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Abstract: Background: Early identification of patients at risk for cardiac surgery-associated acute
kidney injury (CS-AKI) based on novel biomarkers and tissue oxygen saturation might enable
intervention to reduce kidney injury. Aims: The study aimed to ascertain whether brain and muscle
oxygenation measured by near-infrared spectroscopy (NIRS), in addition to cystatin C and NGAL
concentrations, could help with CS-AKI prediction. Methods: This is a single-centre prospective
observational study on adult patients undergoing cardiac surgery using cardiopulmonary bypass
(CPB). Brain and muscle NIRS were recorded during surgery. Cystatin C was measured on the first
postoperative day, while NGAL directly before and 3 h after surgery. Results: CS-AKI was diagnosed
in 18 (16%) of 114 patients. NIRS values recorded 20 min after CPB (with cut-off value ≤ 54.5%
for muscle and ≤ 62.5% for the brain) were revealed to be the most accurate predictors of CS-AKI.
Preoperative NGAL ≥ 91.5 ng/mL, postoperative NGAL ≥ 140.5 ng/mL, and postoperative cystatin
C ≥ 1.23 mg/L were identified as independent and significant CS-AKI predictors. Conclusions:
Brain and muscle oxygen saturation 20 min after CPB could be considered early parameters possibly
related to CS-AKI risk, especially in patients with increased cystatin C and NGAL levels.

Keywords: acute kidney injury; biomarkers; NIRS; tissue oximetry

1. Introduction

Cardiac surgery-associated acute kidney injury (CS-AKI) is a well-recognized, but still
incompletely understood, clinical problem that significantly impacts short- and long-term
outcomes [1,2]. Early identification of patients at risk for this complication may allow
clinicians to introduce interventions to decrease the risk of CS-AKI [3]. Besides oliguria,
serum creatinine level and its changes are the parameters that serve as the criteria for
CS-AKI diagnosis; however, it is not an ideal parameter during short-term changes in
kidney function because it lags behind the decline and recovery of glomerular filtration
rate (GFR) by days [4]. Therefore, there is a need for more sensitive and specific markers
for CS-AKI prediction and early recognition.

Data from the literature reveals the possible role of numerous novel acute kidney
injury biomarkers. Among them, serum cystatin C and urinary and serum neutrophil
gelatinase-associated lipocalin (NGAL) belong to sensitive and clinically useful biomarkers
in AKI detection [5–13]. Additionally, as lower oxygen delivery during and after cardiopul-
monary bypass (CPB) is a significant risk factor of CS-AKI [14], the measurement of tissue
oxygenation by near-infrared spectroscopy (NIRS)—a modern, non-invasive technique,
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seems of great clinical value [14–19]. Previous publications on NIRS monitoring concerning
brain protection during extensive aortic surgery [20] or direct renal oxygenation mea-
surement in infants have confirmed its importance [21–23]. The role of tissue oximetry
monitoring by the NIRS technique in adults in various cardiac surgery procedures has
been extensively studied, but the results are inconsistent [15,19,24,25]. Our study aimed to
evaluate if regional cerebral oxygen saturation (rScO2) and somatic oxygen saturation of
thenar muscles (SomO2), in addition to blood NGAL and cystatin C concentration, could
allow for better CS-AKI prediction in adult patients undergoing cardiac surgery with the
use of a cardiopulmonary bypass.

2. Materials and Methods
2.1. Study Design and Patient Selection

The study protocol conformed to the Ethical Principles for Medical Research Involv-
ing Human Subjects outlined in the Declaration of Helsinki was approved by the local
institutional review board for scientific studies (NKBBN/122/2014) and registered in the
Clinical Trials database (NCT02979275). Between December 2016 and November 2018,
all adult patients (≥18 years old) undergoing scheduled cardiac surgery using CPB were
prospectively included in this pilot study. Patients with a left ventricular ejection fraction
of less than 30% and/or estimated glomerular filtration rate (eGFR) < 30 mL/min/1.73 m2

were excluded from the study. Of 125 patients enrolled in the study, 11 were excluded due
to lack of consent. Written informed consent was obtained from all participants.

CS-AKI was the primary outcome of this study. Patients were divided into two groups:
those who developed CS-AKI (AKI group) and those without CS-AKI (non-AKI group). CS-
AKI was diagnosed according to the Kidney Disease Improving Global Outcomes (KDIGO)
classification system, which defines CS-AKI [26] based on their serum concentration of
creatinine: CS-AKI was defined as an increase in creatinine level by 0.3 mg/dL over 48 h or
50% in 7 days; creatinine level the day before the operation was used as the baseline. Three
stages of kidney damage were taken into account: stage 1 (1.5 to 1.9-fold increase in the
initial creatinine concentration or increase above 0.3 mg/dL), stage 2 (2 to 2.9-fold increase
in the initial creatinine concentration), and stage 3 (3-fold increase in baseline creatinine
concentration or increase in creatinine concentration to the value ≥ 4 mg/dL or the need
for renal replacement therapy). Anaesthetic management and postoperative sedation in the
studied patients are presented in Text S1, whereas surgical and cardiopulmonary bypass
management is described in Text S2.

2.2. NIRS Monitoring

Tissue saturation was continuously monitored using an INVOS monitor (INVOS-TM
5100C Cerebral Somatic Oximeter, Covidien, Mansfield, MA, USA); the sensors were placed
on the thenar muscle of the right hand—opposite to the radial arterial catheter (SomO2) and
left side of the forehead (rScO2). The absolute NIRS value instead of its relative change was
registered. NIRS data were reported at discrete time points instead of the AUC of NIRS.

2.3. Laboratory Tests

Blood NGAL was assessed by point-of-care testing (Triage Meter NGAL Test, Biosite,
Alere Health, San Diego, CA, USA) via a rapid fluorescence immunoassay. The 2 mL blood
sample was aspirated from the arterial line in an EDTA-anticoagulated syringe, and several
drops of blood were added immediately on the sample port of the Alere Triage® Meter
device, which provided the resulting printout within 15 min.

The 5 mL arterial blood samples for cystatin C assessment were centrifuged di-
rectly after sampling at 4000 rpm in 10 min, at 4 ◦C, and deep-frozen immediately at
−70 ◦C until laboratory analysis. The concentration of cystatin C in heparinized plasma
was determined using molecularly amplified immunonephelometry using Siemens BN
II/BN Pro Spec systems. Serum creatinine was measured using the enzymatic method
(Abbott Diagnostics Inc., Santa Clara, CA, USA). Blood gas analysis, haemoglobin, and
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lactate concentration were assessed with ABL800 Flex 835 blood analyser (Radiometer,
Copenhagen, Denmark).

Blood NGAL concentration was measured in the operating room directly before
surgery and 3 h after the operation in every patient. Blood samples for cystatin C con-
centration were collected on the first postoperative day (12 to 20 h after the surgery).
Serum creatinine concentration was assessed on admission to the hospital, in the vast
majority—one day before surgery, as well as 24 and 48 h after the surgery. SomO2, rScO2,
and haemoglobin concentration, were recorded in the following nine time-points of op-
eration: before anaesthesia induction {1}, directly before skin incision {2}, after sternum
opening {3}, 20 min after aortic cross-clamping {4}, 40 min after aortic cross-clamping {5},
20 min after aortic cross-clamp removal {6}, 20 min after weaning from CPB {7}, 40 min
after weaning from CPB {8}, and 60 min after weaning from CPB {9}. All the parameters
mentioned above were compared between the AKI and non-AKI groups.

2.4. Statistical Analysis

Continuous variables were presented as median, quartiles, and range, while categor-
ical data were presented as proportions. Data were tested for normal distribution with
the Shapiro–Wilk test. Comparisons between AKI and non-AKI groups were performed
with the Mann–Whitney U test for continuous variables and Pearson’s chi-square test for
categorical variables. Kruskal–Wallis ANOVA test was performed to assess inter-group
differences over time. Regarding the parameters checked during surgery, differences for
groups and time were presented as figures only for parameters that differed significantly
between groups. The accuracy of measured parameters as potential CS-AKI predictors was
determined based on the area under the receiver-operating characteristic curve (AUC ROC).
The cut-off values with AUC equal to 0.7 and higher were accepted for further calculations.

Additionally, sensitivity, specificity, and positive and negative predictive values (PPV,
NPV) were calculated. Logistic regression analyses were performed to determine which
parameters with pre-specified cut-off values had the most decisive influence on CS-AKI
occurrence. The Pearson linear correlation test assessed the linear dependence of individual
variables. p-values less than 0.05 were considered significant. Statistical analysis was
performed with STATISTICA 12.0 (StatSoft, Tulsa, OK, USA) and R 2.15.2 software.

3. Results

Baseline demographic characteristics, clinical and laboratory parameters, and data
regarding surgery are presented in Table 1. Among 114 enrolled patients, 18 (16%)
met CS-AKI based on the KDIGO criteria, of which 12 were stage 1, in 4—stage 2, and
in 2—stage 3 (one of these patients, apart from the diagnostic increase in creatinine
level oliguria, was diagnosed in the postoperative period—this patient required renal
replacement therapy in the postoperative period). AKI patients were significantly older
and demonstrated a slightly higher EURO Score; however, the difference of the latter did
not reach statistical significance. Before surgery, median serum creatinine concentration
was significantly higher, and haemoglobin concentration was lower in patients from the
AKI group. CS-AKI was observed less frequently in patients undergoing aortic valve
surgery without concomitant procedures. Aortic cross-clamp time was significantly
longer in patients in the AKI group. Patients in the AKI group were noted to have
a longer time to extubation, required higher doses of catecholamines on the second
postoperative day, were reported to have reduced urine output, and were more likely to
require furosemide on the first postoperative day, and this cumulated to a less negative
fluid balance on the first postoperative day. AKI group was characterized by higher
C-reactive protein (CRP) concentration on the first postoperative day, and higher white
blood cell (WBC) count on the third day after surgery. All measured kidney injury
biomarkers: blood NGAL before surgery, blood NGAL after surgery, and postoperative
cystatin C were significantly higher in the AKI group. The Kruskal–Wallis ANOVA test
performed to assess inter-group differences over time demonstrated that haemoglobin
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concentration, SomO2, rScO2 were markedly lower in AKI patients (Figures 1–3). There
were no significant differences in any other measured parameters.

Table 1. Demographic, clinical, and laboratory characteristics and data of cardiac surgery.

AKI Patients
n = 18

Non-AKI Patients
n = 96 p

PREOPERATIVE CHARACTERISTICS

Age (years) 74 (66–78) 67 (60–74) 0.029

Male, n (%) 8 (44) 49 (51) 0.798

Coronary artery disease, n (%) 12 (67) 62 (65) 1.000

Arterial hypertension, n (%) 12 (67) 74 (77) 0.376

Diabetes mellitus, n (%) 7 (39) 29 (30) 0.725

EUROScore (logistic) 9.7 (5.1–13.5) 5.5 (2.6–12.2) 0.054

LVEF% 60 (45–64) 60 (48–65) 0.440

Creatinine (mg/dL) 1.02 (0.91–1.27) 0.90 (0.79–1.05) 0.018

Haemoglobin (g/dL) 12.8 (11.8–13.3) 13.8 (12.6–14.6) 0.019

Preoperative anaemia *, n (%) 7 (39) 19 (20) 0.076

Leukocyte count (G/L) 6.83 (6.43–8.64) 7.34 (6.54–8.44) 0.166

Angiotensin-converting enzyme inhibitors/sartans before operation 4 (22) 28 (29) 0.776

Statins in premedication 10 (56) 63 (66) 0.433

INTRAOPERATIVE CHARACTERISTICS

Aortic valve surgery, n (%) 6 (33) 61 (64) 0.021

Mitral valve surgery, n (%) 1 (5.6) 12 (12.5) 0.689

Aortic and mitral valves surgery, n (%) 3 (17) 4 (4) 0.077

Ascending aorta surgery including Bentall operation n (%) 3 (17) 6 (6) 0.150

3 valves surgery, n (%) 4 (22) 7 (7) 0.071

Other surgery, n (%) 1 (5.6) 6 (6) 1.000

CPB time (min) 140 (116–168) 119 (98–151) 0.084

Aortic cross-clamp time (min) 95 (83–112) 80 (67–103) 0.048

POSTOPERATIVE CHARACTERISTICS

Serum creatinine on the 1st day post-surgery (mg/dL) 1.58 (1.31–1.95) 0.90 (0.79–1.05) 0.018

Serum creatinine on the 2nd day post-surgery (mg/dL) 1.52 (1.21–2.13) 0.87 (0.74–1.03) 0.001

Serum creatinine on the 3rd day post-surgery (mg/dL) 1.46 (0.99–1.67) 0.79 (0.68–0.91) 0.001

Catecholamine infusion on the 1st day post-surgery n (%) 10 (56) 29 (30) 0.059

Catecholamine infusion on the 2nd day post-surgery n (%) 7 (39) 12 (13) 0.014

Catecholamine infusion on the 3rd day post-surgery n (%) 4 (22) 9 (9) 0.223

Diuresis on the 1st day post-surgery (mL) 1940 (1400–2470) 2340 (2070–2690) 0.019

Fluid balance on the 1st day post-surgery (mL) −20 (−769–918) −650 (−923–−50) 0.042

Fluid balance on the 2nd day post-surgery (mL) 297 (−435–860) 0 (−950–400) 0.093

Fluid balance on the 3rd day post-surgery (mL) −300 (−750–450) −375 (−925–162.5) 0.288
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Table 1. Cont.

AKI Patients
n = 18

Non-AKI Patients
n = 96 p

Postoperative chest drainage on the 1st day post-surgery (mL) 435 (273–950) 320 (225–533) 0.083

Postoperative chest drainage on the 2nd day post-surgery (mL) 130 (120–235) 160 (98–255) 0.497

Furosemide on the 1st day post-surgery, n (%) 10 (56) 49 (51) 0.007

Time to extubation (hours) 10.0 (8.5–11.5) 8.0 (6.5–10.0) 0.028

CRP on the 1st day post-surgery 38.2 (25.0–54.7) 28.3 (17.5–42.7) 0.043

CRP on the 2nd day post-surgery 79.3 (60.3–108.6) 65.8 (44.0–93.82) 0.086

CRP on the 3rd day post-surgery 113.3 (62.0–153.8) 98.5 (62.3–142.6) 0.286

WBC on the 1st day post-surgery 12.5 (10.8–15.2) 12.9 (10.8–14.9) 0.342

WBC in the 2nd day post-surgery 15.0 (12.7–19.4) 14.0 (12.0–16.0) 0.117

WBC in the 3rd day post-surgery 11.5 (10.7–14.7) 10.3 (8.1–12.5) 0.037

Haemoglobin on the 1st day post-surgery 10.5 (9.7–11.3) 10.8 (10.1–11.4) 0.239

Haemoglobin on the 2nd day post-surgery 9.6 (9.1–10.7) 10.2 (9.6–10.7) 0.074

Haemoglobin on the 3rd day post-surgery 10.0 (8.9–10.5) 9.6 (8.9–10.4) 0.315

BIOMARKERS

Blood NGAL before surgery (ng/mL) 123.5 (78.5–163.3) 62.5 (50.8–86.5) 0.001

Blood NGAL 3 h after surgery (ng/mL) 156.50
(94.00–181.00)

74.00
(53.75–101.25) 0.004

Postoperative cystatin C (mg/L) 1.56 (1.41–1.94) 0.84 (0.72–1.07) 0.001

Data are presented as median (25th–75th percentile) or numbers (and percent). Abbreviations: AKI—acute kidney injury; CPB—cardio-
pulmonary bypass; CRP—C-reactive protein; LVEF—left ventricle ejection fraction; NGAL—neutrophil gelatinase-associated lipocalin;
WBC—white blood cell. *—Preoperative anaemia was defined as haemoglobin level <13 g · dL−1 in men and <12 g · dL−1 in women.

In ROC analyses for NIRS, we identified that rScO2 and SomO2 measured 20 min
after CPB had cut-off values with acceptable AUC levels around 70% (Table 2), while NIRS
measured at other time points had lower accuracy for CS-AKI prediction. For blood NGAL
(both preoperative and postoperative) and cystatin C concentrations, established cut-off
values had a sufficient AUC level and were characterized by high PPV (Table 2).

Plasma cystatin C measured between 12 and 20 h after surgery, at the level≥1.23 mg/L,
was recognized as the most accurate predictor of CS-AKI with AUC 91% (95% confidence
interval [CI] 82.0–100.0) (Figure 4).

In univariate logistic regression analysis, the aforementioned cut-off values for blood
NGAL, cystatin C, rScO2, and SomO2 were identified as significant CS-AKI predictors
(Table 3).

As a total of 18 AKI were documented among 114 patients, the maximum number of
predictors that could be used in a multivariate model without the risk of its over-fitting
was 2. Therefore, we tested combinations of rScO2 and SomO2 20′ min after CPB with
haemoglobin level as an essential factor of lower oxygenation in bivariate logistic regression
analysis. rScO2 and SomO2 measured 20′ after CPB turned out to significantly predict CS-
AKI, independently from haemoglobin level measured at the same time: OR 0.15 (0.04–0.59),
p < 0.007 for SomO2 and 0.10 (0.02–0.52), p < 0.006 for rScO2. Additionally, the combined
analysis of biomarkers and NIRS parameters allows for better CS-AKI prediction, revealing
the highest power for a combination of cystatin C with rScO2 and SomO2 (Table 3). We
revealed that the correlations between biomarkers and NIRS parameters were weak; al-
though some were statistically significant, the linear correlation coefficient r was below 0.5
(Table S1). In the additional logistic regression analyses we checked the associations of pre-
and intraoperative variables which differed between AKI and non-AKI groups (Table 1) us-
ing pre-specified in ROC analyses cut-off values, and association with AKI were as follows:
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age ≥ 71–OR 3.29 (1.16–9.32), p = 0.031, EURO Score ≥ 4.5–OR 6.27 (1.36–28.89), p = 0.008,
serum creatinine before surgery ≥ 0.84–OR 10.66 (1.36–83.5), p = 0.006, haemoglobin con-
centration before surgery < 13.5–OR 4.27 (1.3–17.32), p = 0.019, CPB time ≥ 139 min–OR
3.61 (1.17–11.14), p = 0.036, aortic cross-clamp time≥ 84 min–OR 3.98 (1.19–13.25), p = 0.028,
three valves surgery–OR 5.47 (1.73–17.32), p = 0.006. Additionally, we adjusted NGAL,
cystatin C, and NIRS (20′ after CPB) for all these parameters, confirming the significant
independence of biomarkers and NIRS in predicting the incidence of CS-AKI (Table S2).
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sternum opening, {4}—20 min after aortic cross-clamping, {5}—40 min after aortic cross-clamping, {6}—20 min after aortic
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methods (p values for comparison between AKI and non-AKI patients at specified time points. {1}—before anaesthesia
induction, {2}—directly before skin incision, {3}—after sternum opening, {4}—20 min after aortic cross-clamping, {5}—40 min
after aortic cross-clamping, {6}—20 min after aortic cross-clamp removal, {7}—20 min after weaning from CPB, {8}—40 min
after separation from CPB, {9}—60 min after separation from CPB).

Trying to find any other predictors of CS-AKI, we additionally compared the pa-
tients with lower and higher than 45% LVEF, revealing that the patients with LVEF
30–45% have worse NGAL levels before and after the surgery and worse NIRS parame-
ters (particularly SomO2) at some time points (Table S3). The rate of AKI did not differ
between the groups; however, more advanced statistical analyses were not possible due
to the small sample size.
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Figure 3. NIRS brain saturation measured in the operating room in AKI and non-AKI patients at time-points specified in
methods (p values for comparison between AKI and non-AKI patients at specified time points. {1}—before anaesthesia
induction, {2}—directly before skin incision, {3}—after sternum opening, {4}—20 min after aortic cross-clamping, {5}—40 min
after aortic cross-clamping, {6}—20 min after aortic cross-clamp removal, {7}—20 min after weaning from CPB, {8}—40 min
after separation from CPB, {9}—60 min after separation from CPB).

Table 2. Cut-off values for pre- and postoperative blood NGAL, postoperative cystatin C, the absolute SomO2, and the
absolute rScO2 in CS-AKI prediction (based on AUC ROC analysis).

Parameters Cut-off Value AUC
(95% CI) Sensitivity Specificity PPV NPV

Cystatin C after surgery *
(mg/L) 1.23 91.4

(82.0–100.0) 0.88 0.94 0.99 0.6

Blood NGAL before
surgery (ng/mL) 91.5 73.9

(58.5–89.3) 0.79 0.72 0.94 0.39

Blood NGAL 3 h after
surgery (ng/mL) 140.5 77.1

(62.4–91.9) 0.91 0.67 0.94 0.57

The absolute SomO2
20 min after CPB (%) 54.5 71.1

(58.1–84.0) 0.6 0.82 0.95 0.28

The absolute rScO2 20 min
after CPB (%) 62.5 68.6

(54.2–82.9) 0.51 0.88 0.96 0.25

Abbreviations: AUC—area under the receiver-operating characteristic (ROC) curve; CS-AKI—cardiac surgery-associated acute kidney injury;
CPB—cardio-pulmonary bypass; NGAL—neutrophil gelatinase-associated lipocalin; NPV—negative predictive value; PPV—positive predictive
value, rScO2—regional cerebral oxygen saturation measured by near-infrared spectroscopy, SomO2—somatic oxygen saturation of thenar
muscles measured by near-infrared spectroscopy. * Postoperative cystatin C was obtained between 12 and 20 h after surgery.
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Table 3. Univariate logistic regression analyses for blood NGAL, cystatin, and NIRS cut-off values in CS-AKI prediction.

Parameters OR (95% CI) p

NGAL before surgery ≥ 91.5 ng/mL 9.88 (3.15–30.98) 0.001

NGAL 3 h after surgery ≥ 140.5 ng/mL 19.33 (5.84–63.96) 0.001

Postoperative cystatin C ≥ 1.23 mg/L 111 (13.2–933.33) 0.001

SomO2 20′ after CPB ≤ 54.5% 6.87 (1.3–13.97) 0.003

rScO2 20′ after CPB ≤ 62.5% 3.5 (1.14–10.78) 0.003

Blood NGAL before surgery ≥ 91.5 nl/mL and
SomO2 20′ after CPB ≤ 54.5% 12.7 (3.88–41.59) 0.001
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Table 3. Cont.

Parameters OR (95% CI) p

Blood NGAL before surgery ≥ 91.5 nl/mL and
rScO2 20′ after CPB ≤ 62.5% 17.45 (5.16–59.06) 0.001

Blood NGAL 3 h after surgery ≥ 140.5 ng/mL and
SomO2 20′ after CPB ≤ 54.5% 30.36 (7.54–122.16) 0.001

Blood NGAL 3 h after surgery ≥ 140.5 ng/mL and
rScO2 20′ after CPB ≤ 62.5% 39.88 (9.71–163.67) 0.001

Postoperative cystatin C ≥ 1.23 mg/L and
SomO2 20′ after CPB ≤ 54.5% 58.5 (12.32–276.84) 0.001

Postoperative cystatin C ≥ 1.23 mg/L and
rScO2 20′ after CPB ≤ 62.5% 123.5 (20.49–744.46) 0.001

Abbreviations: CS-AKI—cardiac surgery-associated acute kidney injury; CPB—cardio-pulmonary bypass; NGAL—neutrophil gelatinase-
associated lipocalin; OR—Odds ratio; CI—confidence interval; rScO2—regional cerebral oxygen saturation measured by near-infrared
spectroscopy, SomO2—somatic oxygen saturation of thenar muscles measured by near-infrared spectroscopy.

4. Discussion

The main findings of the present study are that brain and muscle oximetry monitoring
based on the NIRS technique and biomarkers (blood NGAL and cystatin C) could be
promising tools in predicting kidney injury after cardiac surgery with the use of CPB. We
showed that muscle and brain NIRS monitoring, in addition to increased blood NGAL and
cystatin C levels, could help to predict CS-AKI. Amongst all time-points taken into account
during surgery for NIRS measurement, 20 min after weaning from CPB was revealed to be
the most crucial for CS-AKI prediction.

The comparison of the groups in terms of clinical data showed a significant difference
in age and a statistically borderline difference in risk calculated using the EuroSCORE scale,
confirming the previous literature data [3,27,28]. Excluding patients whose higher risk
would be associated with significant left ventricular systolic dysfunction and significant
renal function deterioration could be responsible for the relatively low incidence of CS-AKI
in the studied patients. However, data from the literature show that CS-AKI may also
occur in patients with normal left ventricular systolic function and undisturbed kidney
function before surgery [29,30]. Our results are in line with these data.

In the presented study, patients who developed CS-AKI were characterized by a
higher creatinine concentration before surgery. The observation that elevated creatinine
levels before surgery may be associated with a higher risk of CS-AKI confirms the reports
of previous authors [3,27,28] and could be explained by the significantly reduced renal
functional reserve in patients with higher creatinine levels and, thus, increased sensitivity
to damaging factors by kidneys having fewer active nephrons.

The results of this study also confirm the data from the literature on the influence of
haemoglobin concentration on the occurrence of kidney damage after surgery, which was
demonstrated, among other things, in a multicentre study involving 3500 patients from
seven academic centres [31]. In the presented study, in patients who developed CS-AKI,
a lower haemoglobin concentration was found; however, the mean values were within
the normal range, which suggests the need for careful assessment of these parameters in
patients prepared for cardiac surgery with the use of CPB, and consideration of additional
preparation of patients.

In the present study, it was noted that the differences between the AKI and non-AKI
groups in terms of haemoglobin and creatinine levels before surgery may suggest that,
especially in patients with lower haemoglobin and higher creatinine levels before surgery
with KPU, extending monitoring by tissue oximetry, as well as undertaking interventions
aimed at increasing tissue saturation could contribute to reducing the risk of CS-AKI, but
resolving this issue would require further research.
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In the presented study, several additional features distinguishing patients who de-
veloped CS-AKI were observed. This complication was prevalent in patients undergoing
surgery on two valves (mitral and aortic) and three heart valves. Much less often, CS-
AKI was reported in patients who underwent only aortic valve surgery, which may be
due to the specificity of patients undergoing this procedure, most often including normal
left ventricular function before surgery, less frequent hemodynamic disturbances in the
postoperative period, and a shorter time of aortic clamp insertion, compared to multiple
valve surgery and mitral valve surgery [32]. The observation that patients who developed
CS-AKI required a longer duration of ventilator therapy and that elevated parameters of
the inflammatory response (CRP and white blood cell count) could be associated with a
higher risk of infection is consistent with the literature data [28,29].

Statistically, both the significantly extended time of applying the transverse clamp
to the aorta and the insignificantly longer duration of CPB in the AKI group can be
interpreted as a factor contributing to its development, both by activating the inflammatory
reaction stimulated by extracorporeal circulation [33] and by more prolonged, persistent
disorders of organ perfusion, including renal function, as have been observed during
extracorporeal circulation [34–36]. The study group was probably too small to show a
statistically significant influence of other known factors contributing to the development of
CS-AKI related to the operating procedure, which may include, among other things, CPB
time [37].

The role of cystatin C and NGAL in CS-AKI prediction has been demonstrated in
several papers [5–13]. In one of the recent studies [12] on patients undergoing elective
cardiac surgery, Wang et al. confirmed that increased serum cystatin C level, with cut-off
values pre-specified at different time-points, was related to an enhanced risk of CS-AKI.
In our study, based on a similar group, the cut-off value for cystatin C was in line with
the cited research. Increased NGAL levels allowed us to detect subclinical kidney injury,
even in the absence of a diagnostic increase in serum creatinine, typical for AKI [6]. Precise
diagnostic accuracy for NGAL in early prediction of CS-AKI in adults with normal baseline
renal function has been reported [9]. In our study, we confirmed this finding on patients
without significantly altered kidney function before the surgery. The majority of data from
literature concerned NGAL measurement after the surgery, while pre-operative NGAL
could also help predict CS-AKI [8,10], as was confirmed in our study.

Until now, the usefulness of brain NIRS was described in a few studies on cardiac
surgical patients [15,24,38,39]. Thenar muscle oximetry was also assessed in various clinical
settings, including cardiac surgery [40,41]. The authors suspected that low SomO2 values
might better correlate to acute kidney injury because kidney and muscle vasculature is
more sensitive to vasoconstrictors than the brain. To the best of our knowledge, this is the
first study where specific NIRS cut-off values of rScO2 and SomO2 were calculated. In our
research, amongst different time points, NIRS measured 20 min after weaning from CPB
with a cut-off value of 54.5% for SomO2 and 62.5% for rScO2, presented the best predictive
accuracy for CS-AKI. Current views on brain and muscle saturation are presumptive, and
clinically verified algorithms to recover decreased NIRS parameters are lacking [19,42].
The NIRS data reported at discrete time points, instead of the NIRS AUC, were analysed to
enable its correlation with arterial blood gas and haemoglobin concentration assessed at
the same time-points.

There is no evidence to suggest only a long-lasting, or even short decrease in NIRS
levels after CPB, is efficient for CS-AKI development. However, it seems plausible that
immediate real-time intervention aimed at the normalization of rScO2 and SomO2 could be
helpful in CS-AKI prevention. On the other hand, the low sensitivity of these parameters is
a real weak point of these measures, therefore, the addition of NIRS parameters to cystatin
C or blood NGAL level calculation could be a promising direction in the selection of at-risk
patients. It would be essential to check the usefulness of NIRS measurements according
to the AKI severity; unfortunately, due to limited numbers of AKI patients in every stage,
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the statistical power of possible analyses would be weak. These issues however need to be
confirmed in further investigations on larger groups of patients

5. Study Limitations

Our study presents some limitations. Firstly, the group was small, and the number of
CS-AKI incidences was low, which meant that we were unable to perform an additional
analysis regarding the AKI stage. Similarly, we were also unable to perform a complex
multivariate analysis as the maximum number of predictors that could be used in a
multivariate model without the risk of its over-fitting was only 2. Other studies measured
similar parameters in larger groups of patients, but all analysed biomarkers and NIRS
parameters in kidney injury prediction separately. In contrast, our study confirmed the
usefulness of the combined measurement of these indices. A further limitation was that we
did not measure rScO2 and SomO2 after surgery, which may well be very important. Next,
we used the creatinine level the day before the operation as the baseline; however, we did
not have precise information concerning preoperative creatinine levels within the three
months before the surgery, which could exclude AKI before the surgery. Additionally, we
did not collect the clinical data concerning the excluded patients, therefore, it is difficult to
compare these patients with the enrolled population in light of AKI occurrence. Similarly,
it is difficult to explain the low percentage of angiotensin-converting enzyme inhibitors
and sartans before the study; the ultimate decision regarding pharmacological treatment
before the operation in any patient was left to the discretion of the treating physician. We
also did not perform a further follow-up; therefore, we cannot discuss the influence of the
measured parameters in the long-term, and especially the long-term renal function of the
studied patients.

6. Conclusions

Brain and muscle oximetry monitoring based on the NIRS technique with particular
attention to their values 20 min after weaning from CPB could be considered as early
parameters possibly helpful for the increased risk of CS-AKI, especially in patients with
increased cystatin C and blood NGAL levels. Our pilot study needs to be extended to a
larger group of patients with more events. Otherwise, whether interventions aiming to
increase rScO2 and SomO2 values can decrease CS-AKI risk requires further studies.
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