimulation-repression balance that controls trans-

lational output in accordance with the physiological status of the

synapse. Such brakes have been in place early during phylogenetic

brain development as an FMRP ortholog exists in Drosophila

[47]. In contrast, dendritic BC RNAs are mammalian-specific,

with BC1 RNA restricted to rodents (Rodentia), BC200 RNA

restricted to simian primates (Anthropoidea) [48,49]. It is therefore

likely that these RNAs were independently recruited into their

current repression function at a later time in mammalian evolution

during which increasing brain complexity required more stringent

translational control mechanisms. Multiple, mutually independent

translational control mechanisms in neurons may also allow for

more discrete regulation by upstream signals. The evolution of

neuronal RNA-coding genes thus appears to be linked to

increasing nervous system complexity in eukaryotes [50,51].

Materials and Methods

Animals
Work with vertebrate animals was in accordance with the

Public Health Service Policy on Humane Care and Use of

Laboratory Animals and was approved by the State University

of New York Brooklyn Institutional Animal Care and Use

Committee (Institutional Assurance Number A3260-01, Protocol

Number 10-074-09).

BC12/2 mice (lines 13 and 15) were established from

independent mutant ES cell lines [52] and used as described

[53]. Both lines have a mixed C57BL6/sv129 background. Lines

13 and 15 were used (with equivalent results) for experiments

shown in Figs. 1 and 2, line 15 was used for experiments shown in

Fig. 3. Fmr12/2 mice carrying the Fmr1tm1Cgr allele were

obtained from Jackson Laboratories (Bar Harbor, ME), and have a

mixed C57BL6/FVB background. BC12/2 mice were crossed

with Fmr12/2 mice to generate BC12/2 Fmr12/2 mice

which have a mixed C57BL6/FVB/sv129 background. We used

animals at 18–21 days of age except for place learning tasks in

which animals at 2–4 months were used.

Hippocampal Slice Preparations and Electrophysiological
Recordings

Transverse hippocampal slices (400 mm) were prepared as

described [54]. Slices were allowed to recover from the isolation

procedure for at least 1.5 h. Intracellular recordings were carried

out in CA3 pyramidal cells using an Axoclamp 2A amplifier

(Molecular Devices, Palo Alto, CA) as described [29].

Auditory Stimulation
Epileptogenic susceptibility to auditory stimuli was tested as

described [29]. Animals were subjected to auditory stimulation for

15 minutes. Video recordings were analyzed by a person who was

not informed of the animals’ genotypes. Recorded parameters

included: time to onset of uncontrolled running, time to onset of

seizure, percentage of animals undergoing seizures, and lethality.

Place Learning
We used an active place avoidance paradigm to examine place

learning [34]. All animals were trained in a task that requires

intact hippocampal function for learning, consolidation and recall

[34] as well as hippocampal LTP maintenance by persistent

activation of PKMf for long-term memory storage [42,55]. The

mice were habituated to a rotating arena during a 10-min pre-

training session. Active avoidance training began on the following

trials by activating a stationary 60u sector as a shock zone.

Data Analysis and Statistical Evaluation were performed as

described [29].

Supporting Information

Figure S1 Initial epileptogenic responses were trig-
gered significantly faster in BC12/2 Fmr12/2 dKO
animals. Percentages of animals in uncontrolled running after

10 s, 15 s, and 20 s were significantly higher in the BC12/2

Fmr12/2 group than in either the BC12/2 or the Fmr12/2

group (Generalized Linear Model, followed by post-hoc tests of

pairs of groups using exact logistic regression stratified by litter,

P,0.0001 for 10 s, 15 s, and 20 s groups). The BC12/2 and the

Fmr12/2 groups did not significantly differ from each other.

Error bars represent 95% confidence intervals. (EPS)
Movie S1

Acknowledgments

We thank colleagues at the Robert F. Furchgott Center for advice and

discussion. Statistical consultation was provided by Dr. Jeremy Weedon at

the SUNY Brooklyn Scientific Computing Center.

Author Contributions

Conceived and designed the experiments: JZ AAF RKSW HT. Performed the

experiments: JZ SCC GP PT DL. Analyzed the data: JZ SCC RB WZ GP PT

AAF. Wrote the paper: AAF RKSW HT. Edited the manuscript, wrote figure

legends, and helped with the outline of the paper: JZ SCC RB WZ.

References

1. Grossman AW, Aldridge GM, Weiler IJ, Greenough WT (2006) Local protein

synthesis and spine morphogenesis: Fragile X syndrome and beyond. Journal of

Neuroscience 26: 7151–7155.

2. Kindler S, Wang H, Richter D, Tiedge H (2005) RNA transport and local

control of translation. Annual Review of Cell and Developmental Biology 21:

223–245.

3. Miyashiro KY, Bell TJ, Sul JY, Eberwine J (2009) Subcellular neuropharma-

cology: the importance of intracellular targeting. Trends in Pharmacological

Sciences 30: 203–211.

4. Pfeiffer BE, Huber KM (2006) Current advances in local protein synthesis and

synaptic plasticity. Journal of Neuroscience 26: 7147–7150.

5. Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA

regulation alters synaptic development and function. Neuron 60: 201–214.

6. Oostra BA, Willemsen R (2009) FMR1: a gene with three faces. Biochimica

et Biophysica Acta 1790: 467–477.

7. Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental

retardation. Trends in Neurosciences 27: 370–377.

8. Wang H, Tiedge H (2009) Dendrites: localized translation. Encyclopedia of

Neuroscience 3: 431–435.

9. Iacoangeli A, Bianchi R, Tiedge H (2010) Regulatory RNAs in brain function

and disorders. Brain Research 1338: 36–47.

10. Nelson DL (1995) The fragile X syndromes. Seminars in Cell Biology 6: 5–11.

BC1 RNA and FMRP

PLoS ONE | www.plosone.org 6 November 2010 | Volume 5 | Issue 11 | e15509

  (  (MP4)



11. Jacquemont S, Hagerman RJ, Hagerman PJ, Leehey MA (2007) Fragile-X

syndrome and fragile X-associated tremor/ataxia syndrome: two faces of FMR1.
Lancet Neurology 6: 45–55.

12. Ashley CT, Jr., Wilkinson KD, Reines D, Warren ST (1993) FMR1 protein:

conserved RNP family domains and selective RNA binding. Science 262:
563–566.

13. Darnell JC, Fraser CE, Mostovetsky O, Stefani G, Jones TA, et al. (2005)
Kissing complex RNAs mediate interaction between the Fragile-X mental

retardation protein KH2 domain and brain polyribosomes. Genes and

Development 19: 903–918.

14. Darnell JC, Jensen K, Jin P, Brown V, Warren S, et al. (2001) Fragile X mental

retardation protein targets G quartet mRNAs important for neuronal function.
Cell 107: 489–499.

15. Brown V, Jin P, Ceman S, Darnell JC, O’Donnell WT, et al. (2001) Microarray

identification of FMRP-associated brain mRNAs and altered mRNA transla-
tional profiles in fragile X syndrome. Cell 107: 477–487.

16. Miyashiro K, Beckel-Mitchener A, Purk T-P, Becker K, Barret T, et al. (2003)
RNA cargoes associating with FMRP reveal deficits in cellular functioning in

Fmr1 null mice. Neuron 37: 417–431.

17. Sung YJ, Dolzhanskaya N, Nolin SL, Brown T, Currie JR, et al. (2003) The

fragile X mental retardation protein FMRP binds elongation factor 1A mRNA

and negatively regulates its translation in vivo. Journal of Biological Chemistry
278: 15669–15678.

18. Li Z, Zhang Y, Ku L, Wilkinson KD, Warren ST, et al. (2001) The fragile X
mental retardation protein inhibits translation via interacting with mRNA.

Nucleic Acids Research 29: 2276–2283.

19. Laggerbauer B, Ostareck D, Keidel EM, Ostareck-Lederer A, Fischer U (2001)
Evidence that fragile X mental retardation protein is a negative regulator of

translation. Human Molecular Genetics 10: 329–338.

20. Stefani G, Fraser CE, Darnell JC, Darnell RB (2004) Fragile X mental

retardation protein is associated with translating polyribosomes in neuronal cells.

Journal of Neuroscience 24: 7272–7276.

21. Khandjian EW, Huot ME, Tremblay S, Davidovic L, Mazroui R, et al. (2004)

Biochemical evidence for the association of fragile X mental retardation protein
with brain polyribosomal ribonucleoparticles. Proceedings of the National

Academy of Sciences, USA 101: 13357–13362.

22. Ceman S, O’Donnell WT, Reed M, Patton S, Pohl J, et al. (2003)
Phosphorylation influences the translation state of FMRP-associated polyribo-

somes. Human Molecular Genetics 12: 3295–3305.

23. Weiler IJ, Irwin SA, Klintsova AY, Spencer CM, Brazelton AD, et al. (1997)

Fragile X mental retardation protein is translated near synapses in response to
neurotransmitter activation. Proceedings of the National Academy of Sciences,

USA 94: 5395–5400.

24. Zalfa F, Giorgi M, Primerano B, Moro A, Di Penta A, et al. (2003) The fragile X
syndrome protein FMRP associates with BC1 RNA and regulates the translation

of specific mRNAs at synapses. Cell 112: 317–327.

25. Wang H, Iacoangeli A, Lin D, Williams K, Denman RB, et al. (2005) Dendritic

BC1 RNA in translational control mechanisms. Journal of Cell Biology 171:

811–821.

26. Wang H, Iacoangeli A, Popp S, Muslimov IA, Imataka H, et al. (2002) Dendritic

BC1 RNA: functional role in regulation of translation initiation. Journal of
Neuroscience 22: 10232–10241.

27. Lin D, Pestova TV, Hellen CU, Tiedge H (2008) Translational control by a

small RNA: dendritic BC1 RNA targets the eukaryotic initiation factor 4A
helicase mechanism. Molecular and Cellular Biology 28: 3008–3019.

28. Kondrashov AV, Kiefmann M, Ebnet K, Khanam T, Muddashetty RS, et al.
(2005) Inhibitory effect of naked neural BC1 RNA or BC200 RNA on eukaryotic

in vitro translation systems is reversed by poly(A)-binding protein (PABP). J Mol

Biol 353: 88–103.

29. Zhong J, Chuang SC, Bianchi R, Zhao W, Lee H, et al. (2009) BC1 regulation

of metabotropic glutamate receptor-mediated neuronal excitability. Journal of
Neuroscience 29: 9977–9986.

30. Yan QJ, Asafo-Adjei PK, Arnold HM, Brown RE, Bauchwitz RP (2004) A
phenotypic and molecular characterization of the fmr1-tm1Cgr fragile X mouse.

Genes, Brain and Behavior 3: 337–359.

31. Chuang SC, Zhao W, Bauchwitz R, Yan Q, Bianchi R, et al. (2005) Prolonged
epileptiform discharges induced by altered group I metabotropic glutamate

receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse
model. Journal of Neuroscience 25: 8048–8055.

32. Musumeci SA, Bosco P, Calabrese G, Bakker C, De Sarro GB, et al. (2000)

Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome.
Epilepsia 41: 19–23.

33. Chen L, Toth M (2001) Fragile X mice develop sensory hyperreactivity to

auditory stimuli. Neuroscience 103: 1043–1050.
34. Cimadevilla JM, Wesierska M, Fenton AA, Bures J (2001) Inactivating one

hippocampus impairs avoidance of a stable room-defined place during
dissociation of arena cues from room cues by rotation of the arena. Proceedings

of the National Academy of Sciences, USA 98: 3531–3536.

35. D’Hooge R, Nagels G, Franck F, Bakker CE, Reyniers E, et al. (1997) Mildly
impaired water maze performance in male Fmr1 knockout mice. Neuroscience

76: 367–376.
36. Dutch-Belgian Fragile X Consortium (1994) Fmr1 knockout mice: a model to

study fragile X mental retardation. Cell 78: 23–33.
37. Lewejohann L, Skryabin BV, Sachser N, Prehn C, Heiduschka P, et al. (2004)

Role of a neuronal small non-messenger RNA: behavioural alterations in BC1

RNA-deleted mice. Behavioural Brain Research 154: 273–289.
38. Wesierska M, Dockery C, Fenton AA (2005) Beyond memory, navigation, and

inhibition: behavioral evidence for hippocampus-dependent cognitive coordina-
tion in the rat. J Neurosci 25: 2413–2419.

39. Kubik S, Fenton AA (2005) Behavioral evidence that segregation and

representation are dissociable hippocampal functions. J Neurosci 25:
9205–9212.

40. Cimadevilla JM, Wesierska M, Fenton AA, Bures J (2001) Inactivating one
hippocampus impairs avoidance of a stable room-defined place during

dissociation of arena cues from room cues by rotation of the arena. Proc Natl
Acad Sci U S A 98: 3531–3536.

41. Olypher AV, Klement D, Fenton AA (2006) Cognitive disorganization in

hippocampus: a physiological model of the disorganization in psychosis.
J Neurosci 26: 158–168.

42. Serrano P, Friedman EL, Kenney J, Taubenfeld SM, Zimmerman JM, et al.
(2008) PKMzeta maintains spatial, instrumental, and classically conditioned

long-term memories. PLoS Biol 6: 2698–2706.

43. Maccarrone M, Rossi S, Bari M, De Chiara V, Rapino C, et al. (2010)
Abnormal mGlu 5 receptor/endocannabinoid coupling in mice lacking FMRP

and BC1 RNA. Neuropsychopharmacology 35: 1500–1509.
44. Centonze D, Rossi S, Mercaldo V, Napoli I, Ciotti MT, et al. (2008) Abnormal

striatal GABA transmission in the mouse model for the fragile X syndrome.
Biological Psychiatry 63: 963–973.

45. Cao X, Yeo G, Muotri AR, Kuwabara T, Gage FH (2006) Noncoding RNAs in

the mammalian central nervous system. Annu Rev Neurosci 29: 77–103.
46. Volk LJ, Pfeiffer BE, Gibson JR, Huber KM (2007) Multiple Gq-coupled

receptors converge on a common protein synthesis-dependent long-term
depression that is affected in fragile X syndrome mental retardation. Journal

of Neuroscience 27: 11624–11634.

47. Wan L, Dockendorff TC, Jongens TA, Dreyfuss G (2000) Characterization of
dFMR1, a Drosophila melanogaster homolog of the fragile X mental retardation

protein. Molecular and Cellular Biology 20: 8536–8547.
48. Martignetti JA, Brosius J (1993) Neural BC1 RNA as an evolutionary marker:

guinea pig remains a rodent. Proceedings of the National Academy of Sciences,
USA 90: 9698–9702.

49. Martignetti JA, Brosius J (1993) BC200 RNA: a neural RNA polymerase III

product encoded by a monomeric Alu element. Proceedings of the National
Academy of Sciences, USA 90: 11563–11567.

50. Mattick JS (2004) RNA regulation: a new genetics? Nature Reviews: Genetics 5:
316–323.

51. Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-

coding DNA and eukaryotic complexity. Bioessays 29: 288–299.
52. Skryabin BV, Sukonina V, Jordan U, Lewejohann L, Sachser N, et al. (2003)

Neuronal untranslated BC1 RNA: targeted gene elimination in mice. Mol Cell
Biol 23: 6435–6441.

53. Zhong J, Chuang SC, Bianchi R, Zhao W, Lee H, et al. (2009) BC1 regulation

of metabotropic glutamate receptor-mediated neuronal excitability. J Neurosci
29: 9977–9986.

54. Lee AC, Wong RK, Chuang SC, Shin HS, Bianchi R (2002) Role of synaptic
metabotropic glutamate receptors in epileptiform discharges in hippocampal

slices. Journal of Neurophysiology 88: 1625–1633.
55. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, et al. (2006)

Storage of spatial information by the maintenance mechanism of LTP. Science

313: 1141–1144.

BC1 RNA and FMRP

PLoS ONE | www.plosone.org 7 November 2010 | Volume 5 | Issue 11 | e15509


