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ABSTRACT: Hydrodynamic cavitation (HC) is finding ever
increasing applications in water, energy, chemicals, and materials
sectors. HC generates intense shear, localized hot spots, and
hydroxyl radicals, which are harnessed for realizing desired
physicochemical transformations. Despite identification of HC as
one of the most promising technology platforms, its potential is not
yet adequately translated in practice. Lack of appropriate models for
design, optimization, and scale-up of HC reactors is one of the
primary reasons for this. In this work, the current status of modeling
of HC reactors is presented. Various prevailing approaches covering
empirical, phenomenological, and multiscale models are critically
reviewed in light of personal experience of their application. Use of
these approaches for different applications such as biomass
pretreatment and wastewater treatment is briefly discussed. Some comments on extending these models for other applications
like emulsions and crystallization are included. The presented models and discussion will be useful for practicing engineers and
scientists interested in applying HC for a variety of applications. Some thoughts on further advances in modeling of HC reactors and
outlook are shared, which may stimulate further research on improving the fidelity of computational models of HC reactors.
KEYWORDS: Per-pass models, Data-driven models, CFD models, Multilayer models, Ensemble approach

1. INTRODUCTION
Hydrodynamic cavitation is realized by generating a low
pressure region in a fluidic device where vaporous cavities
(microbubbles) are formed. These cavities travel with the flow
and experience pressure fluctuations. Under certain conditions,
this leads to catastrophic collapse of cavities and generation of
intense shear, localized high pressure and temperature zones,
and hydroxyl radicals.1−4 These locally extreme conditions are
being harnessed for realizing numerous beneficial physicochem-
ical transformations, intensifying a wide range of processes, and
developing innovative products. A schematic of the hydro-
dynamic cavitation phenomenon and its application is shown in
Figure 1. A large number of applications of hydrodynamic
cavitation have been explored and investigated (see, for example,
reviews by Carpenter et al.;5 Holkar et al.6).
Most of these applications harness the following key

physicochemical effects of cavitation or their combination:
• Low-pressure region: degassing
• Local evaporation: descaling
• Localized high pressure−temperature: pyrolysis, thermal

cracking based processes
• Intense shear: processes based on breakage of bubbles,

drops, particles, and microbial cells�aeration, flotation,
disinfection, emulsions, and crystallization

• Hydroxyl radicals: processes based on oxidation,
depolymerization, and other radical based reactions�
water treatment, biodiesel, organic reaction in and on
water, biomass pretreatment

In many applications, such as wastewater treatment;7−11

ozonation;12 microbial disinfection;13−15 desulfurization of
fuels;16,17 biomass pretreatment;18,19 and biodiesel synthe-
sis;20,21 the combined influence of all of these physicochemical
effects controls the overall performance.
A typical implementation of the hydrodynamic cavitation

based application process in practice is shown schematically in
Figure 2. The design of the hydrodynamic cavitation device is a
key aspect of any such process. Several different types of
cavitation devices have been used which may be broadly
grouped in two categories: without moving parts and with
moving parts. Devices with moving parts like high-speed rotors
are typically used for high value products and relatively smaller
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scale operations. Devices without moving parts are more widely
used so far. The devices without moving parts may be further
classified into those based on linear or axial flows and those
based on swirling flows. Simpson and Ranade22 have discussed
these different types of hydrodynamic cavitation devices in detail
and have presented their key flow characteristics. In this work,
we will not be discussing any specific cavitation device. The
focus is on interpreting and modeling overall performance of
hydrodynamic cavitation based processes.
For a specific hydrodynamic cavitation device and holding

tank configuration, overall performance of the hydrodynamic
cavitation based process mainly depends on:

• For batch system: net flow, q is zero, and key parameters
are flow through cavitation device, Q, and batch time, t.

• For continuous system: key parameter is flow through
cavitation device, Q, and net flow rate, q.

The flow rate through the hydrodynamic cavitation device will
control the extent of cavitation, and the resulting physicochem-

ical transformations per pass through the device and batch time
or net flow will determine the collective influence of the number
of passes through the device (qt

V
or Q

q
). Besides, these may affect

other system-specific parameters such as pH, temperature,
downstream pressure, reactivity of chemical species with
hydroxyl radicals, and so on. It is essential to develop an
appropriate modeling framework to interpret the experimental
results and use for optimization and translation to practice.
Various approaches used so far are briefly reviewed and analyzed
based on personal experience of applying those for different
applications of hydrodynamic cavitation processes. Some
comments on the path forward and a desirable (yet speculative
at this point of time) approach of combining real-time data and
phenomenological models is outlined at the end. The discussion
will be useful to researchers and engineers interested in
harnessing hydrodynamic cavitation based processes and may
stimulate further research toward developing high-fidelity

Figure 1. Hydrodynamic cavitation�phenomenon and applications.

Figure 2. Schematic of typical hydrodynamic cavitation based application process.
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computational models for simulating hydrodynamic cavitation
reactors.

2. CURRENT STATUS OF MODELING OF
HYDRODYNAMIC CAVITATION
REACTORS/PROCESSES

The extreme conditions realized by cavitation and resulting
physicochemical transformations encompass a very wide range
of spatiotemporal scales: from molecular length and time scales
to micron scales of cavity up to reactor/cavitation device scale
processes. For these multiple scales spanning orders of
magnitude and complexity of underlying physics of phase
change and high temperature chemical reactions, predictive
models based on first-principles are not yet available. In the
absence of such predictive models, process engineers have used
myriad different approaches and models for designing hydro-
dynamic cavitation based processes. The approaches used so far
may be broadly classified into three groups: (a) semiempirical
models, (b) data-driven models, and (c) physics-based models
(see Figure 3). The relative merits and demerits of models falling
in these three categories are briefly discussed in the sections 2.1,
2.2 and 2.3 respectively. Some suggestions on improving these
models are included.
2.1. Semiempirical Models
In this approach, complex physicochemical transformations
occurring in a hydrodynamic cavitation reactor are modeled by
using a lumped parameter model. Mainly, two approaches are
used for this purpose. In the first approach, all physicochemical
transformations are represented by a first order reaction, and a
simple pseudo-first order kinetics is used to describe the
observed data. Although, in principle, it is possible to use
pseudo-nth order kinetics, most of the reports describing
experimental data on pollutant degradation using hydrodynamic
cavitation have used pseudo-first order kinetics. Several studies

are published using this approach.23−26 This approach of using a
pseudo-first order rate constant for describing the hydro-
dynamic cavitation process has been shown to not be
appropriate by Ranade et al.27 They had clearly shown that
this approach would predict two different values of the effective
rate constant for the same hydrodynamic cavitation reactors
under the same operating conditions for different volume of the
holding tank (kapp = 1.06 × 10−3 min−1 for 0.005 m3 volume in
the holding tank and kapp = 2.41 × 10−4 min−1 for 0.024 m3

volume in the holding tank). It is unphysical to expect
dependence of the effective rate constant on the volume of the
holding tank! It therefore preferrable to use a per-pass
performance factor to characterize the hydrodynamic cavitation
reactor which will solely depend on the design of the reactor and
operating conditions. The per-pass performance factor was used
by Sarvothaman et al.9 in which an empirical parameter, Φ, was
used to represent per-pass performance of the hydrodynamic
cavitation reactor. The process described schematically in Figure
2 can then be described using the per-pass factor as

=VC
t

qC qC QC
d( )

d in (1)

where V is the volume of liquid in the holding tank, q is net
flow rate, Q is flow rate through the hydrodynamic cavitation
reactor and C is characteristic of interest−like concentration for
water treatment or extraction application, particle or drop size
for size reduction applications and so on (with appropriate
units). The value of Φ is obtained from experimental data and
used for interpretation, design, and optimization. Generally, eq 1
is rewritten in terms of number of passes through cavitation
reactor rather than time by using =n Qt

V
where n is number of

passes. Assuming the per-pass performance factor remains
constant over the range of number of passes, for batch system, a
simple relationship like the following is obtained:

Figure 3. Alternative modeling approaches used for simulating performance of cavitation reactors.
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=C C e n
0 (2)

For a continuous mode of operation, at a steady state,
performance equation becomes

=
+

=C
C Q

q1
wherein

(3)

where Cin is the inlet concentration and β is a ratio of flow rate
through cavitation device (Q) and net flow rate (q). The β in a
continuous process is approximately analogous to the number of
passes, n in the batch process. Using eq 3, the flow rate through
the cavitation reactor can be estimated from the desired extent of
transformation (C/Cin) and system specific value of per pass
performance factor (for a given device and operating
conditions). Experimental data obtained with the batch system
and eq 2 may be used to estimate per-pass performance factor.
The approach has been extended for non-isothermal operation
(Sarvothaman et al.9) or varying per-pass performance factor
(Ranade et al.27). It was shown to be useful to describe the
experimentally observed performance data. As an example, the
results presented by Ranade et al.27 where they used the per-pass
performance factor for describing pollutant degradation by
hydrodynamic cavitation over four different scales of hydro-
dynamic cavitation reactor are shown in Figure 4. In this work,

Ranade et al.27 used vortex diode as a hydrodynamic cavitation
device for treating water containing 2,4-dichloroaniline
(DCA)�an aromatic compound with multiple functional
groups, as a model pollutant. Degradation of DCA in water
was performed over four different scales of cavitation reactors
with characteristic throat dimension, d, as 3, 6, 12, and 38 mm
with scale-up of almost 200 times based on the flow rates (1.3 to
247 LPM). The per-pass factor was found to vary with the
number of passes and with the scale of the hydrodynamic
cavitation reactor. Ranade et al.27 developed the suitable per-
pass factor model and showed that the following equation
describes the experimental data over four scales adequately:

= =+i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

C
C d

e where expn n

0

/(1 )
0

t

0 0

(4)

where Φ0 is the initial per-pass degradation factor and φ∞ is the
per-pass factor for the infinitely large cavitation device. The β is a
fitted parameter. For the case of DCA, Ranade et al.27 have
reported the value of Φ∞ as 1.5 × 10−4 and β as 10.85. It can be
seen that the model is able to describe the experimental data
reasonably well.
Following themethodology presented here, the approachmay

be extended to cases where other mechanisms like pyrolysis or
intense shear are predominant. The per-pass performance factor
allows comparison of various hydrodynamic cavitation devices
on a uniform basis and is recommended. The approach requires
experimental data to obtain quantitative estimation of per-pass
performance factor. Once the relevant per-pass performance
factor is obtained from the data, it allows a possibility of
developing correlations of per-pass performance factor with key
operating parameters and thereby opens up an opportunity for
process optimization. More importantly, the per-pass perform-
ance approach also opens up a possibility of developing physics
based models for estimating per-pass performance factors. The
physics based models may not be as accurate as data-driven or
semiempirical models for describing experimental data.
However, such models will enhance our understanding and
can provide new insights beyond available experimental data.
Physics based models are briefly discussed in section 2.3.
2.2. Data-Driven Models

Considering the complexity of various physicochemical
processes occurring in hydrodynamic cavitation reactors,
attempts have been made to use purely data-driven approaches
to describe the performance of hydrodynamic cavitation
reactors. While several data-driven modeling formalisms are
available, the artificial neural network (ANN) appears to be
suitable for describing performance of hydrodynamic cavitation
based processes (see, for example, recent application by Ranade
et al.28).
ANNs are capable of describing complex relationships.29,30

Typical applications of ANNs use large data sets.31 However,
experiments based on hydrodynamic cavitation are complex,
require larger quantities of materials, are time-consuming, and
are therefore expensive. Naturally the data available from
hydrodynamic cavitation based experiments is rather limited.
This may lead to overfitting where the ANN model captures
relationships that do not exist and often leads to unphysical
interpolation and extrapolation results. To avoid overfitting, it is
advisable to start with as simple an ANN architecture as possible.
Typically ANNmodels with a single hidden layer provide a good
starting point.32 A general rule of thumb for deciding the
maximum number of neurons in a hidden layer (assuming 70%
of the available data is used for training) may be written as

×
+ ×

H
N

N N
0.7

( ) 10
data

in out (5)

HereNdata is the number of experimental data points available
andNin andNout are the number of input and output variables. It
is recommended that several ANN models with variable
numbers of neurons be developed using this guidance. The
performance of these models can be evaluated using the test data
(30% data which was not used for training). Various statistical
parameters may be used for quantifying the performance.
Typically, the coefficient of determination, R2, and mean square
error, MSE, of test data are used for performance evaluation
(Himmelblau31). It should be highlighted here that appropriate
data cleaning and conditioning techniques may have to be used

Figure 4. Per-pass model for describing data over four different scales
(from Ranade et al.27). Devices�D1:3 mm, 1.2 LPM; D2:6 mm, 5
LPM; D3:12 mm, 20 LPM; D4:38 mm, 200 LPM. Reprinted from ref
27, copyright 2021, with permission from Elsevier.
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before the experimental data can be used for training. It is also
recommended to use prior knowledge or known initial and
boundary conditions relevant to hydrodynamic cavitation based
applications to artificially augment the experimental data for
reinforcing training of ANNmodels to ensure that limiting cases
are well captured.
Ranade et al.28 have recently presented development of the

ANN model for describing results for two very different
applications of hydrodynamic cavitation: pretreatment of
waste biomass for enhancing biogas yield and degradation of
organic pollutants in water. ANN models with a single hidden
layer were used. The developed ANN models were shown to
capture the experimental data quite well (see Figure 5). While

the experimental data was captured quite well within its range,
the extrapolated biomethane generation with respect to time
showed unphysical trends. The ANN model however showed
excellent performance and the ability to interpolate within the
range of experimental data. While such models can be used for
effective interpolation, the models cannot provide insights
beyond the available experimental data and are not very useful
for extrapolation. This is not surprising considering the black
box nature of the ANN approach. Semiempirical models may be
used to complement such fully data-driven models.
The data-driven approach was also shown recently to be

useful for scale-up of vortex based cavitation devices.33 In this
example, Ranade et al.33 extracted key features from the acquired

Figure 5.Comparison of simulated (lines) and experimental (symbols) data. (a) Simulated bio-methane generation at four different numbers of passes
(n). (b) Simulated DCA degradation profiles at four scales of HC reactor Cavitation device: Vortex diode; d is a throat diameter of the vortex diode.
Reprinted from ref 27, copyright 2021, with permission from Elsevier.
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acoustic signals emanating from the vortex based cavitation
devices and related these extracted features with the observed
performance at different scales. The approach of per-pass
performance factor was used for establishing the relationship
between the performance and extracted features as follows:
The per-pass degradation factor (Φ) was related to extracted

feature, flatness (F):

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzz

F
F

ln 1
(6)

where Φ is per-pass performance factor and F is flatness of
acquired acoustic signals (see Ranade et al.33 for more details).
The subscript ∞ denotes infinite scale-up. The approach was
able to capture the influence of the device scale via extracted
feature F, from acquired acoustic signals from different scales.
While such semiempirical or fully data-driven models are useful,
rigorous mathematical models based on first-principles are
necessary for gaining better insight into underlying processes
and making “a priori” predictions. Attempts to develop such
physics-based models are briefly discussed in the following
section.
2.3. Physics-Based Models
The processes based on hydrodynamic cavitation essentially use
generated shear, localized hot spots, and hydroxyl radicals for
realizing various physicochemical transformations. It is therefore
essential to develop an ability to make “a priori” predictions of
these as a function of device design and operating parameters.
Despite attempts for more than a century (may be starting with
Rayleigh34), quantitative simulations of overall performance of
hydrodynamic cavitation devices/processes are still elusive
without the use of adjustable parameters. The main reason for
this is the coexistence of relevant time scales and length scales
spanning several orders of magnitude ranging from radicals and
molecules to micron-size cavities and tens of centimeters scale
cavitation devices. Performance of any hydrodynamic cavitation
reactor or process depends on a variety of subprocesses such as

• Location, rate of generation, and trajectories of cavities:
these depend on design of cavitation reactor, flow rate,
pressure, temperature, dissolved gases, etc.

• Collapse of cavities and associated physicochemical
effects: as cavities are generated and carried away by
flowing fluid, cavities experience pressure fluctuations,
and under certain circumstances, these cavities violently
collapse. The collapse generates localized very high
pressures and temperatures as well as very intense shear,
high velocity jets, and shocks. The location, number, and
intensity of collapsing cavities will be a crucial factor
determining the reactor performance.

• Contact of collapsing cavities and application process of
interest: Depending upon the application of interest, the
effectiveness of this contact may depend on variety of
factors like pH, hydrophobicity, and time scales of contact
in addition to the factors mentioned in the above two
points.

A wide range of spatiotemporal scales, from a single cavity
(∼10−6 m, ∼10−4 s), cluster of cavities (10−3 m scale, ∼10−3 s),
and cavitation reactor scale (∼100 m, ∼10−1 s), coexist.
Therefore, a single comprehensive model to simulate the overall
performance of hydrodynamic cavitation-based processes is very
difficult to realize. More often than not, individual components
are modeled separately and applied collectively to draw useful

results, typically called multilayer models. Unlike multiscale
models where information exchange across different scales
occurs via a formal framework (see, for example, Vlachos;35 van
den Akker;36 Ge et al.;37 and a more recent one by
Radhakrishnan38 and references cited therein), the multilayer
models (Ranade;39 Ranade and Utikar40) employ ad-hoc and
heuristic based ways for exchanging information across different
scales. For complex physicochemical processes like hydro-
dynamic cavitation, at present, it is more pragmatic to develop a
multilayer modeling strategy for design, optimization, and scale-
up of hydrodynamic cavitation reactors. The overall approach to
develop such a multilayer model is shown in Figure 6.

The microscale flow processes of cavity collapse need to be
combined with device/reactor scale flow processes to develop a
model for simulating the overall performance of cavitation
processes. Cavity dynamics models use boundary conditions in
terms of concentrations, temperature, turbulent pressure
fluctuations for calculating a localized high temperature and
pressure zone, intense shear, hydroxyl radicals, as well as
pyrolysis products produced during the collapse event. The
cavity collapse models provide source terms for device scale flow
models which may then be used for estimating the number of
cavitation events (per unit volume, per unit time). The
combined information about number of cavitation events and
physicochemical transformations associated with an individual
cavitation event can then be used for estimating an overall per-
pass performance factor for the cavitation device/reactor under
consideration. These individual modeling layers are briefly
discussed in the following.

2.3.1. Cavity Dynamics Models. Several different
approaches may be used for simulating a collapse of a single
cavity. Key approaches may be broadly grouped as (a) one-
dimensional models based on Rayleigh-Plasset equations or
their variants (for example, Pandit et al.4); (b) multidimensional
CFD based models. Several different approaches like volume of
fluid (for example, Orthaber et al.41), smooth particle hydro-
dynamics (for example, Patiño-Nariño et al.42), and lattice
Boltzman (for example, Shan et al.43) have been used for

Figure 6. Multilayer modeling approach to simulate performance of
hydrodynamic cavitation reactor.
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simulating multidimensional cavity collapse simulations. Some
attempts are also made using molecular dynamics (Wei et al.44).
Considering the extreme pressure and temperature generated
during cavity collapse and associated uncertainties in estimating
physicochemical properties, one-dimensional models of cavity
collapse based on the Rayleigh-Plasset type of equations appear
to be a pragmatic choice at the moment.
Recently, Pandit et al.4 have critically reviewed different

variants of the Rayleigh-Plasset type of equations used for
simulating cavity dynamics and have presented simulated results
on jet velocity, hammer pressure, and hydroxyl radicals over the
wide parameter space covering ambient temperature, pressure,
amplitude, and frequency of pressure fluctuations and initial
cavity radius. A sample of their results on hydroxyl radicals are
reproduced in Figure 7. The Blake threshold showed in this
figure defines a minimum pressure amplitude ratio (with respect
to ambient pressure) required for the onset of cavitation. This is
a function of various parameters such as frequency of pressure
fluctuations and initial size of the cavity. OHG stands for
generation rate of OH radicals. Figure 7a,b shows the contours
of OHG as a function of driving frequency and initial bubble
radius, respectively, for a range of pressure amplitude ratio (with
an emphasis on the region above the Blake threshold). It should
be noted that the driving frequency and pressure amplitude
relevant for hydrodynamic cavitation are not externally set like in
ultrasonic cavitation. Instead, the driving frequency and pressure
amplitude depend on the realized turbulent flow field and may
vary within the hydrodynamic cavitation reactor/device. The
amplitude and frequency of turbulent pressure fluctuations can
be estimated by solving the appropriate turbulence model. For
example, Sarvothaman et al.45 have used averaged values of
turbulent kinetic energy (kR) and turbulent frequency (ωR) in
the cavity collapse region R for estimating pressure fluctuations
experienced by cavities (see discussion in section 2.3.2 and eq
7). Kanthale et al.46,47 have developed an approach to account
for the influence of neighboring cavities on the collapsing cavity
cluster. By combining the estimated active volume of cavitation
and physicochemical effects realized by collapsing cavities (like

generation of hydroxyl radicals or shear), the overall macro-
scopic performance such as degradation of organic pollutants or
size reduction might be estimated. The physicochemical effects
of cavity collapse (like generation of hydroxyl radicals or shear)
can be used for estimating the macroscopic performance such as
degradation of organic pollutants or size reduction. Attempts
have been made to develop empirical correlations based on the
results of detailed cavity dynamic models. For example, Gogate
and Pandit48 have presented an empirical correlation for cavity
collapse pressure as a function of orifice configuration and inlet
pressure. Kanthale et al.47 presented correlations of collapse
pressure and active cavitation volume. Tao et al.49 have reported
a correlation of generated hydroxyl radicals. Though these
studies showed promise, their applicability was rather restricted.
Considering strong nonlinearities and complex underlying
physics, artificial neural network (ANN) based models may be
more suitable for developing useful relationships among the key
design and operating parameters and the realized performance
of HC based applications.
Either the full RP-like equations or ANN-like models

constructed based on simulated results may be used for
developing a full multilayer model indicated in Figure 6. That
kind of implementation however requires inputs from computa-
tional flow models, which are discussed in the following.

2.3.2. Device Scale Flow Models. Computational fluid
dynamics (CFD) models allow detailed simulation of three-
dimensional, transient flow field of hydrodynamic cavitation
devices. Several studies report simulations of turbulent
cavitating flows in different cavitation devices. These flow
modeling studies may be broadly divided into two groups: the
first group focuses on detailed flow characteristics using
sophisticated computational fluid dynamics (CFD) models
(for example, Ma et al.,50 Hsiao et al.51). However, such studies
mainly focus on fluid dynamics and are not concerned with the
simulation of overall performance of a cavitation based
transformation process. The second group uses rather simplified
CFD models but focuses on simulating performance of
cavitation reactors. For example, Capocelli et al.52 used a

Figure 7. Contour plots (plotted with Blake threshold) of the logarithm of •OH generation for hydrodynamic cavitation as a function of the pressure
amplitude ratio (from Pandit et al.4). Reprinted with permission under a Creative Commons CC BY 4.0 License from ref 4. Copyright 2021 Elsevier.
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simplified one-dimensional CFD model for flow in cavitating
venturi for qualitatively capturing the trend observed in the
performance of the cavitation reactor. Pawar et al.53 have used
single phase flow simulations at a single operating condition for
four hydrodynamic cavitation devices. It is often necessary to
choose an intermediate approach between these two broad
categories like the one adapted by Sarvothaman et al.45

It is also essential to note that, intricacies of CFD models may
have to account for specific designs and their peculiarities while
selecting appropriate CFD models. Broadly, there are three
types of hydrodynamic cavitation devices:
(a) Devices based on constriction and linear flows�orifice/

venturi: It is essential to capture all the minute geometric
details of orifice and venturi configuration. Small
geometric changes like sharp versus smooth edge may
significantly influence simulated results. Examples of
studies reporting flow characteristics of this type of
devices are Simpson and Ranade22,54 and Abbasi et al.55

(b) Devices based on rotor-stator configuration: It is essential
to use either a multiple reference frame or sliding mesh
approach for simulating flows in rotor-stator devices. See
for example, recent attempts to model cavitating flows in
rotor−stators: Sun et al.56 and Fu et al.57

(c) Devices based on swirling flows without anymoving parts:
Strong swirling flow generated without any moving parts
offers additional challenges of potential relaminarization
and nonisotropic eddy viscosity to CFD modelers. The
advantage of this type of device is that device walls are
shielded from collapsing cavities. See, for example, studies
by Ranade and co-workers22, 58, and 59.

Such CFD models may be used for obtaining key flow
parameters required for estimating the performance of hydro-
dynamic cavitation devices. The flow field obtained from the
CFD models may be used to simulate the inception of cavities
and their trajectories by examining turbulent pressure
fluctuations, mean pressure field, and vapor pressure at
prevailing ambient temperature. The pressure fluctuations and
environment experienced by cavities can then be used for solving
cavity dynamics models. For the purpose of illustration, some
flow results obtained for the case of vortex based cavitation
devices considered by Sarvothaman et al.45 are shown in Figure
8. The flow in the vortex based cavitation device was simulated
by following the Eulerian−Eulerian model of Simpson and

Ranade.22 For the sake of brevity, the discussion is restricted to
outlining the approach of Sarvothaman et al.45 rather than
presenting the detailed steps. The original paper may be referred
for a more detailed explanation. Please note that the Eulerian−
Eulerian approach was used by Sarvothaman et al. and
coalescence of cavities forming a gas core was not explicitly
modeled. Considering this, it is unavoidable to use an
approximation for identifying a boundary of the gas core.
Ranade39 had reviewed these approximations which have
assumed the volume fraction threshold in the range of 0.5−
0.66. The choice is rather arbitrary, and Sarvothaman et al.45 had
used 0.5 as a threshold. The choice is not expected to change the
qualitative behavior of the model.
It can be seen that formation of the gas core is captured

correctly by the CFD models. The cavities are generated in this
low pressure region at the core of the vortex. These cavities then
travel away from the core following the turbulent fluctuations of
the flow. The cavity dynamics models indicate that the typical
lifetime of cavities is of the order of 10−4 s. This means cavities
travel quite a short distance before collapsing (of the order of
10−3 m). The simulated results of the gas volume fraction within
the cavitation device can be used to quantify the relevant region
for generation and collapse of cavities. Some further
assumptions are needed to estimate the volume fraction/
number of cavities. Sarvothaman et al.45 used a volume fraction
threshold of 0.5 to identify a boundary of gas core and
dispersion. Cavities were assumed to be generated on the surface
of this identified gas core. The outer boundary of the cavity
collapse region was estimated by taking cutoff values of the gas
volume fraction as 0.1. These boundaries of the gas core and
cavity collapse region based on this assumed cutoff in the gas
volume fraction can then be used to estimate the volume fraction
of cavities, ϵGR, required for estimating the number of cavitation
events.
For estimating the fate of generated cavities, the Lagrangian

approach may be used to simulate the motion of cavities within
the considered device. The information on pressure fluctuations
experienced by such moving cavities obtained from the
Lagrangian simulations can then be used with the cavity
dynamics models to estimate the collapse of cavities and
subsequent generation of shear, hammer pressure, local
temperature and pressure, as well as hydroxyl radicals. As seen
in Section 2.1, the results of the cavity dynamics model are quite

Figure 8. Sample of simulated results using the CFDmodel from Sarvothaman et al.45 6 mm cavitation device, throat velocity = 3 m/s, pressure drop =
250 kPa. Reprinted from ref 45. Copyright 2019, with permission from Elsevier.
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sensitive to the initial size of the cavity. There have been
attempts to include the distribution of initial cavity sizes instead
of considering a single size cavity. For example, Capocelli et al.52

used a size distribution of initial cavity size, R0, in the range of
20−250 μm. Attempts have been made to qualitatively relate the
results of cavity dynamics models with the performance of the
cavitation reactor. Sharma et al.60 have developed an empirical
correlation for temperature, pressure, and radical generation at
collapse as a function of the initial radius of the cavity, the inlet
pressure to the HC device, and the diameter of an orifice hole.
Unfortunately, the applicability of such correlations is quite
restricted and different HC devices are seldom directly
comparable (Šarc et al.61). Other potential ways of coupling
cavity dynamics models with device scale flow were used by
Sarvothaman et al.45 where they have approximated the
fluctuations in the bulk pressure experienced by the cavity as

= +P fP k tsin( )B
R Rv (7)

where PB is the pressure experienced by a cavity, Pv is vapor
pressure of the liquid, f is an empirical parameter, and kR and ωR
are average turbulent kinetic energy and turbulent frequency in
the cavity collapse region, R. The rationale behind this
approximation was that the cavity collapse time scales are
usually quite small, and considering the typical mean velocities
in cavitation devices, the distance traveled by cavities until their
collapse is rather small. It is therefore reasonable to approximate
the values of turbulent kinetic energy and turbulent frequency
averaged over the small cavity collapse region, R. It can be seen
that the amplitude of pressure fluctuations is proportional to the
liquid density and turbulent kinetic energy, and the frequency of
pressure fluctuations is directly related to turbulent frequency.
These device scale flow results can provide the number of
cavities generated in the hydrodynamic cavitation reactor and
the subsequent cavitation effect generated via collapsing cavities.

2.3.3. Overall Performance Models. In order to develop a
model for simulating overall performance of the hydrodynamic
cavitation device/process, it is essential to develop a per-pass
performance model for the overall products (hydroxyl radicals/
shear) generated within the cavitation reactor. Sarvothaman et
al.45 have presented such a model for estimating per-pass
pollutant degradation performance. The approach is however
quite general and can be extended for other desired trans-
formation process. In this approach, the net change occurring
within one pass through cavitation device may be written as

= GNet change in one pass through device (8)

where G is the generation rate of the relevant cavitation effect
(for example, hydroxyl radicals for oxidation of organic
pollutants or local energy dissipation rate for breakage of
suspended particles) and δ is the effectiveness factor measuring
the utilization efficiency of cavitation effects in realizing desired
transformations.
For degradation of organic pollutants, the source term

appearing in eq 1 is related to phyisco-chemical effects of
collapsing cavities, and therefore the per-pass degradation factor
may be written as

=QC G (9)

Considering that a typical lifetime of radicals is much smaller
than the residence time of the cavitation device, it is reasonable
to assume that all the hydroxyl radicals generated in the
cavitation device are consumed within the device and the
downstream pipe. It should be noted that hydroxyl radicals are

highly reactive and react unselectively with organic pollutants as
well as any other reactive species including water itself.
Therefore, only a fraction of generated radicals (say, δ) will be
used for degrading the pollutant. This fraction may be written as

=
+

k C
k C k C( )

2

2 S S (10)

where k2 and kS are rate constants of reactions between
pollutant, C, and other scavengers, CS, with hydroxyl radicals,
respectively. The per-pass degradation factor can then be related
to the generation rate as

=
+

( )
( )

G
QC

k
k

C
C

S

S

2 S (11)

For low concentrations of pollutant (C ≪ CS), the value of
per-pass degradation factor will depend on G and the ratio (k

k
S

2
).

It will not depend on pollutant concentration. Increase in the
relative rate constants of scavengers and pollutant (k

k
S

2
) leads to

reduction in the per-pass degradation factor.
The radical generation rate, G, depends on the number

density of cavitation events and the generation of hydroxyl
radicals per collapsing cavity (which will be function of intensity
of cavity collapse). Number density and collapse intensity of
generated cavities are determined by flow characteristics of the
cavitation device. The generation rate of hydroxyl radicals, G
(typically expressed in micromoles per second) may be written
as

=G n m mol/sOH (12)

where n is the number of cavities collapsing per second in the
cavitation device and mOH is hydroxyl radicals generated per
collapse. The value of mOH depends on variety of parameters
such as initial radius of the cavity and bulk pressure fluctuations
experienced by the cavity. In order to account for the
distribution of initial radii of cavities and varied pressure
fluctuations experienced by all the cavities, a proportionality
factor needs to be introduced in eq 12. Assuming that the
number density of cavities is proportional to the volume fraction
of vapor, one may write the per-pass factor as

=
i
k
jjjjj

y
{
zzzzz

C
CGR

S

OH

(13)

where α is a proportionality constant. The concentration of
scavangers may be assumed as constant andmay be lumped with
the proportionality constant. For the sake of dimensional
consistency, CS may be assumed to be 1 kmol/m3. Equation 13
provides a direct link between the key flow characteristics of the
cavitation device/reactor and the overall performance of the
cavitation reactor. The values of vapor volume fractions
appearing in eq 13 may be obtained from CFD models of the
cavitation device. COH may be estimated by solving cavity
dynamics models. It should be noted that the mathematical
modeling framework described here still requires information
about initial cavity size for estimating values of the per-pass
degradation factor! The value of initial cavity size (or size
distribution) is rather difficult to estimate. It may therefore be
practical to treat the initial cavity size as an adjustable parameter.
With such an approach, Sarvothaman et al.45 were able to
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simulate influence of pressure drop across the vortex based
cavitation device on the degradation performance of the device.
Their results are shown in Figure 9 for illustrating the potential
of this approach.

Most of the discussion on modeling so far was focused on
degradation of organic effluents using hydrodynamic cavitation
with an exception of the ANN based modeling of biomass
pretreatment data. New applications of hydrodynamic cavitation
are continuously evolving. For example, hydrodynamic
cavitation is used for making emulsions (Ramisetty et al.,62

Thaker and Ranade59), for enhancing liquid−liquid reactions
and extractions (Surywanshi et al.16), controlling particle size
distribution in crystallization (Madane and Ranade63), and
enhancing extraction of bioactives from algae (Mittal and
Ranade, unpublished work). It is important to extend the
modeling approaches discussed here to such a variety of
applications. Hydrodynamic cavitation is used either for
reducing some characteristic variable (such as pollutant
concentration or droplet size) or for enhancing some character-
istic variable (such as concentration of extractant or biogas
generation rate). Overall performance behavior of a typical
hydrodynamic cavitation based application is shown schemati-
cally in Figure 10; where R is a desired result which either needs
to be reduced or enhanced via hydrodynamic cavitation, φ is
per-pass performance factor and n is number of passes. As shown
in Figure 10, performance of any typical hydrodynamic
cavitation based application can be analyzed by using suitable
normalization. When HC is used for reducing certain character-
istics, it is recommended to use normalized performance
variable as R R

R R
min

0 min
. The subscripts 0, min, and max denote

initial, minimum, and maximum value of expected result R.
When HC is used for enhancing certain characteristics, it is
recommended to use the normalized performance variable as

R R
R R

0

max 0
. It can be seen that the proposed normalization

facilitates relating the normalized performance with number of
passes.
When per-pass performance factor is small, simplified linear

approximations indicated in Figure 10 may be used to describe
the observed performance. When applying to pollutant
degradation, theoretical minimum concentration for a pollutant
may be considered as zero (Rmin = 0). This assumes that all the

subsequent degradation products are also degraded via HC. In
some pollutants, the degradation products may not be
susceptible to further degradation. In such cases, Rmin will
have a finite value. For droplet size reduction, typically, there will
be a minimum achievable droplet size for a given system and
intensity of cavitation. In such a case, typically the following
equation may be used for describing droplet size reduction via
hydrodynamic cavitation:

= +
+

d d
d d

n1min
0 min

(14)

In some cases, where cavitation as well as other mechanisms of
droplet breakage are active, additional factors and parameters
may have to be included in eq 14.
When HC is used for enhancing interphase mass transfer in

multiphase processes (such as liquid−liquid extraction), the
enhanced extractant concentration may be described as

= +
+

C C C C
n

n
( )

1e0 0 (15)

where C is the concentration of extractant and subscripts 0 and e
denote initial and equilibrium (which is a maximum
concentration) concentration of extractant.
Once the per-pass performance factor based equations are

formulated for the application under consideration (like eq 14 or
15), the approach discussed in section 2.3.3 can be extended for
the performance characteristic under consideration. Instead of
relating the per-pass performance factor to the generation rate of
hydroxyl radicals as in eq 11, the corresponding physical
mechanisms controlling the process can be estimated from the
device scale flow models and cavity dynamics models. For the
case of droplet breakage, the per-pass breakage performance
may be related to the number of cavities generated, the
probability of collision between collapsing cavities and droplets,
and the intensity of collapse (shear and hammer pressure
generated via collapse). Thus, the combination of the per-pass
performance model, cavity dynamics model, and device scale
flow models may allow simulation of the overall performance of
HC-based application. In some cases, direct formulation of the
phenomenological model for estimating the per-pass perform-
ance factor is difficult; the use of physics informed machine

Figure 9. Influence of throat velocity on performance of cavitation
reactor. Reprinted from ref 45. Copyright 2019, with permission from
Elsevier.

Figure 10. Typical behavior of a normalized performance variable of
HC application R is a desired result; subscripts 0, min, and max denote
initial, minimum, and maximum value of R.
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learning might be used. The approach described here is quite
powerful and has the potential to make high-fidelity computa-
tional models for simulating and optimizing hydrodynamic
cavitation devices and processes. Significant further work on
improving our ability to simulate cavitating flows and
particularly developing “performance” models relating observ-
able performance with cavity collapse conditions is needed.
Some of these needs are briefly discussed in the following
section.

3. MODELING OF HYDRODYNAMIC CAVITATION
REACTORS/PROCESSES: PATH FORWARD

Application of semiempirical models based on pseudo rate
constant or per-pass performance factor approach are
commonly used in published studies of hydrodynamic
cavitation. As discussed in section 2.1, the per-pass performance
factor approach is recommended over the pseudo rate constant
approach, since it provides a framework to capture the per-pass
performance of the cavitation device without any extraneous
influences of the holding tank, etc. However, use of the per-pass
performance factor approach alone is not very useful for gaining
insights or extrapolation of results. It has been observed that the
per-pass performance factor is influenced by the design of the
cavitation device, the pressure drop across the cavitation device,
the downstream pressure, the operating temperature, the pH,
and many other process parameters (see, for example, Ranade et
al.64). Wu et al.65,66 presented results of degradation of
chlorocarbons with hydrodynamic cavitation and highlight the
role of solubility and hydrophobicity of organics on effectiveness
of degradation. Their results showed that species which aremore
soluble and hydrophobic tend to accumulate at the cavity surface
and are thereforemore susceptible for degradation. The per-pass
performance factor exhibits an optimum behavior (see, for
example, Figure 9) with respect to many operating parameters
(for example, pressure drop or flow rate, and temperature).
Increase in flow rate (or pressure drop) and temperature results
in the increase in the number density of generated cavities.
However, the enhanced volume fraction of the gas phase leads to
enhanced compressibility of the gas−liquid mixture, which leads
to reduced intensity of collapse (lower collapse temperature and
hydroxyl radical generation) and therefore lower degradation
performance. The per-pass performance factor of geometrically
similar devices often decreases with an increase in scale of the
cavitation device (Ranade et al.27). It is therefore essential to
augment the simplified semiempirical models with data-driven
and physics-based models.
The data-driven approaches, which are briefly discussed in

section 2.2, look promising. The approach and examples
illustrated in Figure 5 can be adapted for many other
applications of hydrodynamic cavitation. Thaker and Ranade59

used a vortex-based cavitation device for producing liquid−
liquid emulsions. Madane and Ranade63 recently showed
potential applications of hydrodynamic cavitation for manipu-
lating the crystal size distribution in antisolvent crystallization.
The droplet or crystal size distribution data from such
applications may be related to key design and operating
parameters using standard machine learning tools. Ranade et
al.64 summarized the influence of various parameters such as the
chemical nature of pollutants, pH, pKa, operating temperature
and pressure, cavitation device design, etc., on the per-pass
performance for degradation of organic pollutants. Machine
learning approaches are best suited for such compiled data and
for extracting useful features from it for establishing useful

relationships for guiding the design and operation. However, it
should be highlighted that not all the published studies report all
the relevant parameters so as to connect observed results with
per-pass performance of the considered cavitation device. It is
important to insist on reporting all the relevant design and
operating parameters for facilitating and realizing the potential
of machine learning approaches for enhancing hydrodynamic
cavitation based applications. Availability of data (quality and
quantity) often constrains widespread applications of the
surrogate models discussed in section 2.2. It should be noted
that the surrogatemodels generally fail to extrapolate beyond the
training data. One potential way to overcome these limitations is
to use real-time data from online sensors for developing data-
driven models. Recent advances in nonlinear data processing
andmachine learning open entirely new opportunities to analyze
and extract useful information from the real-time spatiotemporal
data. Ranade et al.33 were able to identify the inception and
extent of cavitation using acoustic data emanating from
cavitation devices. Though the data-driven machine learning
approaches are having a transformative impact on the sciences,
for making further progress toward development of predictive
models, it is essential to develop physics-based models.
The overall approach for developing physics-based models to

simulate applications based on hydrodynamic cavitation is
shown in Figure 6 (in section 2.3). There is significant scope to
develop improved models of various components shown in this
approach. Apart from an appropriate formulation of model
equations based on first-principles, further work on quantifying
the influence of numerical issues such as grid spacing, time step,
degree of convergence, and so on, simulated results are also
needed for high-fidelity simulations of real-life applications of
hydrodynamic cavitation. In this section, we will restrict the
discussion to potential improvements on physical aspects of
modeling and will leave out numerical aspects.
The current understanding of a variety of physicochemical

transformations occurring via inception, growth, and collapse of
cavities (and their interaction with the surroundings) is
inadequate. Most of the cavity dynamics models are still based
on the classical Rayleigh−Plesset (RP) cavity dynamics model
(Pandit et al.4) which assumes a cavity in an infinite medium
(that is symmetric expansion and collapse). In reality, most
cavities will undergo asymmetric collapse because of surround-
ing cavities and other disturbances. It is therefore essential to
develop quantitative models for simulating asymmetric cavity
collapse and subsequent physicochemical transformations.
Recently, Orthaber et al.67 used a volume of fluid (VOF)
method for simulating asymmetric collapse of a cavity near a
liquid droplet. These simulations were two-dimensional and
axis-symmetric. It is essential to develop fully asymmetric, three-
dimensional transient flow models necessary for quantitative
predictions of physicochemical transformations caused by
asymmetric cavity collapse. One of the promising options for
this appears to be a Pseudophase Lattice Boltzmann (PPLB)
approach. The PPLB approach naturally captures phase
separation and interface formation/collapse without requiring
front tracking methods (Chen et al.68) and therefore may have
the potential to realize a breakthrough in understanding
inception, growth, and collapse of cavities. Su et al.69 and
Shan et al.43 have used the PPLB approach to carry out three-
dimensional simulations of collapsing cavities. Recently,
Trummler et al.70 used full 3D CFD simulations using the
VOF approach to understand the influence of nearby surfaces
(either rigid or flexible) on cavity collapse. Rasthofer et al.71
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simulated a collapse of a cluster of cavities. Such VOF or PPLB
based approaches with full 3D simulations will hopefully provide
better insights and quantitative information on asymmetric
cavity collapse and resulting physicochemical transformations.
Besides such microscale simulations of cavities, several

attempts have been made to develop new cavitation models.
For example, a new cavitation model based on intercavity
interactions has recently been presented by Shi et al.72 For
improving the state of the art on modeling hydrodynamic
cavitation devices, further research and better models are
necessary in the following areas:

• Source terms for modeling extent of cavitation: The
models used in most of the CFD simulations of
hydrodynamic cavitation devices use overly simplified
cavity dynamics models for formulating source terms
representing mass of liquid evaporated or condensed
during cavitation. Better models to represent complex
phase change processes are needed, and a unified
framework to reconcile differences and similarities of
different cavitation models is needed.

• Turbulence modeling: State of the art understanding and
models representing influence of turbulence, vortices, and
other coherent structures on inception and extent of
cavitation is not adequate. This is especially relevant in the
presence of dissolved gases or dispersed phase particles
(solid, liquid, or gas).

• Models for representing physical effects of collapsing
cavities: As mentioned earlier, collapsing cavities generate
high-speed jets, shear, and hammer pressure, which may
be harnessed for particle breakage, cleaning, and other
applications. The currently available cavity dynamics
models are mostly restricted to collapse of a single cavity.

Further work on extending these models to account for
influence of neighboring cavities, dispersed phase particle,
or wall is important and essential. More importantly,
further work on representing such local effects generated
by collapsing cavities in device scale simulations is
needed.

• Models for representing chemical effects of collapsing
cavities: In addition to physical effects mentioned above,
collapsing cavities generate localized hot spots, whichmay
cause radical formation, pyrolysis, and a multitude of
radical based reactions in gas phase as well as in
surrounding liquid phase. Currently, there are no rigorous
models available to represent such local chemical
transformations caused by collapsing cavities into device
scale flow models. New ways and new models are needed
to reasonably represent physicochemical transformations
caused by collapsing cavities into macro or device scale
models.

The list is merely suggestive. The complexity of reactive
multiphase flows occurring in hydrodynamic cavitation devices
may greatly expand the list of issues on which further research is
needed.
Despite significant research efforts, the quest for developing

an adequate understanding and description of transport
processes occurring in hydrodynamic cavitation devices/
reactors through models still continues, since the state of the
art requires many flow regime and system dependent empirical
(or “ad-hoc”) adjustments for adequately representing complex
multiscale interactions. The use of such regime and system-
dependent ad-hoc models severely restricts our ability to use the
models for optimizing hydrodynamic cavitation based applica-
tions. A completely different approach is needed to realize a

Figure 11. Conceptual framework for combining data, machine learning, and physics based models for simulating hydrodynamic cavitation based
applications.
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breakthrough in our ability to accurately predict, manipulate,
and control multiphase transport processes occurring in
different applications of hydrodynamic cavitation. Here we
would like to suggest a radically different approach which
synergistically combines real-time spatiotemporal data, machine
learning, and physics based models to provide a new and
significantly improved methodology for predicting and optimiz-
ing the performance of hydrodynamic cavitation devices and
applications. The suggested approach is shown in Figure 11.
The approach is based on a key hypothesis that the real-time

spatiotemporal data captures key multiscale interactions and
therefore can be deciphered to discover closure models, which
will allow simulation of multiphase reacting systems over a wide
variety of flow and reaction regimes without any regime or
system dependent ad-hoc adjustments. The approach is
speculative at the moment. However, several indications may
make this approach successful. Recent advances in nonlinear
data processing andmachine learning open new opportunities to
analyze and extract useful information from real-time
spatiotemporal data. Several inexpensive and noninvasive
sensors such as acoustic sensors or pressure sensors are now
available which may be harnessed for acquiring real-time
spatiotemporal data. Such data captures all the relevant
information about flow regimes, turbulence, dispersed phase
particles, interphase transport, and inherent system character-
istics. Ranade et al.33 have recently shown a feasibility of relating
features extracted from such a data to performance of
hydrodynamic cavitation process. The data-driven machine
learning approaches are making a transformative impact on the
sciences. Though many of these approaches are based on
surrogate models which may fail to extrapolate beyond the
training data, these may be synergistically combined with the
physics based models (with governing equations in the form of
differential equations) to gain new insights and understanding as
well as to accurately predict and optimize dynamical systems.
The real breakthrough may be achieved if we can extract high-
fidelity closure models from such spatiotemporal data which do
not require ad-hoc flow regime and system dependent
adjustments. Some efforts have been made to use detailed
microscale simulations or direct numerical simulations and
machine learning approaches to identify parameters of the
assumed closure models.73−77 None of the approaches includes
the discovery of appropriate forms of closure equations; instead,
they focus on estimation of parameters. There have been some
attempts to extract governing equations from data using
machine learning approaches.78−81 Such machine learning
based approaches which are informed via rigorous interface-
resolved microscale models discussed earlier in this section may
allow us to develop the desired high-fidelity models for
simulating applications based on hydrodynamic cavitation
over a wide range of operating conditions and systems under
consideration. Such an ambitious ensemble approach is now
possible because of the recent advances in (1) GPU based
solvers that allow extensive particle resolved simulations within
tractable times (Petrone82), (2) feature extraction methods that
may enable unraveling of multiscale signatures embedded in the
spatiotemporal data (Sharma et al.83), and (3) machine learning
methods including symbolic manipulation (Sivaram and
Venkatasubramanian84). Time is now ripe for the development
of such a new methodology, which has the potential to bridge
the gaps in the current state of the art and enable process
innovations to accelerate realization of the full potential of
hydrodynamic cavitation in a variety of sectors.

4. CLOSING REMARKS
State of the art computational models are still found to be
inadequate for quantitative a priori predictions of complex
physicochemical transformations occurring in a hydrodynamic
cavitation reactor. In this article, semiempirical, data-driven, and
physics based models are briefly reviewed. Data-driven or
semiempirical approaches are not useful for scale-up and
developing new hydrodynamic cavitation devices/reactors.
The state of the art physics based models still require ad-hoc
adjustable parameters for describing the observed performance
and are not really predictive. We hope that the presented review
provides a useful perspective for selecting an appropriate
approach for the design and optimization of applications of
hydrodynamic cavitation. A potentially promising approach,
though speculative at the moment, is outlined here which
suggests anchoring of physics based models with real-time data
via machine learning. Such truly linked multiscale models may
lead to the desired breakthrough in the fundamental under-
standing of hydrodynamic cavitation reactors.
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■ NOTATIONS
C Characteristic of interest, e.g., concentration
d Throat diameter of cavitation device, droplet diameter
H Number of hidden neurons
F Flatness of acoustic signal
G Generation rate of desired cavitation effect, e.g., hydroxyl

radicals
k Rate constant
kR Average turbulent kinetic energy in the cavity collapse

region
mOH Hydroxyl radicals generated per collapse
n Number of passes through cavitation device
Ndata Number of data points
Nin Number of input variables
Nout Number of output variables
PB Pressure experienced by a cavity
Pv Vapor pressure
q Net flow rate
Q Flow rate through cavitation device
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R Cavity collapse region, desired performance result
t Time
V Volume of liquid in the holding tank
Greek symbols
β Ratio of flow rate through cavitation device and net flow

rate
δ Effectiveness factor for utilizing generated cavitation effect
ϵGR Volume fraction of gas phase in cavity collapse region
Φ Per-pass performance factor
ρ Density
ωR Average turbulent frequency in the cavity collapse region
Subscripts
0 At time = 0
2 Second order rate constant between hydroxyl radicals and

targeted reacting species
∞ At infinite scale-up
in Inlet
out Outlet
S Scavenger
Acronyms
DCA Dichloro aniline
HC Hydrodynamic cavitation
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